
Evaluating Ruche Networks: Physically Scalable, Cost-Effective,
Bandwidth-Flexible NoCs

Dai Cheol Jung
University of Washington

Seattle, USA
dcjung@uw.edu

Michael Taylor
University of Washington

Seattle, USA
prof.taylor@gmail.com

Abstract
2-D mesh has been widely used as an on-chip network topology,
because of its low design complexity and physical scalability. How-
ever, its poor latency and throughput scaling have been well-noted
in the past. Previous solutions to overcome its unscalability relied
on outdated assumptions that no longer hold true in recent ar-
chitectures. Concentrated routers make an assumption that low
injection rate would cause low conflicts; however, recent manycore
processors and accelerators require streaming bandwidth for their
data-intensive workloads. Widening the channel width to recover
the bisection bandwidth halved by concentration assumes that the
underlying architecture can flexibly adapt to the wider channel
width; however, it comes with an additional cost associated with
wider datapaths, serialization, and additional buffering.

Ruche Networks retain all the desirable properties of 2-D mesh
to remain physically scalable, yet provide an architecturally flexible
and cost-effective mechanism to effortlessly scale up the network
performance by adding uniform long-range physical links. While
their feasibility in real silicon has been demonstrated, there has not
been any detailed evaluation of its network performance, scalability,
and energy efficiency. This paper aims to fill the gap in research by
providing some insight on design tradeoffs. Using RTL-level imple-
mentations, we demonstrate that Ruche Networks are superior to
2-D mesh and torus in terms of power, area efficiency, cycle time
and network performance.

Keywords
Network-on-Chip, VLSI, Parallel Architecture

ACM Reference Format:
Dai Cheol Jung and Michael Taylor. 2025. Evaluating Ruche Networks:
Physically Scalable, Cost-Effective, Bandwidth-Flexible NoCs. In Proceedings
of the 52nd Annual International Symposium on Computer Architecture (ISCA
’25), June 21–25, 2025, Tokyo, Japan. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3695053.3731010

1 Introduction
2-D mesh continues to be a predominant on-chip network topology
used today. A primary reason for its popularity has been due to
how well it plays out with tiled physical-design methodology [25].
Unlike high-radix topologies [1, 12, 17], 2-D mesh has local and
regular wire routing between tiles. This allows every tile to have

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISCA ’25, Tokyo, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1261-6/25/06
https://doi.org/10.1145/3695053.3731010

an identical shape that can be stamped out in an array of any
size until it consumes the available silicon area – even non-power-
of-2, as seen in 6×6 ET-SoC-1 [11] and 18×20 Tesla DOJO [30].
The complexity of 2-D mesh routers does not grow as the number
of nodes increases, whereas additional inputs (router radix) must
be added to the routers of high-radix topologies. This prevents
scalability beyond 256 nodes for high-radix topologies, which only
offer an ad-hoc solution of the increased network dimension or a
hybrid topology without providing much evaluation [12, 17]. 2-D
mesh can be implemented using a standard-cell-based, automated
CAD flow, whichmakes it relatively easy to adapt an existing design
to a more advanced process technology.

Despite its low design complexity, 2-D mesh’s poor latency and
throughput scaling have been pointed out by many research papers
in the past [1, 3, 17, 21, 29]. Energy inefficiency also worsens with
the increased number of routers and added hops [7]. As the network
size grows, the bisection bandwidth becomes a critical bottleneck,
which forces cores to inject less and less packets before completely
saturating the bisection bandwidth [29].

Previous solutions to overcome the unscalability of 2-D mesh
rely on a number of outdated assumptions that may no longer hold
true in recent architectures. Concentration co-locates a number of
cores (usually 2 to 4) within a single tile to share a network router
with a multiplexed input [3]. This makes an assumption that the
traffic injection rate of each core is low; therefore, the probability
of conflict at the network input is also low. This may be true for
a cache coherence network, where a processor fires a request and
waits, but for recent manycore processors without cache coherence
that are specialized for data-intensive kernels, word-level packets
are sent and received every cycle in a stream [16].

Concentration reduces the total number of network nodes, and
thus the network latency and overall network energy, but it also
reduces the bisection bandwidth. In order to compensate for this
lost bisection bandwidth, a typical remedy has been to double the
network channel width. However, previous NoC studies incorrectly
assume that the underlying core architecture can efficiently adapt
to the wider channel width. In fact, a wider channel would require
an additional logic for serialization and deserialization to match
the intrinsic ingress and egress bandwidth of the endpoint (e.g. a
number of words that can be read out of SRAM each cycle). The mis-
match in the channel and endpoint bandwidth not only introduces
a serialization latency, which negates the latency reduction benefit
of concentration, but also creates more area overhead by adding
more buffers to prevent stalls in the network. On the other hand,
the channel bandwidth can be matched by widening the SRAM
and the processor datapaths, but this leads to a larger tile size, and
ironically, does not help increase the network bandwidth in an
absolute physical term (e.g. Tera-bit/s/mm).

https://orcid.org/0000-0002-3165-4213
https://orcid.org/0000-0002-4074-6347
https://doi.org/10.1145/3695053.3731010
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3695053.3731010

ISCA ’25, June 21–25, 2025, Tokyo, Japan Dai Cheol Jung and Michael Taylor

Even without the use of concentration, increasing the channel
width is not a scalable way to increase bandwidth for 2-D mesh,
as it linearly increases the crossbar and buffer area. Furthermore,
as observed in previous parallel processor designs, 2-D mesh still
struggles to fully utilize the available wiring tracks between the
tiles (only about 24%) [27]. Also, a concentrated router and a wide
channel opt for using a larger and slower crossbar, which may in-
crease the number of cycles per network hop or slow down the clock
frequency to meet the timing. This ironically negates the latency
benefit gained by concentration. Putting NoCs in a slower clock
domain suffers the same problems related to bandwidth mismatch.

Ruche Networks [15, 25] have been proposed to overcome the
scalability challenges of 2-D mesh by augmenting it with regular,
long-range links. While retaining all the desirable properties of 2-D
mesh to remain physically scalable, Ruche Networks provide an
architecturally flexible and cost-effective mechanism to effortlessly
scale up the bisection bandwidth without overhauling the underly-
ing processor architecture. Its feasibility in real silicon has already
been demonstrated [16], but there has not been any detailed evalu-
ation of its network performance and energy efficiency, compared
to other NoC topologies. This paper aims to fill the gap in research
by providing some important insights on design tradeoffs.

2 Contributions & Insights
This paper makes the following contributions:

• This paper addresses the major deficiencies in two prior pa-
pers on Ruche networks [15, 25]. Both papers purely rely on
analytical modeling without any cycle-accurate simulation
using synthetic or application traffic. Neither paper has any
analysis on power or the implications of Ruche Factors and
depopulated crossbars on energy efficiency. There is neither
qualitative nor quantitative comparison against other types
of NoCs other than 2-D mesh.

• Using RTL-level implementations, we compare Full Ruche
against 2-D torus and mesh using synthetic traffic patterns
(Figure 6). We demonstrate that Full Ruche is capable of
achieving higher bandwidth (Figure 6) at lower area cost,
power and cycle time than 2-D torus (Figure 7, Table 3).

• Using scalable, throughput-oriented cellular manycore [16],
we compareHalf Ruche against torus and evaluate the impact
of network size, aspect ratio, and Ruche Factor, using data-
intensive parallel workloads (Figure 10, 11, 12, 13).

This paper makes the following insights:
• A key advantage of Ruche routers over folded torus routers
is that they are deadlock-free without the use of virtual chan-
nels. Ruche routers make better use of hardware resources
to provide more crossbar bandwidth than virtual channel
routers (Figure 3). Due to their complex allocation logic, vir-
tual channel routers cannot compete against Ruche routers
in terms of cycle time without pipelining, which increases
hop latency and buffer overheads (Figure 7).

• Compared to 2-D mesh, 2-D torus halves the network di-
ameter and doubles the bisection bandwidth; however, 2-D
torus using virtual-channel routers struggles to provide the
promised bandwidth, because of the reason above. In uni-
form random traffic, its throughput saturates at injection

drop points

(b) Full Ruche (This work)(a) Half Ruche (This work)

(c) Flattened Butterfly (d) MECS

(e) Folded Torus (f) Ruche-One (This work)

Figure 1: Low-diameter NoC topologies with non-local links.
A regular tile shape and constant router complexity of Ruche Net-
works make them easy to physically scale with tiled design method-
ology.

rates lower than Ruche-One (Figure 1), a Ruche network
without any skip links.

• Depopulating crossbars (Figure 5) provides an excellent way
to lower area and power overhead without greatly sacrific-
ing network performance (Table 2, 3). Using higher Ruche
Factor is generally a more cost-effective way to gain more
performance than using fully-populated crossbars (Table 6).

• Our detailed energy modeling based on 12 nm process shows
that Ruche NoCs are able to reduce total NoC energy with
long-range links; folded torus, on the other hand, ends up
spending more total NoC energy than 2-D mesh due to its
higher router energy (Figure 13).

