RealLLM: A Trace-Driven Framework for Rapid
Simulation of Large-Scale LLM Inference

Huwan Peng, Scott Davidson, C.-J. Richard Shi, Michael Taylor
University of Washington, Seattle, USA
{hwpeng, stdavids, cjshi, profmbt} @uw.edu

Abstract—As Large Language Models (LLMs) continue to
scale, optimizing their deployment requires efficient hardware
and system co-design. However, current LLM performance
evaluation frameworks fail to capture both chip-level execution
details and system-wide behavior, making it difficult to assess
realistic performance bottlenecks. In this work, we introduce
RealLLM, a trace-driven simulation framework designed to
bridge the gap between detailed accelerator design and large-
scale inference evaluation. Unlike prior simulators, ReaLLM
integrates kernel profiling derived from detailed microarchitec-
tural simulations with a new trace-driven end-to-end system
simulator, enabling precise evaluation of parallelism strategies,
batching techniques, and scheduling policies. To address the
high computational cost of exhaustive simulations, ReaLLM
constructs a precomputed kernel library based on hypothesized
scenarios, interpolating results to efficiently explore a vast design
space of LLM inference systems. OQur validation against real
hardware demonstrates the framework’s accuracy, achieving an
average end-to-end latency prediction error of only 9.1% when
simulating inference tasks running on 4 NVIDIA H100 GPUs.
We further use RealLLM to evaluate popular LLMs’ end-to-
end performance across traces from different applications and
identify key system bottlenecks, showing that modern GPU-
based LLM inference is increasingly compute-bound rather
than memory-bandwidth bound at large scale. Additionally, we
significantly reduce simulation time with our precomputed kernel
library by a factor of 6x for full-simulations and 164x for
workload SLO exploration. RealLLLM is open-source and available
at https://github.com/bespoke-silicon-group/reallm.

Index Terms—Large Language Models (LLM), Hardware
Accelerator, Simulation Framework

I. INTRODUCTION

Eight years have passed since the publication of the original
transformer model [1], and since then Large Language Models
(LLMs) have continued to have a profound impact on artificial
intelligence, driving advancements in conversational Al [2],
[3], code generation [4], and multimodal content creation [5],
[6]. With the continued scaling of LLMs, performance gains
have followed established scaling laws [7]. However, this
scaling has been accompanied by an exponential growth in
computational resource demands, raising concerns about scal-
ability, cost-efficiency, and environmental sustainability. Con-
sequently, optimizing LLM inference deployments through
effective hardware and system co-design is increasingly es-
sential.

Despite significant progress in LLM hardware accelerators,
a substantial gap remains between theoretical peak perfor-
mance and realized system-level efficiency. Traditional accel-
erator studies often focus on chip-level metrics such as FLOPS

and DRAM bandwidth, neglecting crucial system-level factors
that directly influence service-level objectives (SLOs) like
time-to-first-token (TTFT) and time-between-tokens (TBT).
Achieving high throughput and low latency in large-scale LLM
inference requires the orchestration of parallelism strategies
(data, tensor, pipeline, context, expert) [8]-[11], system-level
optimizations (mixed continuous batching) [12], [13], efficient
inter-device communication, and optimized chip-level kernel
execution. Accurately bridging the gap between chip-level
performance and system-level SLOs is essential for designing
next-generation Al accelerators and scalable LLM-serving
architectures.

LLM inference introduces complex interactions between
hardware and system execution, making accurate system-level
performance modeling challenging. Existing LLM hardware
simulators typically focus either on chip-level simulations
or system-level modeling, failing to capture key execution
dynamics. Many approaches do not provide fine-grained kernel
performance evaluations, instead relying on analytical models
that estimate performance without simulating kernel execution
at the hardware level. Additionally, full execution graph-based
system simulation is missing from most frameworks, despite
the fact that LLM inference spans multiple devices, requiring
an integrated evaluation of parallelism, batching, scheduling,
and communication.

Another challenge is the scalability of large-scale design
space exploration. The number of devices, parallelism strate-
gies, and system optimizations creates a massive combinatorial
search space, making naive brute-force evaluations infeasible.
Without an efficient methodology for evaluating design points,
it is difficult to find optimal configurations for LLM hardware-
software co-design.

