Unifying manycore and FPGA processing with the RUSH architecture

Brandon Beresini
Maxentric Technologies, LLC
beresini @ maxentric.com

Scott Ricketts
Maxentric Technologies, LLC
sricketts @ maxentric.com

Michael Bedford Taylor
Angstromush, LLC
michael.b.taylor @ angstromush.com

Abstract

Because of the constraints of space computing, the set of
available processing technologies is limited. Convention-
ally, designers have had to choose from programmable rad-
hard processors and fixed ASIC solutions. FPGAs provide
significantly better power-performance efficiency than gen-
eral purpose processors, but are more costly to program
and are less flexible. For terrestrial applications, many-
core processors have been adopted for a class of applica-
tions where both performance and flexible programmability
are important metrics. Maestro, the first rad-hard many-
core processor, has the potential to enable new capabili-
ties for space computation. However, for many applica-
tions, certain timing-critical tasks still require the perfor-
mance efficiency of an FPGA co-processor. Moreover; inte-
grating such heterogeneous systems is challenging because
the individual processing substrates have differing internal
programming models. As a result, data sharing and dy-
namic workload scheduling across heterogeneous architec-
tures are often suboptimal and hindered by poor scalability.
The Rad-hard Unified Scalable Heterogeneous (RUSH) ar-
chitecture is a heterogeneous processing platform with both
a manycore chip and an FPGA. RUSH provides a unified
programming model across both chips to allow for rapid de-
velopment of scalable and efficient implementations. This
paper overviews RUSH’s technical approach and presents
an example application: a WiMAX radio transceiver.

1. Introduction

Space presents a challenging environment for comput-
ing. Table 1 shows a categorized spectrum of the cur-
rent landscape in radiation hardened processing substrates.
On one end are general purpose processors (GPP) like the
RAD750, which offer excellent serial performance and low
effort for mapping an application to the processor. On the

Class GPP Manycore FPGA ASIC

e.g. RAD750 | Maestro | Virtex-5QV | RHBD

More parallel performance and energy efficiency —

+— Lower mapping effort, lower NRE cost

Table 1. Four Classes of Processing Substrates for
Space. Generally, there is a tension between power-
performance efficiency and programmability.

other end, ASICs, such as those implemented in a rad-hard-
by-design (RHBD) flow, offer best-of-class performance
and energy efficiency on parallel codes. But they have high
application mapping effort, are fixed function, and have
high NRE manufacturing costs. Between, there are two
classes. FPGAs, such as the Virtex-5QV, have similar map-
ping costs to ASICs but allow late-binding changes and of-
fer performance and energy-efficiency on parallel codes su-
perior to GPP’s but less than ASICs. Manycore processors,
which have recently gained momentum in the terrestrial do-
main, are the class of multicore processors that are scalable
to 10s or 100s of processors. Manycores inherit many of
the benefits of GPPs: low mapping costs, excellent serial
performance and low NREs. At the same time, they offer
superior parallel performance to GPPs, which depending on
the application, can be lower or higher than an FPGA. Ter-
restrial examples include Tilera’s TilePro64 and Tile-Gx se-
ries [17] and the massively parallel architectures driven by
graphics computing in Graphics Processing Units (GPUs)
from companies like Nvidia [12] and AMD [3].

Maestro, a 49-core rad-hard processor from the OPERA
program [18], is the first manycore processor to target space
applications. Figure 1 overviews the Maestro architecture.

FLOATING
POINT
UNIT

CLK &
XAUI DDR2| | RMGII
MAC and I_I I_I Reset | ™.

SERDES

g lMAC and
SERDES
12C-H
JTAG
12c-s| A0
()
el | < PWR &
< GND
UART|T,
=
XAUI XAUI

MAC and MAC and

torta
SERDES Interface SERDES

Figure 1. The Maestro Rad-hard Manycore Processor.
Maestro has 49 tiles as pictured. Tiles are connected with
dynamic and static on-chip interconnects. Image source:
[13].

Maestro arranges an array of general purpose tiles, each
of which includes a processing core based on the Tilera
TILE64 [4], a floating point unit, a cache system, and a
switch that interfaces with the on-chip interconnect. The
on-chip interconnect implements low latency communica-
tion between tiles, allowing for message passing for data
flow and synchronization. Additionally, the chip provides a
cache-coherent shared memory system.

