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Abstract—These days, many traditional end-user applications
are said to “run fast enough” on existing machines, so the
search continues for novel applications that can leverage the new
capabilities of our evolving hardware. Foremost of these potential
applications are those that are clustered around information
processing capabilities that humans have today but are lacking in
computers. The fact that brains can perform these computations
serves as an existence proof that these applications are realizable.
At the same time, we often discover that the human nervous
system, with its 80 billion neurons, on some metrics, is more
powerful and energy-efficient than today’s machines. Both of
these aspects make this class of applications a desirable target
for an architectural benchmark suite, because there is evidence
that these applications are both useful and computationally
challenging.

This paper details CortexSuite, a Synthetic Brain Benchmark
Suite, which seeks to capture this workload. We classify and
identify benchmarks within CortexSuite by analogy to the human
neural processing function. We use the major lobes of the cerebral
cortex as a model for the organization and classification of data
processing algorithms. To be clear, our goal is not to emulate the
brain at the level of the neuron, but rather to collect together
synthetic, man-made algorithms that have similar function and
have met with success in the real world. We consulted six world-
class machine learning and computer vision researchers, who
collectively hold 83,091 citations across their distinct subareas,
asking them to identify newly emerging computationally-intensive
algorithms or applications that are going to have a large impact
over the next ten years. This is coupled with datasets that reflect
the philosophy of practical use algorithms and are coded in ‘“clean
C” so as to make them accessible, analyzable, and usable for
parallel and approximate compiler and architecture researchers
alike.

I. INTRODUCTION

In this paper, we present CortexSuite, a Synthetic Brain
Benchmark Suite which captures an emerging workload that is
clustered around providing information processing capabilities
that human brains have today but that computers are only
just now beginning to become good at. We classify and
identify benchmarks within CortexSuite by analogy to the
human neural processing function, as shown in Fig 1. We
use the major lobes of the cerebral cortex as a model for the
organization and classification of data processing algorithms.
Our goal is not to emulate the brain at the level of the
neuron, but rather to collect together man-made (i.e. synthetic)
algorithms that have similar capabilities and have met with
success in the real world.

Benchmark Organization. In the organization of this
benchmark suite we draw parallels between three major data

processing classes and the four majors lobes of the sensory
cortex: the temporal, occipital, parietal, and frontal. With this
abstraction, we classify the occipital and temporal lobe, which
work together to provide the visual processing centers of
the brain, similar to a computer vision core. The parietal
lobe, which is responsible for language comprehension, is
parallel to a natural language core. Finally, we link the frontal
lobe with learning and preprocessing benchmarks. To account
for the varied nature of data processing tasks, our proposed
taxonomy helps to maintain consistency when extending this
benchmark suite. For example, vision benchmark suites such
as MEVBench [2] can be integrated into the occipital node of
the suite.

The benchmark suite contains eight unique applications
from the natural language processing, computer vision, and
machine learning domains. It is intended to extend SD-VBS,
which provides a core of relatively recent vision algorithm.
The benchmarks are shown in Table L.

Clean C coding. The benchmarks were coded to reduce
the unnecessary use of pointer calculations, I/O and machine-
specific optimizations that inhibit parallelization and/or their
use in prototype compilers and/or architectural simulators.
Oftentimes, existing code bases have been tuned for a particu-
lar architecture, which obfuscates the underlying algorithm,
making it difficult to retarget to a new execution model,
and also preventing code transformations that can unlock
parallelism.

Representative Datasets. Real-world datasets were used
to represent actual commercial and academic scenarios in an
effort to mirror real-world use-cases. Moreover, we provided
a spectrum of input sizes with varying run times and in some
cases, different properties, for each benchmark, when it affects
execution properties significantly.

II. BENCHMARK DESCRIPTIONS

The goal of the benchmark suite is to provide a set
of algorithms that have the flexibility to cover a spectrum
of domains with representative datasets in current academic
and commercial uses. The applications have been coded to
eliminate the use of unnecessary complex pointer operations
and machine-dependent optimization to expedite the use of
the suite for parallel/approximate compiler and architecture
researchers. We omit the descriptions for the benchmarks that
derive from SD-VBS [1] for the purposes of space.
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Fig. 1. The Synthetic Brain Benchmark Suite.