To address these limitations, we introduce RealLLM, a
novel trace-driven simulation framework that uniquely inte-
grates chip-level and system-level evaluations, enabling end-
to-end LLM system performance modeling. ReaLLM operates
in three distinct stages. The first stage, hypothesis-based kernel
library construction, involves hypothesizing all feasible paral-
lelism, batching, and scheduling strategies. This information
is then used to generate a list of all unique kernels that will
be executed such as matrix multiplication, layer normalization
and softmax. Next, ReaLLM precomputes profiling data for
each hypothesized kernel using an optimized chip-level kernel
simulator. This simulator determines the best partitioning, loop
blocking, and execution strategies for each kernel, storing

Mixed Continuous Decode Only

LLM Server

Prefill Only Batch (MCB) (Batgh=2)
) r \ r
System KV KV KV
Cache Cache Cache
| ———] I’'m) —
L = =
= — —
=® - g =i
— | to play
O\

- £ 2 £ 2 L2
Client #1 “Openthepod “Im” “sorry” Dave”
Req/Resp: pay doors, HAL”

“The onry winning “to” “play.”
Req/Resp: move is not”
. 1 1]]
SLOs Timings: { TTFT T 7TBT | 7TBT 1
¥
E2E
Fig. 1. High-level overview of a LLM inference serving system handling

multiple client requests arriving at different times with labels for the 3 service
level objectives (SLOs) for each client. Shown are 3 iterations through the
LLM. First iteration is a prefill iteration for client 1. Second iteration uses
mixed continuous batching (MCB) to combine the decode iteration for client
1 with a prefill iteration for client 2. The final iteration is a decode iteration
for both clients forming a normal batched decode iteration.

results in a lookup table. Finally, ReaLLM generates traces
that reflect real-world execution dynamics and simulates the
execution graph at the system level. This flow allows rapid
evaluation of service-level objectives across different system
configurations, identifying the best performing design point
for a given workload and hardware setup. ReaLLM’s key
innovations include:

o Integrated Chip-System Modeling: ReaLLM bridges the
gap between chip-level kernel performance and system-
level SLOs, providing a holistic view of LLM inference.

o Precomputed Hypothesized Kernel Profiling: ReaLLM
significantly reduces simulation overhead by precom-
puting kernel performance with an optimized chip-level
simulator, enabling rapid design exploration.

o Trace-Driven System Simulation: ReaLLM generates re-
alistic execution traces that capture real-world execution
dynamics, facilitating accurate system-level simulation
and SLO evaluation.

o FEfficient Design Space Exploration: ReaLLM’s method-
ology enables efficient exploration of the vast hardware-
software co-design space, identifying the best performing
configurations for LLM serving.

II. BACKGROUND AND RELATED WORK
A. Generative LLM Inference

Generative Large Language Models (LLMs) are constructed
from stacked Transformer decoder layers [1], [14], [15], using
causal self-attention to perform autoregressive generation.
This process is typically segmented into two phases: prefill
and decode. The prefill stage, which processes the entire
input sequence to produce the initial output token, is often
computationally intensive. Conversely, the decode stage gen-
erates subsequent tokens iteratively, leveraging cached key-
value (KV) projections to minimize redundant computations,
resulting in lower operational intensity.

To overcome low operational intensity, systems attempt
to batch multiple users and processes them simultaneously.

TABLE I
COMPARISON OF REALLM WITH EXISTING LLM PERFORMANCE
EVALUATION FRAMEWORKS

Feature GenZ [18] | Optimus [19] | LLMComp [20] | ReaLLM
Micro Arch-Level X X v v
Non-Linear Kernel X X v v
Parallelism Exploration v v X v/
Scheduling Exploration X X X v
Trace Generation X X X v/
Trace Driven Simulation X X X v
SLO Analysis X X X 4

Mixed continuous batching (MCB) [12] is a batching tech-
nique that concurrently manages ongoing decode operations
and seamlessly integrates new prefill tasks into the processing
pipeline, shown in Figure 1. To mitigate potential delays
associated with long input prompts, the prefill phase can be
partitioned into smaller, discrete chunks [13], thereby reducing
latency impact on concurrent decode operations.

The memory and computational demands of LLM inference
require distributed execution on multiple hardware devices.
Common parallelism strategies include tensor, pipeline, se-
quence, and expert parallelism [8], [10], [16], [17], each
presenting distinct performance trade-offs. For instance, tensor
parallelism effectively reduces per-device memory require-
ments but introduces inter-device communication overhead.

Service Level Objectives (SLOs) are key metrics for evaluat-
ing the performance of LLM inference systems. The primary
SLOs include time-to-first-token (TTFT) and time-between-
tokens (TBT). TTFT measures the latency from when an input
prompt is received to the generation of the first output token.
TBT measures the latency between consecutive token gener-
ations. Together, TTFT and TBT contribute to the end-to-end
latency (E2E) of a given request, annotated in Figure 1. These
SLOs are critical for ensuring a responsive user experience in
real-world LLM applications.

B. LLM Hardware Simulation and Challenges

Accurately modeling LLM inference requires both chip-
level and system-level performance analysis. Existing simu-
lation frameworks often focus on only one aspect, leading to
incomplete performance evaluations.

Chip-level simulators like LLMCompass [20] offer detailed
accelerator performance modeling but lack comprehensive
system-level execution analysis. These frameworks focus on
low-level kernel execution details, without capturing the entire
end-to-end inference pipeline. Although LLMCompass models
certain parallelism strategies, it primarily emphasizes individ-
ual kernel execution and does not capture the complexities of
the complete system, limiting its applicability for real-world
LLM serving scenarios.