Maestro is the result of a significant body of research
and development across government, academic, and private
institutions. The DARPA PCA program led to the develop-
ment of the 16-tile Raw processor at MIT [16], which would
later be commercialized by Tilera as the 64-tile TILE64.
Meanwhile, the DARPA/DTRA RHBD program, in part-
nership with Boeing SSED, drove the development of a 90
nm RHBD process that would later be used to harden the
TILE64 tile in 2008. This finally led to the fabrication of
the first release of 49-tile Maestro chips in 2011. Maestro
uses IBM’s 9SF 90 nm CMOS process and targets a total
ionizing dose (TID) of at least 500 krad (Si). As a general
purpose manycore processor, Maestro runs Linux and sup-
ports C/C++ programmability through a familiar gcc- and
eclipse-based toolchain.

The Maestro on-chip interconnect is called the iMesh,

consisting of one static network and four dynamic networks.
The static network is for data flow that can be determined at
compile time: routers are programmed along with the cores
to move data throughout the chip. The dynamic networks
are packet-based, encoding routing information in head-
ers for dynamic routing and latency insensitive data flow.
The four dynamic networks are the user dynamic network
(UDN), tile dynamic network (TDN), memory dynamic net-
work (MDN), and IO dynamic network (IDN). As their
names indicate, the UDN is for user-level message pass-
ing, the TDN is for tile-to-tile messaging, the MDN is for
memory-subsystem traffic, and the IDN is for communica-
tion with I/O devices. This design thus provides a uniform,
network-based message passing interface to all of the fun-
damental architectural resources of the chip: the tiles, the
L1 and L2 caches, the off-chip memory, and I/O devices.
That is to say that each of these architectural resources is
effectively a client on the interconnect and can communi-
cate with any other client using the appropriate messaging
protocol and the uniform packet-based iMesh mechanism.

Figure 2(a) shows an example manycore application,
namely a WiMAX [1] software-defined transceiver target-
ing Maestro. This software-defined radio (SDR) physical
layer workload is typically implemented on FPGAs, but our
benchmark results indicate that it is indeed feasible to sup-
port this workload with Maestro. That said, for higher bit
rates or other more demanding performance requirements,
it might make sense to offload the demanding computa-
tional blocks to an FPGA. For example, as shown in Fig-
ure 2(b), we might consider tasking an FPGA with the FFT
and Viterbi decoder blocks from the WiMAX receive phys-
ical layer. We estimate that this would save roughly half
of the Maestro chip for other tasks or for low power sleep
mode.

Thus, a heterogeneous processing platform built from a
manycore chip and an FPGA could provide a solution that
has excellent power-performance efficiency while keeping
development costs down by keeping most of the logic on the
highly flexible manycore chip and offloading just the com-
putational bottlenecks to the FPGA. However, integration
of heterogeneous processing platforms, such as the Mae-
stro+FPGA architecture as described, is a challenging ef-
fort:

1. Hardware integration requires that access be pro-
vided across chip boundaries to architectural resources
such as processors, memory systems, and IP cores.
Moreover, physical layer communication protocols be-
tween the chips must be reconciled.

2. Software integration requires that software must use
the correct semantics and interfaces for cross-chip
communication — e.g. message formats, synchroniza-
tion, data streaming models, etc.

WiMAX Rx Phy
(28 tiles)

(a) (b)

uod 0/I

WiMAX Tx Phy (7 tiles)

Applications I

(10 tiles)

Viterbi

Block

Maestro

S
- XAUI
o
2
Applicatio MACA
o
FPGA
Maestro

Figure 2. Offloading SDR bottlenecks to an FPGA. Pictured are two approaches to a software-defined WiMAX
transceiver. In (a), all functionality is implemented on Maestro. In (b), the FFT and Viterbi decoding blocks are com-
puted on an FPGA co-processor. Such computationally demanding signal processing blocks can be more efficiently run on
an FPGA, and thus the system pictured in (b) has the potential for better overall efficiency.

To alleviate this integration effort, we have designed the
Rad-hard Unified Scalable Heterogeneous (RUSH) archi-
tecture. RUSH is based on the insight that manycore archi-
tectures themselves actually solve a similar problem — the
manycore architecture unifies a heterogeneous community
of resources including tiles, caches, DRAMs, and I/Os. The
mechanism that Maestro uses to integrate these clients is
the iMesh interconnect. RUSH extends this iMesh model
across the chip boundary and onto the FPGA to allow for
resources on both Maestro and the FPGA to be treated as
clients on a single virtual interconnect.