The rest of the paper is organized as follows: Section 3 provides
background information on Ruche router architecture. Section 4
presents various results on Full Ruche and Half Ruche evaluation.
Section 5 surveys the related work.

3 Architecture
This section summarizes necessary background information on
Ruche networks – its tileable, physically scalable network topology,
routing algorithm, and router architecture.

3.1 Physically Scalable Ruche Topology
Ruche networks [15] augment 2-D mesh with equidistant, long-
range, physical channels (a.k.a Ruche channels) between remote tiles
in the same row or column. As these channels pass through the tiles,
they consume the available VLSI wiring tracks. As Ruche Factor
(RF), the skip distance of Ruche channels, increases, more wires

Evaluating Ruche Networks: Physically Scalable, Cost-Effective, Bandwidth-Flexible NoCs ISCA ’25, June 21–25, 2025, Tokyo, Japan

are consumed, and the network diameter decreases. By adjusting
the Ruche Factor, architects can scale up the bisection bandwidth
without widening the channel width. Figure 1a and 1b show the
Half and Full Ruche topology with Ruche Factor of 3. Full Ruche
adds Ruche channels in both vertical and horizontal axes, whereas
Half Ruche adds in only one axis. Ruche-One (Figure 1f) is a special
case, when the Ruche Factor is one, and is topologically equivalent
to having two mesh networks in parallel (Figure 3a). In this paper,
we consider networks that provide in-order delivery of packets as
is commonly required for streams and ordered memory traffic.

Figure 2 illustrates a bitwise pattern of mapping a Half Ruche
network (RF = 3) using the tile-based method. Long-range wires
cross a tile in straight lines using less resistive, upper-mid metal
layers. Repeaters are placed in between tiles to drive these long
wires. Note that all tiles have identical VLSI layouts. Local and
Ruche channels are bit-interleaved, with the 𝑖-th bit of all links
routed together, so that swizzling moves signals just a few wiring
tracks.

Figure 1 shows a number of other low-diameter topologies with
non-local links (a.k.a. express links) proposed in the past. A key
differentiator for Ruche Networks is that its router radix remains
constant, as the network size grows. In contrast, for high-radix
topologies (e.g. MECS, flattened butterfly) (Figure 1c, 1d), router
radix grows linearly with the network size in each dimension. As
network size increases, MECS must continually reduce the chan-
nel width to not exhaust wire tracks and to keep cycle time and
area under control. A narrower channel width, however, limits the
injection bandwidth coming out of each node and adds serializa-
tion latency. Another differentiator is that the physical distance of
Ruche channels remains constant, as the network size grows. In
MECS, the longest channel distance (and its wire delay) grows with
the network size. At some point, the wire delay starts to dominate,
so either the cycle time must be increased or the wires need to be
pipelined, increasing hop latency. These properties make it difficult
to efficiently tile the architecture. Another issue with MECS is the
difficulty in closing timing. Normally, the input and output ports of
a tile are constrained with estimated external delays for setup and
hold timing closure. Unlike the Ruche channels, where all channels
have a single sender and a single receiver, multi-drop channels
have multiple receivers each with different external delays. This
makes it difficult to create a consistent set of constraints that can
be uniformly applied to all tiles. Table 1 compares the low-diameter
NoC topologies based on the physical scalability criteria.

Folded 2-D torus (Figure 1e) is an interesting alternative, because
it maintains the same router radix as 2-D mesh, yet reduces the
network diameter by half and doubles the bisection bandwidth.
It meets the physical scalability criteria, as 2-D mesh and Ruche
networks do (Table 1). It uses a similar tiling technique in Figure 2,
as implemented in recent ML accelerators by Tenstorrent [14, 32],
so the physical-design complexity is at a similar level with Ruche
networks. Ruche routers, on the other hand, have higher router
radix, so 2-D torus appears to have less area cost. However, a key
disadvantage of 2-D torus is that it is deadlock-prone due to its
cyclic channel dependency. A standard way to achieve deadlock
freedom is by adding virtual channels (VC) and dateline logic to
break the channel dependency cycle [8]. In this light, the area
overhead of 2-D torus is now comparable to the that of Ruche

Figure 2: A bitwise pattern of mapping Half Ruche (RF = 3)
on a tile-based design. Long-range wires pass through the tiles in
a straight line using less resistive, global routing layers. The wires
criss-cross between tiles, where repeater cells are placed.

Table 1: Comparing variousNoC topologies based on physical
scalability criteria. Both Ruche Networks and 2-D torus retain the
desirable properties of 2-D mesh and augment it with long-range
links.

Topology

R
eg

ul
ar

T
il
e
Sh

ap
e

R
eg

ul
ar

W
ir
e

R
ou

ti
ng

C
on

st
an

tR
ou

te
r

R
ad

ix

St
an

da
rd
-C

el
l

B
as
ed

N
on

-p
ow

er
-o
f-
2

T
il
in
g

Lo
ng

-r
an

ge
Li
nk

s

C
on

st
an

t
Li
nk

D
is
ta
nc

e

Ruche (This paper) ✓ ✓ ✓ ✓ ✓ ✓ ✓
2-D Folded Torus ✓ ✓ ✓ ✓ ✓ ✓ ✓
2-D Mesh ✓ ✓ ✓ ✓ ✓ ✓
Multi-mesh ✓ ✓ ✓ ✓ ✓ ✓
Flattened Butterfly [17] ✓ ✓
MECS [12] ✓ ✓ ✓
Swizzle-Switch [1] ✓ ∼

networks. However, VC routers require complex allocation logic
[6], which adds significant cycle time, area, and power overhead,
as opposed to the simple logic that Ruche routers use. Fairness and
matching quality that affect utilization are additional concerns for
VC routers [6].

Figure 3a shows a 2x multi-mesh, where a second parallel mesh
router is introduced to double the NoC bandwidth. Figure 3b and
3c illustrate two approaches to combine two parallel routers in a 2x
multi-mesh. In terms of input FIFOs, both VC and Full Ruche routers
have the same capacity. Full Ruche routers (Figure 3b) combines
two mesh crossbars into one larger crossbar, so the peak router
bandwidth is kept the same. VC routers, on the other hand, (Fig-
ure 3c) discard one of the mesh crossbars, so the peak bandwidth
is halved. VC routers spend extra area to implement the virtual
channels (VC mux) and get rid of one crossbar, but doing this does
not improve the router bandwidth. In this paper, we compare 2-D
torus and Ruche networks in terms of power, cycle time, area, and
network throughput and latency.

3.2 Ruche Router Architecture
Ruche Networks augment 2-D mesh with extra directions (Ruche
East/West/South/North or RE/RW/RS/RN for short), whose chan-
nels can be elongated to make connections with distant tiles. Ruche
routers provide two variants of routing algorithms to tradeoff be-
tween crossbar area overhead and network latency: fully-populated

ISCA ’25, June 21–25, 2025, Tokyo, Japan Dai Cheol Jung and Michael Taylor

and depopulated (Figure 4). In both variants, packets are routed us-
ing amodified dimension-ordered routing (DOR), which is deadlock-
free without the use of virtual channels. Generally, the routing in
the first dimension use “Ruche-first”, where a packet starts off on
a Ruche link, as if getting on a highway to travel the majority
of distance, and then getting off the highway to a local road for
the remaining distance. The routing in the second dimension uses
“local-first”, where a packet uses local links until the remaining
distance modulo Ruche Factor becomes zero, and then uses Ruche
links to get to the destination. In fully-populated, packets can make
a direct turn from the lower to higher dimension using the Ruche
links (e.g. from RE/RW to S/N/P/RS/RN). Depopulated routing is
non-minimal in the sense that packets must get off Ruche links
to local links before making a turn. Figure 5 shows the additional
crossbar connectivities added to the minimal 2-D mesh router us-
ing DOR, employed in Celerity RISC-V manycore [9]. It shows that
the depopulated router reduces the total connectivities by 16. The
output port with the highest number of inputs (e.g. P output) has its
inputs reduced from 9 to 7. Ruche-One is a special case (Figure 1f),
where both local and Ruche links make connection to the nearest
neighbors. In this case, packets take Ruche links for the entire path
if the total distance is even (take local, if odd) to balance the traffic.
Ruche-One works only on fully-populated routers.

By default, the input ports of Ruche routers areminimally buffered
by two-element FIFOs. Packets are arbitrated by a simple round-
robin policy at each output direction. In high compute-density
manycore processors [9, 16], the tile size is small, so the wire de-
lay to cross a tile is relatively low, while the crossbar gate delay
dominates the critical path delay between tiles. In this case, packets
are able to traverse the network at the rate of single-cycle per hop.
As the tile size or Ruche Factor increases, the wire delay starts to
dominate, in which case the router and the physical link need to
be pipelined using credit-based flow control. The capacity of input
FIFOs needs to be increased accordingly to hide the credit-return
latency. This is not a problem unique to Ruche Networks, as the
same solution would be equally required by other router architec-
tures. However, this problem is exacerbated by the routers that use
virtual channels. In Ruche routers, the generation of request signals
going to arbiter is independent of the ready signal from the output
side in terms of combinational logic (e.g. ready-valid-and [31]). In
VC routers, the generation of request signals going to the allocator
must depend on the credit availability signal of the destination
VC (e.g. ready-then-valid [31]), otherwise the allocator could grant
access to VCs that could not have moved forward and block the
progress of other VCs.