Other works such as GenZ [18] and Optimus [19] pro-
vide system-level LLM inference simulation. These models
approximate the impact of compute, memory, and interconnect
bandwidth but suffer from some key limitations. They lack
kernel-level accuracy, as both use simple linear models based
on peak FLOPS, leading to imprecise latency predictions.
Furthermore, they focus only on matrix multiplication kernels
and ignore some other kernels such as layer normalization and
softmax, which could have significant latency. They also fail

to model various widely used system-level optimizations such
as mixed continuous batching [12].

ASTRA-sim 2.0 [21] is another more generalized machine
learning system simulator. However, their work emphasizes
complexities critical to large-scale training, such as sophisti-
cated multi-dimensional network modeling for extensive inter-
node communication and disaggregated memory. ReaLLM’s
focus is specifically in the LLM inference domain and
challenges with LLM inference when deployed in different
application environments. This includes a dedicated focus
on the dynamic nature of inference requests and inference-
specific SLOs, requiring advanced batching and scheduling
strategies to handle varying input characteristics efficiently
while providing a comprehensive framework to model these
scenarios. We believe this enables a more efficient hardware
and software co-design environment for exploring potential
next-generation Al accelerators.

III. REALLM SIMULATION FRAMEWORK

A major challenge in applying accurate kernel simulation to
end-to-end LLM system modeling is slow simulation speed.
For example, simulating a single inference pass with LLM-
Compass [20] can take several minutes, mainly due to the
long simulation time of Matmul kernels. Accurate Matmul
simulation requires exploring a vast mapping and scheduling
space, including L2 and L1 tiling, loop ordering, and systolic
array dataflows, etc. The number of possible mapping strate-
gies for a single Matmul operation can reach into millions.
While LLMCompass [20] applies heuristics to reduce this
search space, simulating each Matmul still takes a minute.

This speed is impractical for system-level simulation, as it
dramatically increases the number of required kernel evalua-
tions. Table II highlights the order of magnitude of Matmul
kernels that need to be simulated. An LLM contains approx-
imately 10 distinct Matmul kernels. Considering variations in
input request rates, batching strategies, and different paral-
lelism configurations (data, tensor, pipeline, context, expert,
etc.), the number of Matmul kernels grows exponentially.
Furthermore, with dynamic prompt lengths during prefill and
context lengths during decode, modern LLMs with context
lengths up to 128K introduce over 10 variations. As a
result, the total number of Matmul simulations required for
a complete system evaluation can reach 10°, which is compu-
tationally prohibitive given that each simulation takes minutes.

To overcome this challenge, ReaLLM adopts a three-phase
simulation framework: kernel library construction, kernel sim-
ulation and system simulation, as shown in Figure 2. The
kernel library construction phase, shown on the left side
of Figure 2, takes as input an LLM model and hardware
description. It systematically extracts all unique kernels based
on batch sizes, parallelism configurations, and context lengths,

TABLE 1I

ORDER OF MAGNITUDE OF MATMUL KERNEL VARIATIONS GIVEN
DIFFERENT INPUT FACTORS.

In a LLM | Batch Sizes | Parallelisms | Context Lengths | Total
10 10 102 10° 10°

(s
stem Simulatio
Model (ONNX) R
Description Trace
; roion)
(. i " | 1=z~ = -~ |Algorithms
Hypothesis Kernel Generation : Traces_| 9
el
Model Parallelism Num of
Param l Generator Nodes Fte o SCheD(igtl)g:
ec.) J
IV.A Graph traversal and Queu,e Qe
Kernel extraction Prefill Decode
v / Pool Pool
: [s | o s]
Kernel Library
¥ Sim Kernel l-:EEI
Sec. 2 L
C V.B) Kernel Simulation Hardware Simulator
Kernel Simulator for] Annotated ||Inter-Node
Timing Annotation J \l Kernel Lib || I/O Sim)

Fig. 2. Overview of the ReaLLM framework.

storing them in a kernel library. These kernels are then passed
to the kernel simulation phase where each kernel is evaluated
using a kernel-level simulator, such as LLMCompass, and the
results are stored in a kernel performance table. To further
reduce simulation overhead, continuous variables such as
context length are interpolated between key simulation points
rather than simulating every possible value.

The system simulation phase, shown on the right side of
Figure 2, is driven by execution traces, which can be user-
provided or generated by ReaLLM to mimic real-world work-
load dynamics. The built-in scheduler simulates batching and
scheduling strategies such as continuous batching and mixed
continuous batching. It then generates execution traces, using
the kernel performance table to retrieve kernel latencies while
also simulating inter-node communication overhead. The final
output includes key system-level performance metrics such as
time-to-first-token (TTFT), time-between-tokens (TBT), and
end-to-end latency (E2E). Additionally, RealLLM identifies the
best performing chip-level kernel mappings and system-level
scheduling strategies.