This paper proceeds as follows. In Section 2 we describe
the details of the RUSH architecture and the technical ap-
proach. In Section 3 we describe the anticipated challenges
of implementing RUSH. In Section 4 we present prelimi-
nary results in the context of the aforementioned SDR ap-
plication. In Section 5 we discuss the body of previous re-
search related to this work. Finally, in Section 6, we con-
clude.

2. Architecture

RUSH was designed for space applications and thus tar-
gets two rad-hard processing elements: Maestro, a 49-core
rad-hard by design (RHBD) processor [13] and Xilinx’s
Virtex-5QV [21], a radiation hardened Virtex-5. Maestro
and the FPGA will communicate over the XAUIs on each
end. The current generation Maestro part has four half-
duplex XAUIs that can be configured as two full-duplex in-
terfaces. On the FPGA side, Xilinx provides a XAUI core
for its FPGAs [22].

2.1. Extending the interconnect model to the FPGA

In order to unify the Maestro and FPGA chips, RUSH
extends the manycore-style interconnect onto the FPGA as
shown in Figure 3. IP blocks on the FPGA are treated as
virtual tiles that can send and receive dynamic messages
just as a physical tile would on the Maestro side. Since
cache misses and other factors can cause timing to vary on

VT-1 VT2
\ P \ P
Block Block
VT-3 VT-4 VT-5
\ P \ P \ [
Block Block Block
VT-8

VT-6 5
ly: VT-7
\ P 13 P
Block Block Block

FPGA

VT-0
\ 13
Block

Maestro

Figure 3. Extension of the Manycore Topology. RUSH
extends the manycore grid geometry onto the FPGA, where
IP blocks are arranged as virtual tiles.

Maestro, the system needs to be designed to be tolerant to
variations in exact message arrival times. The FPGA logic
that interfaces to the network must be coded to be flow-
controlled and latency insensitive so as to decouple the ex-
act timing of the two chips. To support this functionality,
RUSH provides blocks for lightweight virtual tile imple-
mentation, including a router and FIFO.

The virtual tile is configurable to support three commu-
nication idioms based on three data constructs. We define a
sample as a unit of data that can be accessed atomically off
of the network without special synchronization. A frame is
a set of samples. Random access is an arbitrary access pat-
tern to an array of data. From these constructs, we can then
list the three communication idioms:

1. Sample-driven — computation is synchronized to the
arrival of a new sample (e.g. Viterbi decoder)

2. Frame-driven — computation is synchronized to the ar-
rival of a new frame to ensure that all of the necessary
samples have arrived before the circuit logic attempts
to process the frame (e.g. FFT)

3. Random Access — computation requires generalized
access to data (e.g. graph-based algorithms)

— [— P

Virtual
Sample-driven Rl <— <—{ Block !
Router FIFO Tile
— ® | Virtual
Irtua
Frame-driven o €«<— < Block !
Router FIFO Tlle
Frame
Buffer
—
— —>) 1P Virtual
Random Ay <— -— Block ic u.a
Access Router FIFO - Tile
Arb Data
Cache

Figure 4. The RUSH Virtual Tile Communication Id-
ioms. Virtual tiles can be configured to support the idiom
of communication that drives the signal processing block.
Sample-driven blocks attach directly to the network router,
which may have some internal buffering to reduce conges-
tion. Frame-driven blocks need a frame buffer to accumu-
late a full frame before beginning computation. Random ac-
cess blocks need a data cache controller with access to the
network router for memory accesses as well as a general
purpose interface to the router for all other network mes-
sages.

The first two idioms (sample- and frame-driven) are
likely to be most common for streaming-style signal pro-
cessing workloads. The Random Access idiom then pro-
vides a more generalized idiom for algorithms that do not
fit the sample- or frame-driven models. For sample-driven
algorithms, the virtual tile needs minimal buffering and a
network router. For frame-driven algorithms, the virtual tile
needs at least a frame of buffering and a network router. For
random access algorithms, the virtual tile needs an interface
to the memory system such as a data cache controller. These
configurations are shown in Figure 4.