CortexSuite captures an emerging workload that is clustered around providing information processing

capabilities that human brains have today but that computers are only just now beginning to become good at. We classify and identify benchmarks within
CortexSuite by analogy to the human neural processing function. We use the major lobes of the cerebral cortex as a model for the organization and classification
of data processing algorithms. Our goal is not to emulate the brain at that level of the neuron, but rather to collect together man-made algorithms that have
similar function and have met with success in real world use. To collect these benchmarks, we consulted six world-class vision and machine learning researchers,
asking them to identify newly emerging computationally-intensive algorithms or applications that are going to have a large impact over the next ten years.
This benchmark suite extends the SD-VBS vision benchmark suite [1] with eight more brain-centered applications—and provide an analysis of basic properties
including the quantity of innate parallelism in each benchmark. In this diagram, we have mapped applications to the associated parts of the brain’s cerebral
cortex. Vision is processed primary by the occipital and temporal lobes, language processing by the parietal lobe, and learning/feature selection by the frontal

lobe.

CortexSuite contains eight different applications in addition
to those in SD-VBS with three dataset sizes: small, medium,
and large, corresponding to exponentially increasing execution
times. We include multiple algorithms for applications in
natural language processing, computer vision, and machine
learning. In addition, a spectrum of unique and useful com-
puter vision applications have also been provided through SD-
VBS, summarized in Table I.

Restricted Boltzmann Machines (RBM) has seen ex-
ponentially growing use over the last couple of years in
the context of deep learning networks. It is a stochastic
neural network algorithm with applications in collaborative
filtering [3], feature learning and topic modeling. The RBM
algorithm was used in the Netflix prize’s winning solution in
2009 [4], where Netflix provided their database of films, with
user rankings, and offered $1 million for the best algorithm
that would predict ratings of films that the user had not yet rate.
RBM featured prominently in many of the top solutions that

emerged over time. CortexSuite utilizes RBM to implement
movie suggestions (collaborative filtering) on variants of the
Netflix database and provides the benchmark for the training
process of RBM, the most computationally intensive aspect.
To scale the run-time, we provide several scaled versions of
the database; discarding minimally-connected films that have
little impact on training.

Sphinx Speech Recognition is used for the translation of
spoken words to text [5] by taking the raw waveform, splitting
it on utterances by silences, and attempting to recognize the
word in each utterance. We group all possible combinations
of words and the best matching combination is chosen.

Super-resolution Reconstruction (SRR) is based on the
idea that slight sub-pixel variations in the information encoded
in a series of low resolution (LR) images can be used to re-
cover one high resolution (HR) image [6], [7]. Computational
resolution enhancement has many applications in the fields of
photography, healthcare, security, astronomy, and military.



Benchmarks in the Synthetic Brain Benchmark Suite.

TABLE I

CORTEXSUITE CONTAINS NINETEEN BENCHMARKS THAT SEEK TO ENCOMPASS IMPORTANT

NEW APPLICATIONS; IT INCLUDES EIGHT NEW BENCHMARKS (TOP) AND A NUMBER OF VISION-BASED BENCHMARKS FROM SD-VBS (BOTTOM).

Benchmark Category Dataset Application Domain
Restricted Boltzmann Machines Deep Learning Netflix Machine Learning

LibLinear Classification/Regression FBI Crime Statistics ~ Machine Learning

Principal Component Analysis Feature Selection NASA Machine Learning

Singular Value Decomposition Feature Selection KOS Press Machine Learning

Sphinx Speech Recognition Speech Recognition CMU Natural Language Processing

Latent Dirichlet Allocation
Super Resolution Reconstruction
Motion Estimation

Topic Modeling
Image Reconstruction
Motion, Tracking

Associated Press
MDSP Research
MDSP Research

Natural Language Processing
Computer Vision
Computer Vision

Disparity Map
Feature Tracking
Image Segmentation
SIFT

Robot Localization
SVM

Face Detection
Image Sitch

Texture Synthesis

Motion, Tracking and Stereo Vision
Motion, Tracking and Stereo Vision
Image Analysis

Image Analysis

Image Understanding

Image Understanding

Image Understanding

Image Processing and Formation
Image Processing and Formation

Computer Vision
Computer Vision
Computer Vision
Computer Vision
Computer Vision
Computer Vision
Computer Vision
Computer Vision

Computer Vision

Latent Dirichlet Allocation (LDA) is a topic modeling
algorithm that is commonly found in natural language pro-
cessing to discover topics from unordered documents. The
underlying algorithm uses the assumption that each document
was generated using a Dirichlet Distribution, which serves as a
prior distribution to the Multinomial Distribution[8]. The goal
of the algorithm is to find values for the multinomial parameter
vectors and topics for each document.

