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Abstract— This paper describes an architecture and FPGA
synthesis toolchain for building specialized, energy-saving
coprocessors called Irregular Code Energy Reducers (ICERs)
for a wide range of unmodified C programs. FPGAs are
increasingly used to build large-scale systems, and many large
software systems contain relatively little code that is amenable
to automatic, semi-automatic, or even manual parallelization.
Whereas accelerator approaches have traditionally achieved
energy benefits as a side effect from increasing performance
via parallel execution, ICERs aim to achieve energy gains
even on code with little exploitable parallelism.

Traditional approaches to automatically generating ac-
celerators from existing software rely on inferring parallel
execution from serial code, so they face the same code analysis
challenges as parallelizing compilers. In contrast, because the
ICER approach targets energy rather than performance, it
easily scales to large, irregular applications that are poor
candidates for traditional acceleration. Our results show that,
compared to a baseline system with soft processor cores,
ICERs can reduce energy consumption by up to 9.5× for the
code they target and 2.8× for whole applications.

Keywords-Accelerator architectures; Reconfigurable archi-
tectures; Energy efficiency; High level synthesis

I. INTRODUCTION

As reconfigurable fabrics scale in capacity and capa-
bility, the systems they implement will similarly expand
in scope and complexity. Designers will increasingly use
large bodies of existing code in a high-level language
like C to specify the behavior of these systems. By
moving from a pure software implementation to a hybrid
architecture, designers hope to improve performance and,
increasingly, reduce energy consumption.

Although traditional high-level synthesis (HLS) tools
make it easier to create coprocessors that increase perfor-
mance by several orders of magnitude, these approaches
have their limits. HLS tools must infer parallel execution
from serial code, so they face the same challenges as
parallelizing compilers: Analyzing pointers in free-form
code is difficult, memory parallelism is often scarce, and
it is often difficult to extract and formulate efficient parallel
schedules for critical loops. Frequently, parallelization is
only possible after significant human refactoring of the
underlying algorithms (e.g., [1], [8], [9]).

Because current HLS tools focus on performance above
all else, these tools can only save energy on code they can
accelerate. However, power and energy concerns are be-
coming increasingly dominant constraints for all executed
code, and HLS techniques should be able to significantly
reduce energy consumption even when they cannot im-
prove performance.

This paper describes a new approach to HLS that
focuses on building custom coprocessors that increase
energy efficiency for unmodified C code, regardless of
whether acceleration is possible. We call these copro-
cessors Irregular Code Energy Reducers, or ICERs. The
ICER toolchain does not rely on parallelization techniques
to build efficient hardware. As a result, a design can
incorporate ICERs for any code in which it spends a
large fraction of execution time, regardless of whether the
code contains extractable parallelism. We envision ICERs
working along with conventional accelerators to maximize
both performance and efficiency for complex FPGA-based
systems.

We evaluate ICERs using a collection of large, hard-
to-parallelize, irregular programs such as a graph flow
solver, search, and a B-tree implementation. Our results
show that, relative to a baseline system with soft processor
cores, ICERs can increase energy efficiency of individual
functions by up to 9.5×. For whole applications, ICERs
reduce energy consumption by 2.8×. ICER performance
is almost identical to soft core performance, on average.

II. ARCHITECTURE OVERVIEW

The ICER toolchain automatically converts application
source code into a hardware-software partitioned system
consisting of one or more ICERs integrated with a soft
core. It profiles input applications and selects regions of
code for conversion into hardware based on dynamic ex-
ecution coverage. Unlike conventional C-to-FPGA design
flows, our toolchain’s primary goal is energy efficiency
rather than performance. This shift in focus allows us to
support a wider range of programming constructs than
conventional accelerator design flows, such as arbitrary
pointers and recursion.

In this section, we first describe a system architecture
integrating ICERs with a soft core processor and its mem-
ory hierarchy. Then, we overview the automatic selection
and generation of ICERs.

A. System Architecture
Figure 1 shows a block diagram of an ICER-enabled

system. The CPU controls the ICERs and executes code
that no ICER covers. The CPU and ICERs share the
L1 data cache. Below, we describe the soft core and
ICER components, their interfaces, and the execution and
memory model for the system.

Execution model ICERs are drop-in replacements for the
code they implement. This backward compatibility allows
the soft core+ICER system to gracefully degrade if ported



CPU 

D CACHE I MEM 

BUS 

MEM IO 1 IO n . . . 

ICER 1 ICER 2 ICER n 

. . . 

. . . 

Figure 1. ICER system architecture An ICER-based system features
a soft core that controls one or more ICERs. The shared L1 cache acts
as the primary interface among the ICERs and between the soft core
and ICERs. A narrow secondary network allows the processor to transfer
arguments to the ICERs and initiate execution.

to a smaller fabric. When the profiler selects a function to
convert into hardware, the compiler will insert stubs that
enable the runtime to select between using the ICER or
executing the code on the soft core.