For these reasons, VC routers generally have longer critical de-
lay paths and need to be pipelined. The canonical VC routers are
assumed to have four sequential pipeline stages (e.g. routing, VC
allocation, SW allocation, SW traversal). Speculative VC routers
[26] reduce the number of stages down to three by allowing VC
and SW allocation to take place in parallel. This relies on specu-
lating that VC allocation will be successful but giving priority to
non-speculative SW access over the speculative ones. This comes
at the expense of replicating SW allocators for speculative and
non-speculative requests. Mullins et al. [23] proposes a single-cycle
router architecture, where switch traversal and speculation on the
allocation decisions for the next cycle are overlapped. The key idea

procprocproc

(a) 2X multi-mesh (b) Full Ruche (c) Virtual Channel Router

VC mux

Figure 3: Two approaches to combine 2x multi-mesh routers.
Full Ruche combines two mesh crossbars into a larger one to main-
tain the router bandwidth. Virtual channel routers discard one of
the crossbar, so the router bandwidth gets halved. The area over-
head (VC mux) to implement virtual channels saves the crossbar
area, but does not help improve the router bandwidth.

(a) fully-populated (b) depopulated

“Ruche First” “L
oc

al
 F

irs
t”

Figure 4: Two variants of a deadlock-free dimension-ordered
routing algorithm for Full Ruche (RF = 3, X-Y order). Fully-
populated optimizes the X-Y turn at the expense of crossbar area,
but it may not be the most common case. Depopulated offloads
more traffic on the local links, which tend to be less utilized in large
networks.

is that, by using the least-recently-granted priority scheme of ma-
trix arbiters, it can speculate on the next grant signals, knowing
that the current input that has been granted will have the lowest
priority on the next cycle. However, due to its complex control
logic, speculative VC routers add significant power overheads over
wormhole and non-speculative VC routers [4].

Another important consideration is that network throughput is
highly sensitive to the router latency as a side-effect of credit-return
latency, which reduces the buffer utilization [26]. Thus, Ruche
routers that can achieve lower cycle time at lower area than VC
routers under the same conditions (e.g. tile size, channel width)
without any form of speculation are more advantageous.

4 Evaluation
In this section, we evaluate Ruche NoCs against 2-D mesh and torus
under two common scenarios. First, we evaluate generic, all-to-all
communication patterns in square network sizes (8×8 and 16×16).
In this case, both vertical and horizontal bisection could become a
bottleneck. Therefore, we compare Full Ruche, which adds Ruche
channels in both dimensions, against 2-D torus. Second, using the
cellular manycore simulator [16], we evaluate all-to-edge commu-
nication patterns, where most network traffic go to memory ports
on the northern and southern edge of the network. In this arrange-
ment, using X-Y DOR for request traffic and Y-X DOR for response
provide the best network throughput [2]. For all-to-edge, bisection
bottleneck appears in horizontal directions, as packets try to first

Evaluating Ruche Networks: Physically Scalable, Cost-Effective, Bandwidth-Flexible NoCs ISCA ’25, June 21–25, 2025, Tokyo, Japan

RS RN RE RW S N E W P

RS △ x x △ x x x

RN △ x x △ x x x

RE △ △

RW △ △

S x x o o o o

N x x o o o o

E △ o o

W △ o o

P △ △ x x o o o o o

Input Ports
O

ut
pu

t P
or

ts

o = Original 2-D mesh connection
△ = Added by depopulated router
x = Added by fully-populated router

Figure 5: Full Ruche crossbar connectivity matrix (X-Y DOR).
By restricting some crossbar paths, depopulated routers signifi-
cantly reduce the crossbar area. Fully-populated connectivities (red
x) are added on top of depopulated (blue triangle).

reach their destination column. We evaluate Half Ruche and half-
torus, which add long-range channels in horizontal directions to
relieve this bottleneck. We exclude adding vertical long-range links
in this scenario, since vertical channel bandwidth already matches
the memory port bandwidth 1:1, so the benefit is small when the
network load is high. Although two scenarios are not mutually
exclusive, we demonstrate that Ruche NoCs can be specialized for
common traffic patterns found in target architectures.

4.1 Full Ruche - Synthetic Traffic
Figure 6 shows the synthetic traffic analysis on 2-D mesh, 2-D torus,
multi-mesh, and various Full Ruche topologies. These results are
based on a cycle-accurate simulation of RTL-level implementations.
2-D mesh and Full Ruche are without virtual channels, whereas
2-D torus has two VCs per input. We assume using a single-flit
packet, and each FIFO/VC holds up to two packets. Packets move
through at the rate of one cycle per hop in all networks. 2-D torus
uses dateline VC partitioning to achieve deadlock freedom [8]. The
routing algorithm used is DOR, which produces one output VC
direction. SW allocation in 2-D torus is done by an acyclic imple-
mentation of wavefront allocator for maximal matching quality
[5]. Evaluation is done on 8×8 and 16×16 networks. Four synthetic
traffic patterns were used: uniform random, bit complement, trans-
pose, and tornado. Five configurations of Full Ruche topologies are
evaluated. Ruche Factors are varied from one to three (ruche1-3),
and both fully-populated (pop) and depopulated (depop) crossbars
are considered.

In uniform random 8×8, 2-D mesh has saturation throughput
around 28%. Although 2-D torus doubles the bisection bandwidth,
its saturation throughput peaks around 42%. ruche1-pop, which
does not reduce network diameter yet provides the same bisection
bandwidth as 2-D torus, outperforms 2-D torus in terms of through-
put (∼48%). As explained in Figure 3, VC routers halve the peak
crossbar bandwidth, while Ruche routers retain the bandwidth of
2x multi-mesh.

This difference becomes even more prominent in the case of
uniform random 16×16. 2-D mesh throughput saturates around

15%, whereas 2-D torus throughput only reaches up to 19%, far less
than the throughput expected by doubling the bisection bandwidth.
By maintaining the crossbar bandwidth, ruche1-pop is able to reach
the saturation bandwidth of 28%, which is much closer to what is
expected. 2x multi-mesh traces very close to the ruche1-pop curve.

As we increase the Ruche Factor, the zero-load latency generally
decreases and the saturation throughput increases. In case of a
relatively smaller network (8×8), if the Ruche Factor becomes too
large (ruche3-depop), it reduces the chance that the Ruche links
will be used, so the performance drops. In a smaller network, fully-
populated routers (ruche2-pop and ruche3-pop) help by providing
more routing flexibility. The benefit of greater Ruche Factors is
more visible in larger networks (16×16).

In adversarial traffic patterns (bit complement, transpose, tor-
nado), Ruche-one performs just as well as 2-D mesh with 2-D torus
performing better. With Ruche Factor of 2 or 3, Full Ruche generally
performs better than 2-D torus with some exception. ruche3-pop in
bit complement 8×8 is an exceptional case, where there is zero con-
flict between network traffics, so the latency does not degrade. 2-D
mesh, multi-mesh, and ruche1-pop perform very similarly, except
in the transpose pattern where ruche1-pop performance better.

4.2 Full Ruche - Area and Cycle Time
We evaluate the area and cycle time of 2X multi-mesh, 2-D torus
and Full Ruche routers, following the same methodology used in
[5]. Figure 7 reports the cell area, as we sweep the target cycle
time used for synthesis. Synthesis is done using Synopsys Design
Compiler with 12 nm regular-Vt standard-cell library. Cycle time is
normalized in terms of the fanout-of-four (FO4) delay of our target
library. For each router, we decrease the cycle time with a fixed
decrement until a timing violation is detected. For all routers, we
use 128-bit channel width and X-Y DOR crossbar.

Figure 7 shows that Full Ruche routers can achieve much lower
cycle time than 2-D torus routers, due to the fact that the com-
plexity of the wavefront allocator is significantly higher than the
decentralized round-robin logic that Ruche routers use. The depop-
ulated Full Ruche has much lower area than the fully-populated and
multi-mesh, due to the significant saving in crossbar area. When
the cycle time is relaxed (∼100 FO4), the fully-populated has slightly
higher area than 2-D torus. However, the fully-populated is able to
reach much lower cycle time than 2-D torus without timing viola-
tion. The result shows that both fully-populated and depopulated
reach about the same minimum cycle time, slightly higher than that
of 2-D mesh. Multi-mesh has a comparable minimum cycle time
with Ruche, because of the higher fanout at the P-input port and
the additional route compute logic to decide between two meshes
when injecting packets (it uses mesh0, if the Manhattan distance is
even; mesh1, otherwise). The maximum number of crossbar mux
input is 7 and 9 for depopulated and fully-populated (Figure 5),
respectively, which is only a few gate delay differences. A key ad-
vantage of Ruche routers is that it can achieve competitive cycle
time without pipelining. On the other hand, VC routers will need to
be pipelined, which will either increase pipeline latency, or require
complex speculation schemes that increase power [26].