IV. KERNEL LIBRARY CONSTRUCTION

The first phase of RealLLM is the kernel library construction,
where the framework identifies all unique kernels used in LLM
serving (hypothesized kernel generation) and simulates their
latencies for subsequent system-level end-to-end simulation
(kernel simulation).

A. Hypothesis Driven Kernel Generation

To generate all possible kernel sizes, users must provide the
target models and the number of devices in the system. Models
can include one or multiple LLMs in ONNX format [22], a
widely used graph-based representation for neural networks.
Using ONNX as an input format enhances ReaLLM’s com-
patibility and flexibility, supporting common operators such as
Matmul, Softmax, LayerNorm, and GELU, etc.

The tool parses the ONNX graph, counts the occurrences
of each kernel, and extracts their shapes. Kernel dimensions

TABLE III
MATMUL KERNEL SIZE FOR LLAMA-LIKE LLM (TOP) AND MULTI-LATENT
ATTENTION (BOTTOM). D, T, C ARE THE SIZES OF DATA, TENSOR, AND
CONTEXT PARALLELISM.

Matmul B1 B M K N Collective
q_proj bajtjch 1 lg” an dr nTh
- T [
kv_proj batch [4 in d 0, Mku
] D C m h T
qk batch Ty np Lin dy, lota SR(batChnhlmdh)
- D T ngw C 3 o DTC
batch Ty np Lin batchnplinlete
s-v D T e | lete dn SR(DIC)
o_proj bagch 1 lTC"" dy % dim AR(b“iﬂgpcn,dm)
d
mlp_gate b“gh 1 lg‘ dm 72{ L
mlp_up batch 1 lin difn dm
— fol T
batch 1; dyy batchl;,d
mlp_dn % 1 fczb Tﬂ dm AR(Diéjnm)
batch nh lin batchnplindy,
9kl ol | @ dn de SR(——prg™™)
k2 batch | | T lin d 1 SRParehn, linde
9k D T e ctw — ol
batch np Lin R batchnplindy
gkpe | 5 |1 T |4 leta SRC—ppg™ ™)
batch TR P) Satchny linlors
s_v_1 a5 1 T ctx c SR(—F4F)
batch | n T batchng,l;nde
s_v_2 2aren | Zh Yol de dp, SR(Z==AAm=2)

*AR:AllReduge, SR:TSendRecv

depend on input factors such as batch size, input length (for
prefill), and context length (for decode). ReaLLM includes a
built-in shape inference engine that propagates these dimen-
sions across different input configurations.

Since LLM systems often span multiple nodes, large kernels
must be partitioned and distributed. The partitioned kernel
size depends on the chosen parallelism strategy, which is an
active area of research. RealLLM supports commonly adopted
parallelism strategies in state-of-the-art LLM systems, includ-
ing data parallelism, tensor parallelism, pipeline parallelism,
context parallelism, and expert parallelism. Given the model
hyperparameters and system constraints, the parallelism gen-
erator generates all valid parallelism configurations. It ensures
that the total number of nodes matches the product of all
parallelism dimensions and verifies divisibility constraints for
tensor, pipeline, and expert parallelism based on hyperparam-
eters such as the number of heads, layers, and routed experts.

Given batch size, input/context lengths, and parallelism con-
figurations, RealLLM calculates and hypothesizes all possible
sizes for each kernel. The top part of Table III lists Matmul
kernels for a Llama-like [23] LLM, which uses group-query
attention and gated linear units. Each Matmul operation is rep-
resented as (By, By, M, K) x (Bg, K,N) = (B, Bs, K, N).
lin denotes the input sequence length, which is the prompt
length for prefill and 1 for decode. [.;, denotes the context
length, which is the prompt length for prefill and past context
length for decode. All divisions in Table III use ceiling division
to ensure the identification of the system’s critical path.
The table also lists collective operations required for certain
parallelism strategies. Context parallelism requires SendRecv
operations for g_k and s_v since each node must receive
the complete query and scores. Tensor parallelism requires
AllReduce operations for o_proj and mlp_dn to aggregate
partial results. The bottom section of Table III presents Matmul
kernels for multi-latent attention, which introduces additional
smaller kernels. Low-rank adaptation is applied to key and
value projections, compressing them into a lower-dimensional
space d..