Using these mechanisms, a virtual tile then has access
to resources on the Maestro chip. To send data to a phys-
ical Maestro tile, the virtual tile can place the appropriate
header on the network and begin sending payload words.
The header and payload will be sent over XAUI to the Mae-
stro chip, where the message will be routed to the appro-
priate destination using one of the dynamic networks. This
allows the virtual tile to communicate with a physical tile
using a range of well known protocols such as message
passing, DMA, or shared memory. Since Maestro provides
cache-coherent shared memory, RUSH can add a virtual tile
to the memory system configuration in the Maestro Trans-
lation Lookaside Buffers (TLBs) to extend the cache coher-
ence to the FPGA. This would allow a random access style
algorithm to keep a local data cache that is coherent with
the shared memory system, effectively unifying the main

memory across both chips.

2.2. The RUSH software layer

Our vision for the RUSH development experience is
grounded in familiar existing frameworks. Maestro-side
development should continue to use the gcc- and eclipse-
based toolchain while FPGA designs will continue to be de-
veloped in vendor supplied toolchains. However, there are
three categories of software modules that will be required
for rapid adoption of the RUSH approach.

Maestro-side libraries. On the manycore side, there are
several modules that will be needed to allow the user to ac-
cess virtual tiles on the FPGA side. An interface module
will manage all cross-chip communication to ensure that
I/0O packets are routed to the correct physical network. Also,
to support cross-chip cache-coherent shared memory, vir-
tual tiles on the FPGA side will need to be recognized by
the Maestro-side cache coherence system. This accounting
is recorded in the TLBs, and thus a RUSH module will need
to be added to the hypervisor to help manage cache coher-
ence.

FPGA-side libraries. A virtual tile on the FPGA is built
from an IP block that defines the processing kernel and a
lightweight interface to the physical network. This interface
at a minimum is a network router, but might also include
buffering for frame-driven computation and a cache con-
troller for random access computation. All of these modules
should be provided as Verilog or VHDL designs as part of
the RUSH libraries on the FPGA side.

Integration tools. Keeping track of design details across
the two chips is challenging. Maestro source code is com-
piled by gcc-based tools while FPGA bit streams are gen-
erated with vendor-supplied CAD tools. Source files within
the differing flows must access common specifications, such
as interfaces and virtual tile addresses. However, this can
be managed largely by automatic tools. For example, an in-
terface generator can automatically generate C header files
and Verilog module interface definitions based on a list
of the names of existing processing blocks in the system.
This decouples physical placement of blocks from source
code addressing of those blocks, making code easier to read
and reducing code duplication. Moreover, co-simulation of
the two systems will be required, and the necessary mech-
anisms for integrating disparate simulation environments
should be provided.

3. Challenges

As we move forward with the implementation of the
RUSH system, there are a number of challenges that will
need to be addressed. Here we categorize and discuss these
as engineering research problems.

3.1 Power efficiency

RUSH adds clients on both the Maestro and FPGA sides
for connecting the chips. Moreover, on the FPGA side, vir-
tual tiles are implemented by adding a router and buffering
to the IP block. These are the main contributors to RUSH
overhead. Of course, the promise of RUSH is that its ar-
chitecture will improve overall energy efficiency. An open
research question is how to reduce RUSH overhead and thus
maximize efficiency gains.

3.2 Test and verification

During prototyping, RUSH hardware may not yet be
available. In this case, the developer will need co-
simulation between the Maestro and FPGA processing for
test and verification. This will require a software testbed to
connect the XAUIs in an efficient way that is transparent to
the programmer.

At the same time, RUSH provides a useful mechanism
for debugging systems before all components are fully de-
veloped. Consider a system with a subset of signal process-
ing blocks targeting Maestro and another subset targeting
the FPGA. If the FPGA blocks are not fully verified, the
developer could instead run a C model of those blocks on
Maestro tiles. Since the RUSH communication model is
uniform across both Maestro and the FPGA, we can then
quickly test the full system with the C models instead of the
FPGA blocks. C models are typically cheaper to develop
than FPGA blocks. Moreover, the C models could be de-
signed to be mock ups without any real processing in order
to test the data flow of the application. This model provides
a great deal of flexibility in the debugging process.

3.3 Communication bandwidth

An open engineering question is the supportable band-
width over the XAUIs between the chips. The RUSH clients
on either end will need to be light weight to provide max-
imal streaming efficiency. Moreover, future generations of
the chips will likely improve the XAUI capabilities — or pro-
vide new interfaces that support higher rates. In either case,
the RUSH clients should be scalable.