Singular Value Decomposition (SVD) is a rank reduction
algorithm used in many artificial intelligence, signal pro-
cessing, and computer vision applications. We utilize SVD
for latent semantic analysis as a tool for natural language
processing.

Principle Component Analysis (PCA) is one of the most
versatile and widely used statistical techniques for feature
extraction in multivariate datasets. PCA is found in applica-
tions ranging from computer vision to machine learning and
its tendency to use several matrix operations lends itself to
parallelization.

Motion Estimation is the process of finding motion vectors
that describe the transformation of one 2D image to another.
Motion Estimation is an essential element in image and video
processing. It is a key part of the video encoding and appli-
cations such as frame rate upsampling and superresolution.
Performance of motion estimation can directly affect the
performance of these applications.

Liblinear is a versatile library for large-scale linear clas-
sification and regression with applications in computer vision,
natural language processing, neuroimaging, and bioinformat-
ics. The library has been used in a variety of applications from
real-time object recognition to predicting protein solubility and
supports linear SVM, linear support vector regression (SVR)

and logistic regression. Liblinear is especially powerful for
large scale data, i.e. with a large number of instances and
features, as it is much faster (100x faster than libSVM) than
other state-of-art linear or nonlinear SVM libraries [9] while
keeping high accuracy.
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Fig. 2. Total Execution Times. To ensure kernel functions are sufficiently
saturated, the large dataset for each algorithm was crafted to take a significant
amount of time. This enabled us to see a trend in relative kernel execution
time with increasing data. The total number of cycles is measured on an Intel
Core i7-2620M CPU running at 2.70GHz.

IIT. RESULTS AND SCALABILITY ANALYSIS

A primary goal of the Synthetic Brain Benchmark Suite
is to provide researchers with a platform for evaluating the
scalability of various human-inspired data processing tasks.
Toward that end we analyzed all applications in the benchmark
suite to identify these regions of the program that act as
performance bottlenecks as the dataset size increases. We
identified which regions of the program dominate runtime
as data scales exponentially, the so called kernels of the
applications in Fig. 3. This data can be contrasted with each
algorithm’s absolute runtime, Fig. 2.
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Fig. 3. Relative Execution Times. The graphs show the percentage of total execution time spent in each of the major kernels in the program. While we
do not consider setup time and teardown time in the benchmark, we consider non-kernel regions which predominantly contain smaller and frequently used
helper functions. Time spent in the kernels dominates, especially in the large dataset where the average is 90.50%.

CortexSuite differs from existing suites in that it strives to
complete the picture of a synthetic brain while also providing
architectural analysis and an analysis of scalability of each
algorithm. The datasets used in this benchmark suite provide
real-world applications of each algorithm within the suite.

IV. CONCLUSION AND FUTURE WORK

CortexSuite captures a fascinating workload that is clustered
around emerging algorithms in information processing, a do-
main traditionally relegated to the human brain. We classify
and identify benchmarks within CortexSuite by analogy to the
human neural processing function. We use the major lobes
of the cerebral cortex as a model for the organization and
classification of data processing algorithms. Our goal is not to
emulate the brain at the level of the neuron, but rather to collect
together man-made algorithms that have similar function and
have met with success in the real world. This benchmark suite
extends the SD-VBS vision benchmark suite with eight more
brain-centered applications and provides an analysis of basic
properties including the quantity of innate parallelism in each
benchmark.

As the benchmark suite evolves we hope to help researchers
get one step closer to realizing computers that outpace even
human capabilities in this new domain. Our open-source
benchmark suite and the datasets can be found at darksili-
con.org/cortexsuite. An extended version of this paper can be
found at darksilicon.org/cortexsuite/cortex-extended.pdf.
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