When an ICER finishes execution or raises an exception,
control transfers back to the soft core. The soft core
extracts the cause from the ICER exception register and
executes an appropriate software handler. The soft core has
access to all internal state in the ICER via a secondary
interface and can re-initialize the ICER to resume exe-
cution starting in an arbitrary control state. As a result,
the toolchain supports code that contains non-inlineable
function calls, such as dynamically linked library and
system calls.

Memory As Figure 1 shows, the ICERs and the soft core
share the coherent L1 data cache and they use the same
address space. The ICERs ensure compatibility by splitting
basic blocks into control blocks containing at most one
memory operation and activating only one control block at
a time, guaranteeing that memory operations execute in the
correct order. If a memory operation takes multiple cycles,
execution of the current block stalls until the memory
request completes.

Soft core We use an energy-efficient, pipelined MIPS pro-
cessor as our soft core processor. The MIPS processor core
derives from the MIT Raw [17] processor and has an eight
stage, in-order, single-issue pipeline. The core includes an
L1 data cache, instruction memory, and the Raw network-
on-chip router for one Raw tile. Microbenchmarks show
that the Raw processor soft core operates within ∼20% of
the dynamic power of a similarly configured MicroBlaze,
with comparable or better instruction throughput.

B. ICER Interface
Fast invocation makes it profitable to build ICERs even

for small functions. The toolchain inserts wrappers around
each selected region. These invoke the ICERs, passing
any global variables by reference as additional input argu-
ments. The coherent memory interface makes marshalling
costs similar to function invocations. To transfer control to

Benchmark Description Suite LOC
bzip2 [16] Data compression algorithm SPEC 2000 7625
cjpeg [6] JPEG image compression EEMBC 13272
mcf [16] Single-depot vehicle scheduling SPEC 2000 2478
radix [21] Sorting algorithm SPLASH–2 895
viterbi [5] Viterbi decoder EEMBC 11154
b-tree [3] Range traversal on a b-tree IBS 222

Benchmark # Coverage Freq. Slice LUTs DSP48Es
ICERs (%) (MHz) Regs.

bzip2 1 68.2 81 8661 22675 1
cjpeg 3 70.9 135 10591 22354 52
mcf 2 44.5 97 4649 9588 0
radix 1 94.0 81 6172 14305 17
viterbi 1 98.6 78 7097 18716 18
b-tree 1 70.3 123 1968 3733 0

Table I. ICER Statistics We used our toolchain to automatically
generate nine ICERs.

an ICER, the soft core passes up to eight arguments over
the secondary network, starts the ICER, and goes to sleep
in a clock-gated state.

C. ICER Generation

The ICER toolchain makes use of the OpenIMPACT
(1.0rc4) [13] and LLVM (2.4) [10] compiler infrastructures
to select and transform code regions into ICERs. It accepts
all C programs that the above tools accept, including
programs with arbitrary pointer references, gotos, switch
statements, and loops with complex conditions. The ICER
toolchain uses inlining to remove function call overhead
where possible.

By design, the ICER datapath and control closely re-
semble the data and control flow graphs of the original C
code as expressed in OpenIMPACT’s Lcode intermediate
representation, although our toolchain splits basic blocks
containing multiple memory operations. This allows for
simple semantics when transferring control between an
ICER and the soft core during the ICER’s execution. Every
static operator in the intermediate representation becomes
a dedicated functional unit, and every basic block live-out
value becomes a register. Memory operations within an
ICER share a single time-multiplexed cache interface.

The toolchain also constructs a control unit alongside
the datapath that follows the control flow of the software
computation. This control unit activates one basic block
per cycle, tracking the transitions between basic blocks
via branch outcomes. For multi-cycle and variable-latency
operations, the control unit remains in the current active
basic block until the operation completes.

III. RESULTS

In this section, we discuss the benchmarks we use to
evaluate ICERs, describe our experimental methodology,
and analyze the impact of using ICERs on performance
and efficiency for both the targeted function and whole
application.

A. Benchmarks

Table I describes the six irregular applications we
use. They come from SPEC 2000, EEMBC, SPLASH–
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2, and IBS (an Irregular Benchmark Suite). The bench-
marks perform irregular, non-parallelizable computation,
including data compression, sorting, and data-dependent
graph traversals. The average size of an input benchmark
program is 5,941 lines of code (excluding headers).

We used the ICER toolchain to automatically generate
nine ICERs. Table I shows statistics for the resulting
hardware. The coverage column measures the percentage
of execution time spent in the code regions converted
into ICERs. Clock frequencies for the ICERs range from
∼80 to 149 MHz, matching or exceeding the soft core
synthesis frequency of 80 MHz. FPGA resource usage
(slice registers, LUTs, DSP48Es, etc.) varies from roughly
one-third to two times that of a single soft core.

B. Methodology

We synthesized ICERs using the Xilinx toolflow for the
Virtex 5 family of FPGAs. The specific device targeted
was an xc5vlx110t-ff1136-3. We synthesized the soft core
using Synopsys Synplify followed by mapping, placement,
routing, and optimizations using Xilinx tools.