Table 2 shows the router area breakdown when the target cycle
time is most relaxed (∼ 98 FO4). The depopulated router signif-
icantly reduces the crossbar area by 40%, which is considerably

ISCA ’25, June 21–25, 2025, Tokyo, Japan Dai Cheol Jung and Michael Taylor

10 20 30 40 50 60
Injection Rate (%)

0

10

20

30

40

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Uniform Random 8x8

2-D mesh
2-D torus
ruche1-pop
ruche2-depop
ruche2-pop
ruche3-depop
ruche3-pop
multi-mesh

5 10 15 20 25 30 35 40 45
Injection Rate (%)

0

10

20

30

40

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Uniform Random 16x16

10 20 30 40 50 60
Injection Rate (%)

0

10

20

30

40

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Bit Complement 8x8

5 10 15 20 25 30 35 40 45
Injection Rate (%)

0

10

20

30

40

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Bit Complement 16x16

10 20 30 40 50 60
Injection Rate (%)

0

10

20

30

40

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Transpose 8x8

5 10 15 20 25 30 35 40 45
Injection Rate (%)

0

10

20

30

40

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Transpose 16x16

10 20 30 40 50 60
Injection Rate (%)

0

10

20

30

40

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Tornado 8x8

5 10 15 20 25 30 35 40 45
Injection Rate (%)

0

10

20

30

40

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

Tornado 16x16

Figure 6: Synthetic traffic analysis on 2-D mesh, 2-D torus, and various Full Ruche topologies. In uniform random, Ruche-one,
which has no express links, performs better than 2-D torus in terms of throughput, even though both topologies are normalized on the
bisection bandwidth, because its crossbar provides higher bandwidth than the VC router crossbar. With Ruche Factor of 2 or 3, Full Ruche
generally performs better than 2-D torus for both uniform random and adversarial traffic patterns with a few exceptions.

Evaluating Ruche Networks: Physically Scalable, Cost-Effective, Bandwidth-Flexible NoCs ISCA ’25, June 21–25, 2025, Tokyo, Japan

40 50 60 70 80 90 100
Cycle Time (FO4)

2000

2500

3000

3500

4000

4500

5000

Ro
ut

er
 A

re
a

(u
m

^2
)

Full Ruche (depop)
Full Ruche (pop)
2-D Torus

multi-mesh
mesh
timing violation

Figure 7: Area vs. Cycle Time comparison of Mesh, Multi-
mesh, Full Ruche and 2-D torus routers. Full Ruche routers
can achieve much lower cycle time without pipelining, because of
their simplified router architecture. 2-D torus would need to be
pipelined in order to achieve competitive cycle time at the expense
of increased hop latency. Full Ruche (depop) achieves lower area
than multi-mesh, while retaining the peak crossbar bandwidth and
cycle time, by efficiently combining two mesh crossbars (Table. 2)

Table 2: Multi-mesh, Full Ruche and 2-D torus Router Area
Breakdown.

Multi-mesh
(um2)

Full Ruche
(depop) (um2)

Full Ruche
(pop) (um2)

2-D Torus
(um2)

Crossbar 791 599 986 Crossbar 410
Decode 96 99 100 Decode 349
FIFO 2250 2250 2250 VC 2435
Arbiter 53 42 74 Allocator 194
TOTAL 3190 2991 3411 TOTAL 3388

less than the double 2-D mesh crossbars used in multi-mesh. Route
computation (decode), allocation logic and virtual channels of 2-D
torus contribute to more area overhead. Overall, depopulated Full
Ruche has 12% less area than 2-D torus.

4.3 Full Ruche - Energy
Table 3 reports the amount of energy required to transmit one
packet across the router. We place and route the routers with 128-
bit wide channel using Synopsys IC Compiler 2. The tile region is
187 um x 187 um, which is roughly the 1.3× size of a dense RISC-V
core [16]. After place and route, wire parasitics are extracted by
StarRC. In simulations using the gate-level netlist, for each output
direction, we collected switching activities when a stream of packets
are sent from corresponding valid inputs. We assume that packet
payloads have activity factor of 0.25 (i.e. half of bits switching
every cycle). With wire parasitics and switching activities, we use
Synopsys PrimeTime to accurately calculate average energy per
packet. This result does not include the energy dissipated by long-
range links outside the tile area.

The result shows that Full Ruche routers are generally more
energy efficient than 2-D torus. The depopulated crossbar lowers
the energy even further, especially for the Ruche directions, which

4 6 8 10 12 14 16
Average Latency of a Tile (cycle)

Di
st

rib
ut

io
n

of
 T

ile
s

16x16 Uniform Random

2-D mesh (=10.6, =1.67)
2-D torus (=7.9, =0.20)
ruche2-depop (=6.7, =0.84)
ruche3-depop (=5.9, =0.57)

Figure 8: Ruche links mitigate the network unfairness found
in 2-D mesh. Although Ruche never reaches the perfect fairness
of 2-D torus, it significantly reduces the variance, compared to 2-D
mesh, and reduces the average below that of 2-D torus.

Table 3: Full Ruche and 2-D torus Router Energy per Packet

Direction
Full Ruche (depop)

(pJ)
Full Ruche (pop)

(pJ)
2-D Torus

(pJ)
Horizontal 1.66 1.95 2.41
Vertical 1.82 2.01 3.35
Ruche Horizontal 1.40 1.81 –
Ruche Vertical 1.49 2.00 –

have less crossbar inputs. As shown in Figure 5, the depopulation
reduces the number of mux inputs for RS and RN by 5.

4.4 Full Ruche - Fairness
In 2-D mesh, an average latency of a tile highly depends on its
location. Tiles that are near the edge of the network have higher
average latencies than the ones near the center, and this unfairness
increases with the network size. 2-D torus topology is theoretically
the network with most fairness, since the network is symmetric
from every node.

Figure 8 shows the distribution of average latency experienced
by each individual tile, assuming 16×16 uniform random and low
network load. As expected, 2-D mesh has much higher stdev (𝜎 =

1.67) andmean (𝜇 = 10.6) than 2-D torus. Adding Full Ruche reduces
both stdev and the mean. Although Full Ruche never reaches the
ideal fairness of 2-D torus, Ruche2 and Ruche3 reduce the stdev by
2.0× and 2.93× respectively, compared to 2-D mesh,. Ruche2 and
Ruche3 reduce the mean average latencies, compared to 2-D torus,
by 1.18× and 1.34×, respectively.

4.5 Half Ruche - Synthetic Traffic
We first evaluate Half Ruche networks using synthetic traffic pat-
terns to establish how network size, aspect ratio, and Ruche Factor
affect the network performance. We evaluate 16×8 as a baseline,
and scale up the network by 4× to evaluate scalability. Wide, rect-
angular aspect ratios are motivated by the desire to have more
bandwidth at the edge of the network. 32×16 maintains the aspect

ISCA ’25, June 21–25, 2025, Tokyo, Japan Dai Cheol Jung and Michael Taylor

ratio of 16×8, but the compute-to-memory tile ratio is reduced by
half. In 64×8, the compute-to-memory tile ratio is preserved; how-
ever, wider aspect ratio stresses the bisection bandwidth bottleneck
even more. We consider two types of uniform random traffic that
are common in cellular manycore [16]. tile-to-tile represents all-
to-all communication among all tiles. tile-to-memory represents a
traffic pattern going to the top and bottom edges of the network
for memory access.

Figure 9 shows the analyses of two traffic patterns and three net-
work sizes. In general, Half Ruche topologies perform consistently
better than mesh in all cases. Saturation throughput of half-torus
always falls in between 2-D mesh and Ruche2, as we hypothesized
earlier that torus networks would lose on the peak crossbar band-
width. There is no significant difference between the depopulated
and fully-populated routers of the same Ruche Factor. In 16×8, the
network size is not large enough to distinguish the performance
benefit between Ruche2 and Ruche3. Even in 32×16, Ruche3 has
only a slightly lower zero-load latency than Ruche2, although the
throughput saturates near the similar injection rate.

In tile-to-tile, adding Half Ruche channels almost doubles the
saturation throughput; however, the benefit of Half Ruche is less
noticeable in tile-to-memory. Ideally, the saturation throughput of
tile-to-memory should be similar to the compute-to-memory tile
ratio. For example, in 16×8, the ratio of compute to memory tiles is
4:1, so each compute tile can ideally inject a packet every 4 cycles
before completely saturating the memory bandwidth. However,
because of the X-Y DOR, the horizontal bisection bandwidth, which
has the capacity to cross 16 packets per cycle in both direction (in
case of 2-Dmesh), is likely to saturate before saturating the memory
tile bandwidth (32 packets per cycle). In 16×8, 2-D mesh saturates
around 16∼17%, but the Half Ruche bring it closer (∼21%) to the
theoretical limit by breaking the bisection bottleneck. In 32×16
tile-to-memory, Half Ruche seems to perform a lot worse in terms
of the saturation throughput; however, the compute-to-memory
ratio is increased to 8:1 (12.5%), so the saturation throughput of 11%
is actually pretty close to this limit.