By iterating over all input factors, ReaLLM constructs a

Chip:
tech_node: ‘7nm’
global_sram:
cap: 50
bandwidth: 1.0
compute:
num_cores: 128
core_num_lanes: 4
core_buffer: 256 PHY
sa_size: [32, 16]
dataflow: ‘os’
io:
bandwidth: 300
latency: 8.92
hbm_channels: 16

Core

@E@

Local
Buffer

Global SRAM
Chip

Package:
num_chips: 1
hbm:
stack_channel: 8
stack_cap: 8
stack_bandwidth: 614 . -

#*
I

uoonIS

Jssodieyu] NEH

Y
Q
Q
r
Q
«Q
@

Server:
num_packages: 4
io:

bandwidth: 100

latency: 10
allreduce_algo: €2d_ring’ 7

Fig. 3. Abstract hardware description example. ReaLLM supports flexible
chip, package and server designs.

o [[isoH]|

Server

complete kernel library for further simulation. Pipeline and
expert parallelism do not change kernel sizes but affect kernel
execution times, which is accounted for in system simulation.

B. Kernel Latency Simulation

Once the kernel library is generated, the second step is
latency simulation on the target hardware. The RealLLM
kernel simulator builds upon LLMCompass [20], an open-
source hardware evaluation framework for LLMs. Several
enhancements have been made to improve its suitability for
modern LLM system simulation. ReaLLM extends support
for additional attention mechanisms, including multi-query
attention and multi-latent attention. Additional operators such
as SiLU activation and element-wise multiplication for gated
linear units have been added to improve compatibility with a
wider range of LLM architectures. Furthermore, to accelerate
Matmul simulation, multiprocessing is employed to evaluate
multiple mappings in parallel.

Abstract Hardware Description. Figure 3 illustrates an
example of RealLLM’s abstract hardware description in YAML
format, following a structure similar to LLMCompass. A sys-
tem consists of multiple devices connected through a device-
to-device interconnect (e.g., NVLink, TPU Link). Each device
contains multiple cores, a shared global buffer (L2), and oft-
chip memory. Each core has a local shared memory (L1)
and compute units including vector units, systolic arrays, and
registers (LO). This flexible template supports a wide range of
ML accelerators, including GPUs (NVIDIA, AMD) and TPUs.

Large Simulation Space. In such hardware architectures,
the two matrices involved in Matmul operations must traverse
multiple memory hierarchies, from main memory to L2, L1,
and finally LO registers. Optimizing tiling sizes at each level
is crucial to maximizing data reuse and minimizing memory
access overhead. Additionally, factors such as loop ordering
at L2 and LI, potential L2 double buffering, and systolic

array dataflow further expand the search space for optimal
mappings. Due to these complexities, the number of possible
mappings for a single Matmul operation can reach millions,
significantly slowing down simulation. To improve efficiency,
it is critical to reduce the number of Matmul kernels that
require full simulation. As shown in Table II, the largest
source of variation comes from context lengths [;, and ..,
introducing approximately 10° possibilities, which continue
to grow as the maximum context length increases. To mit-
igate the impact of long prompts, most LLM systems adopt
mixed continuous batching, which splits longer sequences into
smaller chunks, typically ranging from 128 to 2048 tokens. In
the decode phase, I;,, is always 1, while [.;, represents the
past context length. Consequently, we focus our optimization
efforts on Matmul kernels g_k and s_v in the prefill stage,
where changes in [, are the primary source of variation.

Matmul Kernel Interpolation. We observe that when only
one dimension of a Matmul kernel changes, the relationship
between latency and input size follows a predictable trend.
Instead of simulating every possible configuration, we sample
a subset of key points and interpolate intermediate values.

Figure 4 (left column) illustrates Matmul latencies as we
sweep the single dimension N or K, with red dots marking
sampled simulation points. The sampling points are logarith-
mically spaced to capture variations efficiently. As expected,
the latency growth rate gradually increases before stabilizing
into a linear trend. To determine the best interpolation strategy,
we compared linear interpolation and third-degree polynomial
interpolation. Figure 4 (right column) shows the relative er-
ror between interpolated and simulated values for randomly
selected points. The linear interpolation method achieved an
average error of 0.90% and 3.63%, significantly lower than
the error of polynomial interpolation. Based on these results,
we adopt linear interpolation for [, selecting key values
in logarithmic steps and interpolating all intermediate points.
This significantly reduces simulation overhead while maintain-
ing high accuracy in kernel latency estimation, improving the
efficiency of kernel library construction.

V. TRACE DRIVEN END-TO-END SYSTEM SIMULATION
A. Trace Generation

The right side of Figure 2 provides an overview of our
trace-driven LLM system simulator. If a user does not provide
a trace, ReaLLM includes a built-in trace generator that can
synthesize traces for real workloads or based on predefined
input-to-output ratios. To generate realistic traces that reflect
the dynamics of coding and conversational tasks, two of the
most common LLM applications, we utilize production traces
from the Azure LLM Inference Dataset 2023 [24]. Figure 5
shows the distribution of context lengths (sum of input and
output tokens) and input-to-output token ratios for coding and
conversational tasks. Notably, conversation tasks tend to have
a much lower input-to-output ratio compared to coding tasks.
This indicates that conversation workloads typically involve
shorter prompts but generate longer responses, resulting in a
higher proportion of decode tasks.