3.4 Extending the memory system to the FPGA

An interesting RUSH capability is the extension of the
shared memory system to the FPGA. A data cache on a vir-
tual tile on the FPGA should be configurable to be cache-
coherent with the caches on the Maestro side. Currently,
cache coherence on Maestro is managed in the TLB entries.
Thus, any revision of this design will likely require modi-
fications to the hypervisor code running on Maestro so that
the memory system recognizes cache clients on virtual tiles
on the FPGA.

B — 2] | v
=
MAC _
ISR e S
Maestro EPGA

Figure 5. Software Defined Radio on RUSH. A software-
defined radio transceiver might use RUSH to offload key
kernels of the receiver, such as FFT and Viterbi decoding,
to an FPGA, as shown here.

4. Results

In this section we present preliminary results. To date
we have focused on an SDR application: a software-defined
WiMAX physical layer implementation partitioned across
Maestro and an FPGA, shown in Figure 5. On the receive
side, the Viterbi decoder and FFT are the computational
hotspots. Thus, we might want to offload these blocks to the
FPGA. Assume that the signal generation begins on Mae-
stro and is streamed to the FPGA. If we stream to the vir-
tual tile containing the FFT block, the virtual tile can use its
buffering to accumulate a frame of data, compute, and then
send a packet with the frame payload to the Viterbi decoder
virtual tile. This tile can read one sample at a time using
its network router. It can then send output onto the network
back to the Maestro chip. On the Maestro side, this physi-
cal communication might use the UDN, but this detail can
potentially be abstracted from the IP block designer using
the RUSH blocks.

First, we look at the tile allocations on Maestro based on
our own benchmarking. Then, we estimate resource con-
sumption of FFT and the Viterbi decoder on the rad-hard
Virtex-5QV part based on vendor-supplied data IP block
data sheets.

4.1. Software Defined Radio on Maestro

We set our study in the context of a WiMAX [1] physical
layer prototype. WiMAX is a long range wireless standard
for fixed and mobile devices with a large set of applications.

In our study, we looked at a frame size of 2048, which is
the largest and most computationally intensive for WiMAX
— providing a data rate of about 40 Mbit/s for QPSK mod-
ulation at 11k frames/s. We use a rate 1/2, K=7 convolu-
tional encoder and corresponding Viterbi decoder to com-
ply with the WiMAX standard. We determined through
algorithm complexity analysis that the most computation-
ally demanding signal processing kernels are the FFT and
Viterbi blocks. The FFT and Viterbi blocks are used in the

WiMAX receive chain. We used the performance results
measured for FFT and Viterbi, and, given our estimated per-
formance after serial optimization, estimated the number of
tiles needed to meet the 11k frames/sec requirement based
on near-linear speedup. This estimation is shown as part of
the floorplan in Figure 2(a). We allocated 22 tiles for the
Viterbi decoder and 4 tiles for the 2048-pt FFT.

Note that 10 tiles remain independent of the WiMAX ra-
dio and are used for application layer processing. This is an
added benefit of a Maestro-based platform. Typically, appli-
cations are run on a host CPU that interfaces with the radio.
Maestro provides an opportunity to bring the applications
onto the radio, reducing size, weight, and power (SWaP)
and the latency between the application layer and the lower
layers.

Similarly, the MAC layer is co-located with the physical
layer, allowing for extremely low latency between these lay-
ers. Inter-tile communication latency can be on the order of
nanoseconds using the fast on-chip networks. In traditional
SDRs, this MAC-PHY latency can be a problem unless the
developer has access to the NIC hardware, which often uses
proprietary drivers, a fixed ASIC, or both [14].

Moreover, Maestro can switch between protocols quite
rapidly by jumping in the binary or context switching to a
new binary using the linux operating system. On an FPGA,
reconfiguration is slow. On Maestro, the SDR control would
send out a message on the on-chip network to switch to a
new point in the code (either as a function call or context
switch). This could be quite fast — in the optimal case in the
10s or 100s of nanoseconds depending on the method and
number of differing blocks between protocols.

Finally, the applications tiles could also be allocated to
fault tolerance objectives. While the Maestro chip is rad-
hard by design, we can also employ software-based fault
tolerance for applications that require an added layer of re-
liability, availability, and serviceability (RAS) guarantees.