64×8 is somewhat extreme in terms of the aspect ratio. Normally,
in 2-D mesh or Full Ruche, the aspect ratio of 1:1 would be pre-
ferred to minimize the network diameter. Nevertheless, 64×8 is an
interesting option to consider, since it maintains the 4:1 compute-
to-memory ratio. By adding more hops horizontally rather than
vertically, it creates more opportunities to utilize horizontal Ruche
channels to reduce latency. However, because of its wide aspect
ratio, the bisection bottleneck becomes a big problem. For 2-Dmesh,
the zero-load latency almost goes off the chart even at the lowest
injection ratio we measured (5%). The performance difference be-
tween Ruche2 and Ruche3 is now more distinguished. Although
Ruche3 did not come close to the theoretical maximum satura-
tion throughput we hoped to gain (∼25%) by maintaining the 4:1
compute-to-memory tile ratio. We also explore Ruche4 for 64×8.
Saturation throughput continues to improve with Ruche4, signifi-
cantly higher than the maximum throughput measured in 32×16.

Table 4 summarizes these trends. For 16×8, the bisection band-
width can easily exceed the memory-tile bandwidth by adding
Ruche channels (the bisection bandwidth is twice as much as the
memory-tile bandwidth for Ruche). Maintaining the same 2:1 as-
pect ratio, 32×16 can do the same with Ruche channels; however,

Table 4: Comparison of Bandwidth Ratio. Highlighted are
where Bisection BW ≥ Memory Tile BW.

Network Size
Aspect
Ratio NoC

Bisection
BW

Memory Tile
BW

Compute-Memory
Ratio

16×8 2:1
mesh 16 32

4:1ruche2 48 32
ruche3 64 32

32×16 2:1
mesh 32 64

8:1ruche2 96 64
ruche3 128 64

64×8 8:1
mesh 16 128

4:1ruche2 48 128
ruche3 64 128

32×8 4:1
mesh 16 64

4:1ruche2 48 64
ruche3 64 64

Table 5: Benchmarks and Input Datasets – Graphs from [10].

Benchmarks Input Dataset Graph Name Type Edges / Nodes
Jacobi 512×512×64 FP32 offshore (OS) Scientific 4.2M / 260K
SGEMM 512×512×512 FP32 roadNet-CA (CA) Road 5.5M / 1.9M
2-D FFT 16K/32K FP32 road-central (RC) Road 33.8M / 14.1M
Barnes-Hut (BH) 16K/32K/64K bodies road-usa (US) Road 57.7M / 23.9M
BFS See Graphs ljournal-2008 (LJ) Social 79.0M / 5.3M
PageRank (PR) See Graphs hollywood-2009 (HW) Social 113.9M / 1.1M
SpGEMM See Graphs soc-Pokec (PK) Social 30.6M / 1.6M

the compute-memory ratio gets halved, which limits the per-core
bandwidth. 64×8 preserves this compute-memory ratio at the ex-
pense of having a more disproportionate aspect ratio (8:1); however,
despite using Ruche channels, it becomes more difficult to match
the bandwidth (in fact, it would require as high as Ruche7 to match).
Although not evaluated in this paper, 32×8 with Ruche3 appears to
be an interesting design point, since it can match the bisection and
memory-tile bandwidth 1:1.

To summarize, first, the compute-memory tile ratio should be
adjusted based on the application characteristics (4:1 may be too
high). Then, array aspect ratio and Ruche Factor can be picked
to adjust the bisection and memory-tile bandwidths. Ideally, the
bisection bandwidth should be greater than or equal to the memory-
tile bandwidth. This analysis is based purely on bandwidth without
taking the effects of latency, area, and power into account. The rest
of this section covers these other metrics in greater details.

4.6 Half Ruche - Benchmark Speedup
For Section 4.6–4.9, we modified a recent cellular manycore simu-
lator [16] to evaluate various networks using parallel workloads.
The evaluation is based on a full system, RTL-level, cycle-accurate
simulation of RISC-V core execution and various NoCs; unlike trace-
driven, our execution-drivenmethod preserves the feedback effect of
network backpressure and remote load latency on core execution,
which is more realistic. Parallel workloads and datasets used are
described in Table 5. Our evaluation includes the compute phases
of the program when the working set of data is cached in the LLCs
and excludes the data transfer phases in between, where memory
system dominates the overall latency and does not produce any
meaningful results for the NoC evaluation.

Figure 10 shows the parallel benchmark speedup over 2-D mesh
and half-torus in both 16×8 and 32×16. Overall, Half Ruche NoCs
provide consistent performance improvements over half-torus and
2-D mesh across all benchmarks. Generally, fully-populated routers
(pop) performs better than depopulated (depop), and Ruche3 per-
forms better than Ruche2. This result contradicts the synthetic

Evaluating Ruche Networks: Physically Scalable, Cost-Effective, Bandwidth-Flexible NoCs ISCA ’25, June 21–25, 2025, Tokyo, Japan

5 10 15 20 25 30
0

10

20

30

40

50

60

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

tile-to-tile 16x8

5 10 15 20 25 30
0

10

20

30

40

50

60
tile-to-tile 32x16

5 10 15 20 25 30
0

10

20

30

40

50

60
tile-to-tile 64x8

5 10 15 20 25 30
Injection Rate (%)

0

10

20

30

40

50

60

Av
er

ag
e

La
te

nc
y

(c
yc

le
)

tile-to-memory 16x8

5 10 15 20 25 30
Injection Rate (%)

0

10

20

30

40

50

60
tile-to-memory 32x16

mesh
ruche2-depop
ruche2-pop
ruche3-depop
ruche3-pop
ruche4-depop
ruche4-pop
half torus

5 10 15 20 25 30
Injection Rate (%)

0

10

20

30

40

50

60
tile-to-memory 64x8

Figure 9: Synthetic traffic analysis on 16×8, 32×16, and 64×8. Ruche Networks consistently improve zero-load latency and saturation
throughput. Depopulated and fully-populated routers have similar performance. The benefit of higher Ruche Factors is more noticeable
in 64×8. For tile-to-memory, Ruche Networks help reach the maximum saturation throughput bounded by compute-to-memory tile ratio.
Despite having the same skip distance and FIFO capacity, half-torus has lower saturation throughput than Ruche2 due to its crossbar.

traffic results (Figure 9), which suggest there should not be much
difference in performance. This discrepancy can be explained by
the fact that the traffic patterns in real benchmarks tend to be more
bursty and not as random as they are in synthetic simulations. More-
over, since our simulation methodology is execution-driven, the
timing of subsequent packet injections is affected by the changes
in network congestion and latency. In the synthetic traffic test-
bench, packets are randomly injected based on a fixed probability.
The benefits of Ruche networks are greater in 32×16 than in 16×8.
For 32×16, SpGEMM (US,RC) did not show much improvement,
because of its heavy use of an atomic add variable for dynamic
linked list node allocation, which creates a hotspot in the network.
Larger core array exacerbates this hotspot problem. With some
algorithmic changes, SpGEMM performance can be improved as
well. One exceptional case is Jacobi in 32×16 half-torus, where per-
formance drops by 20%. Jacobi kernel accesses the scratchpads of
the nearest neighbors, but since folded torus topology skips every
other tile, packets must take the longest route around the network
to reach the nearest tiles. This problem exacerbates as the network
size increases.

4.7 Half Ruche - Benchmark Scalability
Here we define scalability as howmuch application speedup we can
gain by adding more compute nodes. Since we are quadrupling the
number of cores, the most speedup we can expect is 4×. In Figure 11,
wemeasure the speedup of 32×16 and 64×8, compared to 16×8mesh

for different network configurations. In all cases, Ruche Networks
help with better scalability. Half torus always scales worse than
Ruche and sometimes worse than mesh. 64×8 mesh really struggles
to make use of additional cores, because of the massive pressure on
the horizontal bisection bottleneck. At Ruche2, 32×16 scales better
than 64×8. Once Ruche3 is reached, 64×8 performs better than
32×16 by taking advantage of higher compute-to-memory tile ratio.
For benchmarks with sequential and block-sized memory access
patterns (e.g. Jacobi, FFT, SGEMM), Ruche3 with fully-populated
could almost reach the ideal 4× scalability. BFS with social graphs
(HW, LJ), which is more prone to load imbalance, has shown limited
scalability with 4× cores. 32×16 can be more favorable than 64×8,
since it can obtain good return on a low investment in area and
routing. As noted in Table 4, 64×8 requires more Ruche channels
to fully utilize the extra memory-tile bandwidth.