MatMul Latency Interpolation

Prediction Error Comparison

1075 4 » T
e Simulated Data o e Linear (Avg Error: 0.80%)
——~- Linear Interp Py L 0.15 Polynomial (Avg Error: 7.07%)

w Polynomial Inter .’ e
1& 10-6 4 y! P | 5
9 b 2 0.10
g 4 2
3 g g o005

1077 § 2l e« B .

cesee " 0.00 4% * cet S
T T T T T . T T T T
10t 102 10° 10* 10° 10? 10° 104 10°
N (M=8, K=128) N (M=8, K=128)
ry r
e Simulated Data o’l e Linear (Avg Error: 3.76%)

1054 777 Linear Interp {," = 0.4 Polynomial (Avg Error: 14.29%)
0 Polynomial Interp | # g
z ’ 503
1% 3
c yd >
- Q

,w/ < 0.1
L) . . .
107 § gome®™ 0.04°° .

T T - 'v
10° 10* 10°

K (M=128, N=512)

™ T T ™ T
102 10® 10 10° 10?

K (M=128, N=512)

™
10!

Fig. 4. Matmul latency interpolation comparison. ReaLLM adopts linear
interpolation, which achieves lower error rates than polynomial interpolation.

Code (median: 1493) Code (median: 91.8)
. 0.15 1 Conv (median: 1412) 0.10 1 Conv (median: 3.6)
2 0.10
a 0.05
0.05 A
0.00 -r T T T 0.00 T T T T
10! 102 103 104 107t 100 10! 102 103

Context Length(Tokens) Input:Output Ratio

Fig. 5. Context length and input-output ratio of two traces taken from Azure
LLM inference services [24]. Conversation-based tasks have a much lower
input-output ratio.

B. Task Scheduler

To support various dynamic batching and scheduling strate-
gies, we developed a task scheduler that processes traces and
generates simulation tasks for the hardware model.

Initially, all incoming requests are placed in the prefill queue
with annotated arrival times. The scheduler continuously mon-
itors requests in both the prefill and decode queues, generating
execution tasks for the hardware simulator. Depending on the
selected batching and scheduling algorithms, the scheduler
may group prefill and decode tasks into a single execution
batch to optimize resource utilization. For example, in a
prefill-prioritized continuous batching strategy, the scheduler
prioritizes prefill tasks, ensuring they are fully processed
before scheduling any decode tasks. In contrast, when chunked
mixed continuous batching is adopted [13], long prefill tasks
are split into smaller chunks and batched with decode tasks,
improving system utilization and overall throughput.

In the simulation, each execution task is represented by
an integer prefill length and an array of integers denoting
the context lengths of all decode tasks. Once the hardware
simulation completes, all associated requests are updated, and
any unfinished requests are placed back into the decode queue
for the next iteration.

TABLE IV
SUPPORTED ALLREDUCE ALGORITHMS.

Time
2(p— Da + QI’p;INﬁ
p—1
4(yp—Da+ 2¥°—=Np
4log(p)a + 2N B + 4+/2log(p)aNB
Two Tree BC [27] 2log(p)a + NS + 24/2log(p)aNp

Hierarchical AR [28] Local AR + Global AR + Local BC
FAR=AlIreduce, BC=Broadcast

Algorithms

Ring AR

2-D Ring AR [26]
Two Tree AR [27]

C. Hardware Simulator

The hardware simulator processes these workloads by
traversing the execution graph, retrieving kernel sizes, and
querying the precomputed kernel library for latency values.
If a kernel size is not found in the library, linear interpo-
lation is applied, as discussed in the previous section. This
approach ensures rapid execution, as no real-time simulation
is performed.

A standard communication model is used to estimate I/O
latency. The time required to transmit an N-byte message
between any two nodes is modeled as a+ N 3, where « repre-
sents the per-message latency (independent of message size),
and 3 denotes the per-byte transmission time. Table IV lists the
communication algorithms supported in RealLLM, including
ring-based, tree-based, and hierarchical allreduce algorithms.
These methods have been widely adopted in large-scale TPU
and GPU deep learning systems [25]. The table includes the
time required to perform communication operation on N-byte
tensors among p nodes.

D. Results Output

The system simulation records the arrival time and gener-
ation time of each output token for every request. From this
data, ReaLLLM measures Service Level Objectives (SLOs) for
different Service Level Agreement (SLA) thresholds, includ-
ing P50, P90, and P99 latencies, providing a comprehensive
evaluation of system performance. ReaLLM measures three
main metrics: time to first token (TTFT), time between tokens
(TBT), and end-to-end (E2E) latency. In addition to SLO
metrics, ReaLLM outputs the best performing chip-level kernel
mappings and system-level scheduling strategies, including
parallelism configurations and dynamic batching policies that
achieve the best SLO performance.