4.2. Viterbi Decoding and FFT on FPGAs

The Virtex-5QV has 20,480 slices [21]. We use slices as
a metric for relative resource consumption. From the data
sheets for the Xilinx-supplied IP blocks for a 2048-pt FFT
[19] and a K=7, 1/2 rate Viterbi decoder [20], we bench-
mark these blocks at 322 and 726 Virtex-5 slices, respec-
tively. These numbers are then used as approximations for
Virtex-5QV slice counts.

4.3. Analysis

Table 2 summarizes our estimates from the previous sub-
sections. Notice that the FFT and Viterbi blocks consume
a significantly smaller percentage of the FPGA than they
would Maestro. We estimate that the FFT consumes just
1.2% of the Virtex-5QV vs. 8.2% of the Maestro tiles. Sim-
ilarly, we estimate that the Viterbi decoder would consume
3.5% of the Virtex-5QV vs. 44.9% of the Maestro tiles.

Maestro Virtex-5QV

Tiles | % of Total | Slices | % of Total
FFT 4 8.2% 322 1.2%
Viterbi | 22 44.9% 726 3.5%

Table 2. Estimated Resource Consumption of Key
WiMAX Blocks. The table compares resource consump-
tion of key WiMAX kernels on Maestro and the rad-hard
Virtex-5QV FPGA. The Maestro tile numbers come from
our benchmarking results as part of prototyping a Maestro-
based WIMAX software-defined transceiver. The Virtex-
5QV numbers are based on the numbers of LUTs and flip
flops reported in Xilinx’s data sheets for the FFT IP block
[19] and Viterbi decoder IP block [20]. These numbers are
based on targeting the Virtex-5 (the terrestrial part) and are
used here as an approximation. The table also shows the
chip resource consumption as a percentage of the 49 tiles
on Maestro and the 20,480 slices available on the Virtex-
S5QV.

Since power is correlated with the percentage of the chip
that is active, we can expect that the power consumption
of these blocks on the FPGA would be much less than on
Maestro. Although data exists for these blocks on non rad-
hard parts, the power estimates for the rad-hard parts are
forthcoming.

5. Related Work

The introduction of Maestro as the first manycore pro-
cessor for space has led to excitement in the space process-
ing community about newly enabled opportunities. Recent
publications have examined feature tracking [7], rover au-
tonomy [5], and FFT and CAF [15]. Moreover, the fault tol-
erance challenges on multicore have been examined [18, 9].
Our work looks at adding an FPGA co-processor to Maestro
within a unified architecture, creating an efficient heteroge-
neous system.

Such heterogeneous computing platforms are well stud-
ied. For example, Gillan et. al. looked at an atomic physics
computation on two hybrid systems using an FPGA and a
GPU as a co-processor, respectively [8]. Heterogeneous
systems on a chip with FPGAs are commercially available
[2] and more future looking designs have been proposed [6].

Heterogeneous computing tools are also a well populated
area of research. CIGAR [11] is a tool and platform for us-
ing data-parallel co-processors alongside CPUs. OpenCL
[10] is a standard for parallel programming of heteroge-
neous systems, particularly CPU-GPU systems.

6. Conclusion

We have presented a heterogeneous computing architec-
ture that provides a manycore substrate and FPGA substrate
under a unified programming model. By providing multiple
substrates that each target a subset of the anticipated work-
load, the RUSH heterogeneous architecture can offer a di-
verse processing toolset to the application developer. More-
over, RUSH provides a unified programming model across
chips. This ability to use the “right tool for the job” has the
potential to improve power-performance efficiency for de-
manding space computing applications, which often require
supporting a diverse set of algorithms and requirements. A
future RUSH platform will target these applications while
addressing the challenges discussed in this paper.

References

[1] “IEEE standard for local and metropolitan area net-
works part 16: Air interface for broadband wireless
access systems.” IEEE Std 802.16-2009 (Revision of
IEEE Std 802.16-2004), may. 2009.

[2] Actel. “Smartfusion intelligent mixed signal FPGA.”,
2011. http://www.actel.com/products/SmartFusion/
default.aspx.

[3] AMD. “Global provider of innovative graphics, pro-
cessors and media solutions.”, 2011. http://www.amd.
com.