4.8 Half Ruche - Remote Load Latency
The average remote load latency can be an interesting metric, be-
cause lowering it implies less effort in software and less hardware
resources for latency hiding. We split the total latency into two
components: (1) intrinsic latency is the minimum amount of latency
when there is no congestion (i.e. zero-load latency). (2) congestion
latency is any extra latency induced by network stalls. Figure 12
shows the average remote load latency of 32×16 array. The average
intrinsic delay is almost identical for all benchmarks, suggesting

ISCA ’25, June 21–25, 2025, Tokyo, Japan Dai Cheol Jung and Michael Taylor

1.0

1.1

1.2

1.3

1.4

1.5
half-torus ruche2-depop ruche2-pop ruche3-depop ruche3-pop

Jac
ob

i
FF

T1
28

FF
T2

56
SG

EM
M

BH
 (1

6K
)

BH
 (3

2K
)

BH
 (6

4K
)

BF
S (

PK
)

BF
S (

HW
)

BF
S (

LJ)
BF

S (
CA

)
BF

S (
US

)
BF

S (
RC

)
PR

 (H
W

)
PR

 (L
J)

PR
 (P

K)
PR

 (C
A)

PR
 (R

C)
PR

 (U
S)

Sp
GE

MM
 (O

S)
Sp

GE
MM

 (C
A)

Sp
GE

MM
 (U

S)
Sp

GE
MM

 (R
C)

ge
om

ea
n

1.0

1.1

1.2

1.3

1.4

1.5

16
x8

32
x1

6

Sp
ee

du
p

ov
er

 2
-D

 m
es

h

Figure 10: Speedup over 2-D mesh on 32×16 and 16×8. Half Ruche provides consistent speedup across a wide range of parallel
benchmarks. The most gain comes with the Half Ruche in its simplest form (ruche2-depop), and the rest provides incremental gains. Half
Ruche provides more speedup in a larger network size. Folded torus underperforms 2-D mesh in Jacobi due to its inability to reach the
nearest tiles using local links.

1
2
3
4

mesh half-torus ruche2-depop ruche2-pop ruche3-depop ruche3-pop

Jac
ob

i
FF

T1
28

FF
T2

56
SG

EM
M

BH
 (1

6K
)

BH
 (3

2K
)

BH
 (6

4K
)

BF
S (

PK
)

BF
S (

HW
)

BF
S (

LJ)
BF

S (
CA

)
BF

S (
US

)
BF

S (
RC

)
PR

 (P
K)

PR
 (H

W
)

PR
 (L

J)
PR

 (C
A)

PR
 (R

C)
PR

 (U
S)

Sp
GE

MM
 (O

S)
Sp

GE
MM

 (C
A)

Sp
GE

MM
 (R

C)
Sp

GE
MM

 (U
S)

ge
om

ea
n

1
2
3
4

32
x1

6
64

x8

Sp
ee

du
p

ov
er

 1
6x

8
m

es
h

Figure 11: Here we define “scalability” as how much speedup we gain by adding more cores. In ideal scaling, 4× speedup would be
the upper bound. Half Ruche helps reach this ceiling across all benchmarks, especially for the ones with good parallelism. Despite its skewed
aspect ratio, 64×8 performs marginally better than 32×16 in terms of geomean speedup, when the Ruche Factor is 3.

that the IPOLY hashing [28] that is used to hash the address space
to interleave among the LLC banks effectively balances the traffics.
In all benchmarks, both half-torus and Half Ruche reduce the in-
trinsic delay (except for half-torus in Jacobi, as explained earlier).
ruche2-depop reduces intrinsic latency by ∼27%, and more expen-
sive routers provide only incremental benefits. Congestion-induced
latency is especially high for regular workloads and PageRank with
social networks, where injection rates are very high. SpGEMM

(US, RC) are characterized as being latency-bound and pointer-
chasing, because road networks in general have low degrees, and
the SpGEMM kernels are implemented using linked lists. Due to
latency reduction by Ruche links, cores stall less often and con-
sequently inject packets more frequently; as a result, congestion
latency increased slightly. Half Ruche effectively reduce congestion
by providing more network links that cross the bisection. For some

Evaluating Ruche Networks: Physically Scalable, Cost-Effective, Bandwidth-Flexible NoCs ISCA ’25, June 21–25, 2025, Tokyo, Japan

0

20

40 mesh half-torus ruche2-depop ruche2-pop ruche3-depop ruche3-pop
Jac

ob
i

FF
T1

28
FF

T2
56

SG
EM

M
BH

 (1
6K

)
BH

 (3
2K

)
BH

 (6
4K

)
BF

S (
PK

)
BF

S (
HW

)
BF

S (
LJ)

BF
S (

CA
)

BF
S (

US
)

BF
S (

RC
)

PR
 (H

W
)

PR
 (L

J)
PR

 (P
K)

PR
 (C

A)
PR

 (R
C)

PR
 (U

S)
Sp

GE
MM

 (O
S)

Sp
GE

MM
 (C

A)
Sp

GE
MM

 (U
S)

Sp
GE

MM
 (R

C)

0

20

40

Co
ng

es
tio

n
In

tri
ns

ic

Av
er

ag
e

Re
m

ot
e

La
te

nc
y

(c
yc

le
)

Figure 12: Average remote load latency for 32×16. Ruche Networks effectively reduce both ‘intrinsic’ and ‘congestion-induced’ latencies.
In 2-D mesh, workloads with a stream of sequential accesses (e.g. FFT, SGEMM) suffer the most from congestion. Ruche Networks help by
relieving the bisection bottleneck.

Jac
ob

i
FF

T1
28

FF
T2

56
SG

EM
M

BH
 (1

6K
)

BH
 (3

2K
)

BH
 (6

4K
)

BF
S (

PK
)

BF
S (

HW
)

BF
S (

LJ)
BF

S (
CA

)
BF

S (
US

)
BF

S (
RC

)
PR

 (P
K)

PR
 (H

W
)

PR
 (L

J)
PR

 (C
A)

PR
 (R

C)
PR

 (U
S)

Sp
GE

MM
 (O

S)
Sp

GE
MM

 (C
A)

Sp
GE

MM
 (R

C)
Sp

GE
MM

 (U
S)

0.0

0.5

1.0

1.5

To
ta

l E
ne

rg
y

 (n
or

m
al

ize
d

to
 2

-D
 m

es
h) m

es
h

ha
lf-

to
ru

s
r2

-d
ep

r2
-p

op
r3

-d
ep

r3
-p

op core stall router wire

Figure 13: Total energy breakdown for 32×16 (normalized to 2-D mesh). Half Ruche effectively reduces router energy by reducing
the network hops with the long-range Ruche channels. Sending packets over those long-range links are much more energy efficient than the
local links. By reducing the number of cycles that the cores stall (e.g. remote load latency), it also reduces the static stall energy wasted by
the idle cores. Half-torus increases the total energy due to its higher router energy.

workloads, higher Ruche Factor or populated routers does not sig-
nificantly reduce congestion-induced latency. However, congestion
latency is never made worse by adding Ruche channels, so when
the reduction of intrinsic latency is taken into account, the total
latency is almost likely to be reduced.

4.9 Half Ruche - Benchmark Energy
We divide the total energy spent by the whole system into four
categories: (1) core energy represents dynamic energy dissipated by
cores when executing instructions. Per-instruction energy comes
from the measurement taken in [16]. (2) stall energy represents

a leakage component of both core and router and some ungated
dynamic clock tree energy, when the core and NoC are idle. (3)
router energy represents the dynamic energy dissipated by the NoC
routers when transmitting packets. Router energy is calculated
by using the similar method to generate Table 3. (4) wire energy
represents the dynamic energy dissipated by the long-range Ruche
links. Wire energy of Ruche links is estimated by using the first-
order repeater model [13] and the process-independent, per-length
wire capacitance (0.2 pF/mm). The diffusion and gate capacitance
of the repeaters driving the Ruche links was taken from the 12 nm
standard-cell library. We made the same assumption about the

ISCA ’25, June 21–25, 2025, Tokyo, Japan Dai Cheol Jung and Michael Taylor

activity factor on each bit and the length of the Ruche wires, as
done in Table 3.

Figure 13 shows the total energy breakdown for 32×8 (normal-
ized to energy spent by 2-D mesh). As expected, the core energy
remains constant, since the instruction execution count is not af-
fected by changes in network configurations. However, by reducing
the remote load latency, the stall energy is reduced. For memory-
bound workloads like BFS, stall energy can become a large portion
of the total, even though stall energy per cycle is relatively small
compared to energy per instruction. Except for a few compute-
intensive workloads (e.g. FFT and SGEMM), routers can dissipate
power as much as cores do. In half-torus, we observe that energy
saving with long wire is not enough to compensate for the increased
router energy. In almost all benchmarks, half-torus ends up spend-
ing more total energy than 2-D mesh. Again, while ruche2-depop
results in the sharpest reduction in energy, the fully-populated
routers and higher Ruche Factors provide marginal benefits. Even
for Ruche Factor of 3, wire energy is a very small percentage of the
total energy.

4.10 Half Ruche - Geomean Summary
Table 6 summarizes the Half Ruche evaluation with geomean scores.
Across the board, ruche3-pop outperforms all other network config-
urations. As mentioned earlier, the general trend is that most gains
come from ruche2-depop initially. This is a promising result, since
most designs that already use 2-D mesh or torus can easily reap
most of the benefits with a Ruche router with the least complexity.
Looking at the area-normalized speedup, depopulated routers per-
form better than the fully-populated. Increasing Ruche Factor is a
cost-effective means to increase performance. On the other hand,
there is hardly any area-normalized speedup for half-torus (1.01×).
We can summarize the results from Half Ruche evaluation with a
following guideline: save area with a depopulated router, and use
longer wires for more cost-effective performance gains.