V1. EVALUATION
A. Validation Against Real Hardware

To validate RealLLM’s accuracy, we compare the predicted
kernel latencies and end-to-end request latencies against real
measurements on NVIDIA A100 and H100 systems.

Kernel-Level Validation. To assess the accuracy of Re-
aLLM at the kernel level, we compare predicted versus
measured latencies for key LLM inference operations on a
NVIDIA A100 GPU. Figure 6 shows the latency of Matmul
operations across different input sizes, demonstrating that
RealLLM’s predictions align closely with real execution times.
This high fidelity ensures that kernel-level estimations in

MatMul: M=131072, K=512 MatMul: N=16384, K=7168

—8— Real Latency
Simulated Latency

—&— Real Latency
Simulated Latency

10-3 4

Latency (s)
Latency (s)

2x10° 3x108x 10° 10°
N M

6x 10?2 163

Fig. 6. Validation of kernel latency predictions on A100. Each subfigure
compares real and simulated latencies for Matmul at different input sizes.

Trace-Drive LLM System Comparison

Il 4 x H100
801 Simulator

60

Traces

20 40 60 80 100
Time

Fig. 7. Comparison of simulated and real end-to-end request latencies for
LLaMA-70B inference on a four-H100 system.

RealLLM provide precise performance insights, making it a
reliable tool for evaluating large-scale LLM inference systems.

End-to-End Latency Validation. Beyond kernel-level vali-
dation, we assess end-to-end inference accuracy by comparing
RealLLM’s simulated latencies for LLaMA-70B running on
four H100 GPUs against real-world traces (Figure 7). The
results indicate that ReaLLM predicts the end-to-end time
(E2E) with an average error of 9.1% across 90 test traces. No-
tably, most of the early differences arise from transient system
warm-up effects and variations in initial scheduling, while later
traces have improved accuracy. This strong alignment with real
hardware confirms the robustness and reliability of ReaLLM’s
system-level simulation. Furthermore, ReaLLM’s trace-driven
scheduling and dynamic batching models effectively adapt to
fluctuating workloads, accurately reflecting real-world deploy-
ment scenarios. By incorporating execution-aware scheduling
strategies, ReaLLM ensures that its predictions remain highly
relevant for large-scale LLM inference studies.

B. Bottleneck Analysis and Performance Scaling

To identify performance bottlenecks and potential optimiza-
tions, we analyze two models: Llama3-70B [23] on an 8-
node system and DeepSeek v3 [15] on a 32-node system.
The baseline system models H100 style GPUs, while alter-
native configurations explore increased DRAM bandwidth,

TABLE V
SLOS FOR EVALUATION. E2E 1S SET TO BE TTFT PLUS THE TIME TO
GENERATE A NUMBER OF TOKENS WHILE MEETING TBT.

Workload TTFT TBT E2E
Code 400 ms | 50 ms | 12.9 s (250 tokens generated)
Conversation | 200 ms | 50 ms 25.2 s (500 tokens generate)

Llama3-70B on 8 Nodes DeepSeek v3 on 32 Nodes

~N
o
N
o

—e— Baseline —e— Baseline
154 —=— 2xHBM BW 154 —=— 2xHBMBW
I-INJ —4— 2x SA Height # —4— 2x SA Height
w —+— 2x Cores w —4+— 2x Cores
o 10T 1o 10T
n v}
o a
0.5 1 0.5
0.0 -# T T T T T T 0.0 = T T T T T
3 4 5 6 7 8 9 1 2 3 4 5 6
Request/Sec Request/Sec
2.0 2.0
—e— Baseline —e— Baseline
15 —=— 2x HBM BW 15 —=— 2xHBM BW
LlNJ —&— 2x SA Height LINJ —&— 2x SA Height
w —*— 2x Cores w —+— 2x Cores
o 10 1o 107
= =
a a
0.57 0.5
0.0 0.0

3 4 s 6 7 8 9 1 2 3 4 5 6
Request/Sec Request/Sec

Fig. 8. Latency metrics across input loads of Llama3-70B on 8 nodes (left)
and DeepSeek v3 on 32 nodes (right) systems with different architectures.

greater systolic array (tensor core) height, and additional
compute cores (SMs). All configurations maintain consistent
system-level settings, including node count, interconnect links,
topology, and the dynamic batching strategy. We specifically
leverage chunked mixed continuous batching with a prefill
block size of 2048, which improves operational intensity for
decode tasks. Llama3 employs tensor parallelism, whereas
DeepSeek v3 uses expert parallelism. As input loads to an
LLM system fluctuate over time, a crucial metric is whether
the system can maintain SLOs under high request rates. To
explore this, our trace generator produced traces for both
coding and conversation applications at various input request
rates, sampling from Figure 5.