We use a cycle-accurate simulation infrastructure based
on btl [17]. When the toolchain generates ICERs it also
generates models of the new hardware for the cycle-
accurate system simulator.

To measure ICER power usage, our simulator traces all
ICER inputs and outputs for sample periods of 10,000
cycles. From each trace, we create a testbench to drive
a post-place and route model using the Synopsys VCS
(C-2009.06) logic simulator. This generates VCD activity
files, which we use as inputs to Xilinx XPower. A similar
process generates power numbers for the soft core using
samples from equivalent portions of software execution.

C. ICER Performance and Efficiency

Figure 2 shows the energy-delay product (EDP) im-
provement, speedup, and energy of ICER-enabled systems
and ICERs, normalized to the MIPS soft core. ICERs use
up to 9.5× less energy (5.3× on average) for the regions
of code that they target. They do this while maintaining
comparable or better levels of performance, resulting in an
average EDP improvement of 5.1×.

Performance trends for the entire applications are very
similar to those for the targeted functions. Excepting b-
tree, ICER-based system performance is comparable to or
better than soft core performance. For both b-tree and mcf,
a lack of memory pipelining in ICERs limits performance.
At the application level, energy gains are highly correlated
with application coverage, because of the soft core’s high
clock tree energy and greater BRAM energy. Across all
benchmarks, ICERs use 2.27× less energy, improving EDP
by 2.32×. Code regions with poor memory performance
show the largest energy improvements, with mcf achieving
a 9.5× improvement for covered code.

Figure 2 (bottom) shows the breakdown of component
energy (block RAMs, DSP, wires, logic, and clock) across
the workload for the soft core MIPS processor, combined
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Figure 2. ICER EDP improvement, speedup, and energy break-
down ICERs significantly improve energy-delay product (top, higher is
better), maintaining performance (middle, higher is better), while greatly
reducing energy (bottom, lower is better) compared to a soft core MIPS
processor. Bars labeled ’App’ report values for the whole benchmark, and
bars labeled ’ICER’ correspond to code covered by the ICER. Energy
and EDP improvements are closely correlated with application coverage.

system, and ICERs in isolation. In every case, the largest
component is clock tree energy. ICERs greatly reduce
clock energy and all but eliminate block RAM energy
for the code that they target. Even at the application
level, ICERs reduce clock energy by half. ICERs provide
great savings here, but the clock still accounts for a large
fraction, highlighting the importance of clock gating the
soft core and inactive ICERs. It also showcases how the
ICER execution model is an excellent fit for FPGAs: Since
only one basic block in an ICER is active at a time, the
synthesis tools can clock-gate ICERs more aggressively to
take advantage of their very low duty cycles.

IV. RELATED WORK

This section compares ICERs with previous efforts in
high-level synthesis, custom coprocessor design, and other
FPGA-based accelerator platforms.
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High-level synthesis High-level synthesis research has
been going on for several decades leading to a variety
of commercial tools, as detailed in a recent book [4].
The primary goal of C-to-silicon synthesis frameworks
such as AutoESL [23], Impulse C [7], Synopsys Syn-
phony/PICO [15], CHiMPS [14], and Altera C2H [11]
is to reduce the effort that creating accelerators requires,
by building them directly from a high-level language. To
accelerate execution, these tools must either infer parallel
execution from serial code or force the programmer to
rewrite their code in a more explicitly parallel language
or dialect [18]. Because of this, they face the same chal-
lenges as parallelizing compilers. In addition, acceleration
typically requires a parallel memory system that is difficult
to integrate with existing serial soft cores. Because of
the difficulty of these challenges, existing tools tend to
compromise on automation and backward compatibility.
In contrast, ICERs focus on energy first and performance
second. This allows the approach to be completely auto-
mated, achieve high execution coverage, retain backward
compatibility, and save energy on arbitrary code.

Reconfigurable substrates Several related efforts exam-
ine the benefits of coupling non-commodity reconfigurable
fabrics with a processor core for program acceleration.
GARP [2] and Chimaera [22] were early works that
proposed automated approaches for offloading execution
to reconfigurable fabrics integrated with a hard core.
Tartan [12] examined the implications of mapping entire
programs onto a hierarchical coarse-grained asynchronous
fabric. Warp [19] performs dynamic translation of binaries
to a specialized FPGA substrate optimized for on-the-fly
synthesis, but employs an additional soft core to run the
high-performance synthesis infrastructure. Conservation
cores [20] have recently been proposed to create energy-
efficient ASICs for irregular applications, but have limited
reconfigurability.

V. CONCLUSION

We have presented ICERs, customized logic circuits that
reduce the dynamic power of FPGA system components
traditionally run on soft cores. Tight coupling with a soft
processor, including sharing of the L1 data cache and
support for arbitrary control transitions between the soft
core and ICER allow ICERs to be drop-in replacements for
the code they implement. This greatly eases system-level
design and testing complexity, and allows for full automa-
tion of both ICER construction and system integration with
no programmer intervention. ICERs retain the performance
of the soft cores they replace, but reduce compute energy
by 5.3× and improve EDP by 5.1×.
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