[4] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce,
V. Leung, J. MacKay, M. Reif, L. Bao, J. Brown,
M. Mattina, C.-C. Miao, C. Ramey, D. Wentzlaff,
W. Anderson, E. Berger, N. Fairbanks, D. Khan,
F. Montenegro, J. Stickney, and J. Zook. “TILE64 -
Processor: A 64-Core SoC with Mesh Interconnect.”
In IEEE Solid-State Circuits Conference, Feb. 2008.

[5] B. Borenstein, T. Estlin, B. Clement, and P. Springer.
“Using a multicore processor for rover autonomous
science.” In Aerospace Conference, 2011 IEEE, 2011.

[6] E.Chung, P. Milder, J. Hoe, and K. Mai. “Single-chip
heterogeneous computing: Does the future include
custom logic, FPGAs, and GPGPUs?” In Microarchi-
tecture (MICRO), 2010 43rd Annual IEEE/ACM Inter-
national Symposium on, 2010.

[7] T. Gallgher, S. Weiss, and J. Hahn. “Natural feature
tracking on the opera maestro platform.” In Aerospace
Conference, 2011 IEEE, 2011.

[8] C. Gillan, T. Steinke, J. Bock, S. Borchert, 1. Spence,
and N. Scott. “Programming challenges for the imple-
mentation of numerical quadrature in atomic physics
on FPGA and GPU accelerators.” In Cluster, Cloud
and Grid Computing (CCGrid), 2010 10th IEEE/ACM
International Conference on, May 2010.

[9] K. Gostelow. “The design of a fault-tolerant, real-
time, multi-core computer system.” In Aerospace
Conference, 2011 IEEE, 2011.

[10] K. O. W. Group. “The OpenCL Specification Version
1.0.”, 2009. http://www.khronos.org/opencl.

[11] J. Kelm, I. Geladot, M. Murphy, N. Navarro,
S. Lumetta, and W. mei Hwu. “CIGAR: Applica-
tion partitioning for a cpu/coprocessor architecture.”
In Parallel Architecture and Compilation Techniques,
2007. PACT 2007. 16th International Conference on,
2007.

[12] E. Lindholm, J. Nickolls, S. Oberman, and J. Mon-
trym. “NVIDIA tesla: A unified graphics and com-
puting architecture.” Micro, IEEE, march-april 2008.

[13] M. Malone. “OPERA RHBD multi-core.”, 2009. Pre-
sentation at Military and Aerospace Programmable
Logic Devices (MAPLD).

[14] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, and
P. Steenkiste. “Enabling MAC protocol implementa-
tions on software-defined radios.” In NSDI'09: Pro-
ceedings of the 6th USENIX symposium on Networked
systems design and implementation, 2009.

[15] K. Singh, J. Walters, J. Hestness, J. Suh, C. Rogers,
and S. Crago. “FFTW and complex ambiguity func-
tion performance on the maestro processor.” In
Aerospace Conference, 2011 IEEE, 2011.

[16] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Gho-
drat, B. Greenwald, H. Hoffman, P. Johnson, J.-W.
Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnid-
man, V. Strumpen, M. Frank, S. Amarasinghe, and
A. Agarwal. “The raw microprocessor: A computa-
tional fabric for software circuits and general-purpose
programs.” IEEE Micro, 2002.

[17] Tilera. “Tilera has solved the multi-processor scala-
bility problem.”, 2011. http://www.tilera.com.

[18] C. Vallalpando, D. Rennels, R. Some, and
M. Cabanas-Holmen. “Reliable Multicore Pro-
cessors for NASA Space Missions.” In Aerospace
Conference, 2011 IEEE, 2011.

[19] Xilinx. “LogiCORE IP Fast Fourier Transform v7.1.”,
2011. http://www.xilinx.com/support/documentation/
ip_documentation/xfft_ds260.pdf.

[20] Xilinx. “LogiCORE IP Viterbi Decoder v7.0.”,
2011. http://www.xilinx.com/support/documentation/
ip-documentation/viterbi_ds247.pdf.

[21] Xilinx. “Space-grade Virtex-5QV FPGAs.”, 2011.
http://www.xilinx.com/products/virtexSqv/index.htm.

[22] Xilinx. “Xilinx XAUL”, 2011. http:
/Iwww xilinx.com/products/design_resources/
conn_central/protocols/xaui.htm.