Although Ruche NoC reduces the total NoC energy, the question
still remains whether NoC power also decreases. If we define ‘NoC
power’ as NoC energy divided by total runtime, as long as the NoC
energy efficiency does not fall behind the speedup, NoC power
should remain constant. Table 6 shows that NoC energy efficiency
for Ruche NoCs is greater than speedup vs mesh for 32×16 by at
least 0.07×; therefore, NoC power does indeed decrease. Similarly,
total power, defined as total energy divided by total runtime, does
not increase significantly for Ruche NoCs, since the difference
between total energy efficiency and speedup vs mesh is very small
(0.01-0.03×).

5 Related Work
This paper discusses in detail comparisons of Ruche networks with
a wide variety of other proposed NoCs [1, 3, 6, 12, 17, 26, 32].

Generalized Express Cube (GEC) framework [12] proposes to
express existing NoC topologies using the 6-tuple ⟨𝑛, 𝑘, 𝑐, 𝑜, 𝑑, 𝑥⟩.
However, these parameters are not general enough to express Ruche
networks. The parameters ⟨𝑛, 𝑘, 𝑐, 𝑥⟩ are orthogonal to describing
the connectivity between nodes in each dimension. The parameters
⟨𝑜, 𝑑⟩, which describe the router radix per dimension and sinks per
channel, would be ⟨4, 1⟩ for Ruche networks. However, it lacks a

Table 6: Summary of Half Ruche eval using geomean scores.

Metric mesh
ruche2
depop

ruche2
pop

ruche3
depop

ruche3
pop

half
torus

16×8 Speedup vs mesh 1.00× 1.12× 1.14× 1.15× 1.18× 1.09×
32×16 Speedup vs mesh 1.00× 1.17× 1.19× 1.23× 1.24× 1.08×

32×16 Scalability
(vs 16×8 mesh) 2.20× 2.58× 2.61× 2.70× 2.73× 2.36×
64×8 Scalability
(vs 16×8 mesh) 1.66× 2.40× 2.48× 2.76× 2.83× 1.94×

Load Latency Reduction
(32×16, Intrinsic) 1.00× 1.28× 1.32× 1.38× 1.44× 1.12×

Load Latency Reduction
(32×16, Congestion) 1.00× 1.21× 1.19× 1.20× 1.22× 1.05×

Load Latency Reduction
(32×16, Total) 1.00× 1.27× 1.30× 1.35× 1.40× 1.11×

Energy Efficiency
(32×16, Compute) 1.00× 1.12× 1.12× 1.15× 1.16× 1.06×
Energy Efficiency
(32×16, NoC) 1.00× 1.28× 1.28× 1.30× 1.35× 0.75×

Energy Efficiency
(32×16, Total) 1.00× 1.18× 1.18× 1.20× 1.22× 0.91×

Tile Area Increase 1.000× 1.058× 1.085× 1.063× 1.090× 1.071×
32×16 Speedup vs mesh

(area normalized) 1.00× 1.11 × 1.10× 1.16 × 1.14× 1.01×

parameter to describe the Ruche Factor (the skip distance of Ruche
channels), so even the most broad generalization of express link
topologies does not include Ruche networks.

Express Virtual Channel (EVC) [20] is a flow control technique
that allows packets to bypass some of the pipeline stages in inter-
mediate routers to reduce latency. EVC uses the same 2-D mesh
topology without adding any new physical links; hence, there is
no improvement in bisection bandwidth, and the throughput will
converge to that of 2-D mesh at higher load or larger network.
Instead, the mesh links are virtualized by adding express VCs that
are prioritized over local ones. This prioritization enables EVC flits
to skip some of the pipeline stages (e.g. buffer write, allocation) in
intermediate routers, thereby reducing their latencies. However,
EVC flits still need to be latched, and go through each crossbar,
in every router on their way. In contrast, Ruche packets use the
long-range physical links that skip the intermediate routers entirely.
Fundamentally, while previous NoC techniques, such as specula-
tive VC routers and EVC, sought to improve network performance
by spending more area on control logic, usually with a tradeoff
between performance and energy, Ruche NoC finds a way to effi-
ciently utilize unused interconnects to improve both performance
and energy.

EVC has two major flaws that limit its scalability for larger net-
works [18, 19]. First, EVC must conservatively guarantee that there
is enough buffer space at the destination before it can safely inject
EVC flits, and this leads to overprovisioning and underutilization
of buffer spaces in average case. EVC uses on-off signaling, where
the destination node sends a token to the remote source to stop
injecting more flits when the buffer space goes below a certain
threshold. Since it takes multiple cycles for the token to reach the
source, the total buffer space must account for the worst-case, which
is calculated based on the number of cycles for this signal to reach
the source and the number of flits that could already be in flight
during that time. In other words, the minimum buffer space has to
grow with the maximum EVC distance. In contrast, Ruche routers
are minimally buffered with two-element FIFOs, which remains
constant with the network sizes and Ruche Factor. Second, EVC is
restricted to assign one express VC for each k-hop express paths,
because control latency overhead required for dynamic assigning

Evaluating Ruche Networks: Physically Scalable, Cost-Effective, Bandwidth-Flexible NoCs ISCA ’25, June 21–25, 2025, Tokyo, Japan

makes it impractical. Static assigning creates a problem, where
the source node may only send a limited number of packets for
a particular distance, even though there may be other free VCs
available. Furthermore, the source nodes that are further away take
longer time to learn from the destination that the k-hop VC became
free, thereby lowering the VC utilization. For these reasons, the
maximum EVC distance is practically limited to only 3 to 4 hops.

Flit bubble flow control (FBFC) [22] proposes an alternative
scheme for deadlock freedom in torus networks without using
virtual channels. The main insight is that, even if cyclic channel
dependency exists, as long as there is one bubble per each ring,
packets can make forward progress without deadlock. FBFC im-
poses a restriction on when packets can be injected; the receiving
FIFO must have at least one more free buffer slot than the packet
length.

Dalorex [24], a manycore architecture that accelerates workloads
with irregular memory access patterns by remote task invocation,
purports to have done a comparison between Ruche and torus
networks using C++ simulation. While no exact detail was given
about which Ruche Factor or crossbar schemes were used, it reports
that Ruche has a larger area overhead and lower performance than
torus. Figure 7 shows that 2-D torus has a larger area with virtual
channels and depopulated Ruche routers in consideration. Dalorex
distributes its data array using low-order index bits so all-to-all
uniform random best reflects its traffic pattern. Figure 6 shows that
Ruche networks achieve much higher throughput than 2-D torus
in uniform random.

6 Conclusion
Ruche networks share the same qualities with 2-D mesh that make
them widely usable in real chip designs. Although express (non-
local) links themselves are not novel, and their benefits have been
studied in the past, they have not been adopted in mainstream ar-
chitecture because of the physical-design limitations. Our analysis
reveals that the simplest form of Ruche networks (RF = 2, depop-
ulated) is able to deliver the most benefit upfront. This suggests
that existing architectures that already use 2-D mesh or torus can
leverage Ruche networks at low cost, while unlocking most of the
benefits from underutilized VLSI wiring resources. Once the ini-
tial overhead is added to the router, extending the range of Ruche
channels provides a cost-effective mechanism for additional perfor-
mance gains.

We evaluate Half and Full Ruche networks in two common sce-
narios. We demonstrate that Ruche networks can improve perfor-
mance and scalability across a wide range of parallel workloads.
They can reduce the average remote load latency so that less soft-
ware effort or hardware resources are required to hide latency.
Finally, sending packets over the long Ruche channels is signifi-
cantly more energy efficient than hopping through routers. This
paper provides insights on important tradeoffs when designing
with Ruche networks.

Acknowledgments
This work was supported in part by ACE and CHIMES, two of the seven
centers in JUMP 2.0, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA, and by NSF PPoSS Award 2118628.

References
[1] Nilmini Abeyratne, Reetuparna Das, Qingkun Li, Korey Sewell, Bharan Giridhar,

Ronald G. Dreslinski, David Blaauw, and Trevor Mudge. 2013. Scaling towards
kilo-core processors with asymmetric high-radix topologies. In 2013 IEEE 19th
International Symposium on High Performance Computer Architecture (HPCA).
496–507.

[2] Dennis Abts, Natalie D. Enright Jerger, John Kim, Dan Gibson, and Mikko H. Li-
pasti. 2009. Achieving predictable performance through better memory controller
placement in many-core CMP. In Proceedings of the 36th Annual International
Symposium on Computer Architecture (Austin, TX, USA) (ISCA ’09). Association
for Computing Machinery, New York, NY, USA, 451–461.

[3] James Balfour and William J. Dally. 2006. Design tradeoffs for tiled CMP on-chip
networks. In ACM International Conference on Supercomputing 25th Anniversary
Volume (Munich, Germany). Association for Computing Machinery, New York,
NY, USA, 390–401.

[4] Arnab Banerjee, Pascal T. Wolkotte, Robert D. Mullins, Simon W. Moore, and
Gerard J. M. Smit. 2009. An Energy and Performance Exploration of Network-
on-Chip Architectures. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 17, 3 (2009), 319–329.

[5] Daniel U Becker. 2012. Efficient microarchitecture for network-on-chip routers.
Ph. D. Dissertation. Stanford University.

[6] Daniel U. Becker and William J. Dally. 2009. Allocator Implementations for
Network-on-Chip Routers. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (Portland, Oregon) (SC ’09). Associ-
ation for Computing Machinery, New York, NY, USA, Article 52, 12 pages.

[7] Shekhar Borkar. 2007. Thousand core chips: a technology perspective. In Pro-
ceedings of the 44th Annual Design Automation Conference (San Diego, California)
(DAC ’07). Association for Computing Machinery, New York, NY, USA, 746–749.

[8] Dally and Seitz. 1987. Deadlock-Free Message Routing in Multiprocessor Inter-
connection Networks. IEEE Trans. Comput. C-36, 5 (1987), 547–553.

[9] Scott Davidson, Shaolin Xie, Christopher Torng, Khalid Al-Hawai, Austin Rovin-
ski, Tutu Ajayi, Luis Vega, Chun Zhao, Ritchie Zhao, Steve Dai, Aporva Amarnath,
Bandhav Veluri, Paul Gao, Anuj Rao, Gai Liu, Rajesh K. Gupta, Zhiru Zhang,
Ronald Dreslinski, Christopher Batten, and Michael Bedford Taylor. 2018. The
Celerity Open-Source 511-Core RISC-V Tiered Accelerator Fabric: Fast Architec-
tures and Design Methodologies for Fast Chips. IEEE Micro 38, 2 (2018), 30–41.

[10] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (dec 2011), 25 pages.

[11] David R. Ditzel and the Esperanto team. 2022. Accelerating ML Recommendation
With Over 1,000 RISC-V/Tensor Processors on Esperanto’s ET-SoC-1 Chip. IEEE
Micro 42, 3 (2022), 31–38.

[12] Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu. 2009. Express
Cube Topologies for on-Chip Interconnects. In 2009 IEEE 15th International Sym-
posium on High Performance Computer Architecture. 163–174.

[13] R. Ho, K.W. Mai, and M.A. Horowitz. 2001. The future of wires. Proc. IEEE 89, 4
(2001), 490–504.

[14] Drago Ignjatović, Daniel W. Bailey, and Ljubisa Bajić. 2022. The Wormhole AI
Training Processor. In 2022 IEEE International Solid-State Circuits Conference
(ISSCC), Vol. 65. 356–358.

[15] Dai Cheol Jung, Scott Davidson, Chun Zhao, Dustin Richmond, and Michael Bed-
ford Taylor. 2020. Ruche Networks: Wire-Maximal, No-Fuss NoCs. In 2020 14th
IEEE/ACM International Symposium on Networks-on-Chip (NOCS). 1–8.

[16] Dai Cheol Jung, Max Ruttenberg, Paul Gao, Scott Davidson, Daniel Petrisko, Kan-
gli Li, Aditya K Kamath, Lin Cheng, Shaolin Xie, Peitian Pan, Zhongyuan Zhao,
Zichao Yue, Bandhav Veluri, Sripathi Muralitharan, Adrian Sampson, Andrew
Lumsdaine, Zhiru Zhang, Christopher Batten, Mark Oskin, Dustin Richmond,
and Michael Bedford Taylor. 2024. Scalable, Programmable and Dense: The
HammerBlade Open-Source RISC-V Manycore. In International Symposium on
Computer Architecture (ISCA).

[17] John Kim, James Balfour, and William Dally. 2007. Flattened Butterfly Topology
for On-Chip Networks. In 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007). 172–182.

[18] Tushar Krishna, Amit Kumar, Patrick Chiang, Mattan Erez, and Li-Shiuan Peh.
2008. NoC with Near-Ideal Express Virtual Channels Using Global-Line Com-
munication. In 2008 16th IEEE Symposium on High Performance Interconnects.
11–20.

[19] Tushar Krishna, Amit Kumar, Li-Shiuan Peh, Jacob Postman, Patrick Chiang, and
Mattan Erez. 2009. Express Virtual Channels with Capacitively Driven Global
Links. IEEE Micro 29, 4 (2009), 48–61.

[20] Amit Kumar, Li-Shiuan Peh, Partha Kundu, and Niraj K. Jha. 2007. Express virtual
channels: towards the ideal interconnection fabric. In Proceedings of the 34th
Annual International Symposium on Computer Architecture (San Diego, California,
USA) (ISCA ’07). Association for Computing Machinery, New York, NY, USA,
150–161.

[21] Pejman Lotfi-Kamran, Boris Grot, and Babak Falsafi. 2012. NOC-Out: Microar-
chitecting a Scale-Out Processor. In 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture. 177–187.

ISCA ’25, June 21–25, 2025, Tokyo, Japan Dai Cheol Jung and Michael Taylor

[22] Sheng Ma, Zhiying Wang, Zonglin Liu, and Natalie Enright Jerger. 2015. Leaving
One Slot Empty: Flit Bubble Flow Control for Torus Cache-Coherent NoCs. IEEE
Trans. Comput. 64, 3 (2015), 763–777.

[23] Robert Mullins, Andrew West, and Simon Moore. 2006. The design and imple-
mentation of a low-latency on-chip network. In Proceedings of the 2006 Asia and
South Pacific Design Automation Conference (Yokohama, Japan) (ASP-DAC ’06).
IEEE Press, 164–169.

[24] Marcelo Orenes-Vera, Esin Tureci, David Wentzlaff, and Margaret Martonosi.
2023. Dalorex: A Data-Local Program Execution and Architecture for Memory-
bound Applications. In 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 718–730.

[25] Yanghui Ou, Shady Agwa, and Christopher Batten. 2020. Implementing Low-
Diameter On-Chip Networks for Manycore Processors Using a Tiled Physi-
cal Design Methodology. In 2020 14th IEEE/ACM International Symposium on
Networks-on-Chip (NOCS). 1–8.

[26] L.-S. Peh and W.J. Dally. 2001. A delay model and speculative architecture
for pipelined routers. In Proceedings HPCA Seventh International Symposium on
High-Performance Computer Architecture. 255–266.

[27] Daniel Petrisko, Chun Zhao, Scott Davidson, Paul Gao, Dustin Richmond, and
Michael Bedford Taylor. 2020. NoC Symbiosis (Special Session Paper). In 2020

14th IEEE/ACM International Symposium on Networks-on-Chip (NOCS). 1–8.
[28] B Ramakrishna Rau. 1991. Pseudo-randomly interleaved memory. In Proceedings

of the 18th Annual International Symposium on Computer Architecture. 74–83.
[29] Daeho Seo, Akif Ali, Won-Taek Lim, and N. Rafique. 2005. Near-optimal worst-

case throughput routing for two-dimensional mesh networks. In 32nd Interna-
tional Symposium on Computer Architecture (ISCA’05). 432–443.

[30] Emil Talpes, Debjit Das Sarma, Doug Williams, Sahil Arora, Thomas Kunjan,
Benjamin Floering, Ankit Jalote, Christopher Hsiong, Chandrasekhar Poorna,
Vaidehi Samant, John Sicilia, Anantha Kumar Nivarti, Raghuvir Ramachandran,
Tim Fischer, Ben Herzberg, Bill McGee, Ganesh Venkataramanan, and Pete Banon.
2023. The Microarchitecture of DOJO, Tesla’s Exa-Scale Computer. IEEE Micro
43, 3 (2023), 31–39.

[31] Michael Bedford Taylor. 2018. BaseJump STL: SystemVerilog needs a Standard
Template Library for Hardware Design. In Proceedings of the 55th Annual Design
Automation Conference (San Francisco, California) (DAC ’18). Association for
Computing Machinery, New York, NY, USA, Article 73, 6 pages.

[32] Jasmina Vasiljevic and Davor Capalija. 2024. Blackhole & TT-Metalium: The
Standalone AI Computer and its Programming Model . In 2024 IEEE Hot Chips 36
Symposium (HCS). IEEE Computer Society, Los Alamitos, CA, USA, 1–30.

	Abstract
	1 Introduction
	2 Contributions & Insights
	3 Architecture
	3.1 Physically Scalable Ruche Topology
	3.2 Ruche Router Architecture

	4 Evaluation
	4.1 Full Ruche - Synthetic Traffic
	4.2 Full Ruche - Area and Cycle Time
	4.3 Full Ruche - Energy
	4.4 Full Ruche - Fairness
	4.5 Half Ruche - Synthetic Traffic
	4.6 Half Ruche - Benchmark Speedup
	4.7 Half Ruche - Benchmark Scalability
	4.8 Half Ruche - Remote Load Latency
	4.9 Half Ruche - Benchmark Energy
	4.10 Half Ruche - Geomean Summary

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