Figure 8 presents P50 and P90 end-to-end latencies across
different input loads for LLaMA3-70B (left) and DeepSeek v3
(right) inference. The x-axis represents input load, while the y-
axis shows E2E latency normalized to the SLO thresholds in
Table V. Results indicate that increasing tensor core height
or core count significantly improves performance, whereas
boosting HBM bandwidth only provides limited benefits. This
suggests that modern LLM inference systems are increasingly
compute-bound rather than memory-bandwidth-bound, largely
due to the effectiveness of advanced batching techniques.

Additionally, we evaluate Llama3-70B on conversation
workload in Figure 9. We observe that the conversation work-
load experiences an earlier latency increase as input request
rates grow. This is because conversation-based tasks typically
require generating more tokens per request, causing requests to
remain in the system for longer durations. Consequently, con-
versation applications may require greater hardware resources
compared to coding applications to maintain similar SLOs.

C. Impact of Mapping Strategies

RealLLM enables comprehensive mapping exploration, in-

Llama3-70B on Conversation Workload
3

o

I w
e :
24
- 3 3
I X
T 24 ©
© 2 g1
£ 1 S
2 e 2
0 T T T T T 0 T T T T T
1 2 3 4 5 1 2 3 4 5
Request/Sec Request/Sec

Fig. 9. TTFT and E2E across input loads of Llama3-70B for conversation
applications on a 32-node system with different architectures.

M=4096, K=64, N=128 M=128, K=4096, N=64

Best Mapping

Best Mapping

L)
105 { MWeeww e v o .. 1044 .
RIFPPwwrw e oo

3 [i A LA AR
B
it
ST ol
Mappings Mappings

Fig. 10. Matmul kernel cycles on different mapping strategies.

cluding fine-grained chip-level kernel mapping and system-
level batching strategies and parallelism configurations, all of
which are crucial for optimizing large-scale LLM inference.
Figure 10 presents the execution cycles for Matmul kernels
across different mapping strategies, including loop blocking,
loop ordering, and double buffering. Given that each Mat-
mul operation can have millions of possible mappings, the
selection of execution order in critical. The figure illustrates
that choosing the best loop ordering strategy can reduce
latency by an order of magnitude, emphasizing the significance
of micro-architectural-level kernel simulation in performance
optimization.

D. Scalability and Efficiency Gains

We evaluate ReaLLM’s impact on simulation efficiency by
comparing its performance against a baseline approach that
relies exclusively on a kernel simulator like LLMCompass.
As shown in Figure 11, simulating traces with hundreds of
requests and context lengths extending to thousands of tokens
requires the baseline to perform approximately 10* Matmul
simulations, resulting in an estimated runtime of 4,570 min-
utes. In contrast, RealLLM drastically reduces this overhead by
identifying 1,600 key kernels and precomputing their latencies
in 729.6 minutes. Once the kernel library is constructed, trace-
driven simulation takes only 27.9 minutes, leading to a 164 x
speedup in trace execution. Since kernel construction and pre-
computation is a one-time process when performing workload
SLO explorations, this optimization significantly accelerates
exploration while maintaining high fidelity in performance
modeling.

By leveraging precomputed kernel latencies and an effi-
cient trace-driven simulation methodology, RealLLM trans-
forms large-scale LLM system evaluation from an intractable
computational problem into a practical and scalable process,
enabling rapid architectural exploration and optimization.

Simulation Time Speedup

104<
4560.3 min (est.)

-

o
W
L

163.7x Speedup

Time (minutes)

-

o
9
L

10t

T T
Baseline Kernel Build Time Trace Simulation Time

Fig. 11. RealLLM achieves a 6 X speedup in simulations with a 164 x speedup
in workload SLO exploration simulations compared to the baseline kernel
simulator by leveraging precomputed kernel reuse.

VII. CONCLUSION

As LLMs continue to scale, achieving high-performance
and cost-efficient inference remains a critical challenge. Tra-
ditional accelerator studies often neglect essential system-
level execution dynamics, resulting in a gap between the-
oretical hardware capabilities and real-world inference effi-
ciency. To address this, we introduced RealLLLM, a novel trace-
driven simulation framework integrating detailed chip-level
kernel modeling with comprehensive system-level evaluation.
By leveraging precomputed kernel profiling and trace-driven
scheduling, ReaLLM achieves a 6x speed up in simulation
time with a further 164x reduction in workload SLO ex-
ploration time, facilitating rapid and accurate exploration of
the extensive LLM hardware-software co-design space. Our
results demonstrate that ReaLLM accurately captures real-
world system behaviors, enabling architects to pinpoint system
bottlenecks, optimize parallelism and batching strategies, and
make informed hardware design decisions. As a practical
tool for researchers, ReaLLM empowers the design of next-
generation ASIC architectures specifically tailored for large-
scale LLM inference.

ACKNOWLEDGMENTS

This work was supported in part by ACE and CHIMES, two
of the seven centers in JUMP 2.0, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA, and by
NSF Award 2118628. A special thanks to Shuaiwen Leon
Song for his helpful discussions and insights.

REFERENCES

[1]1 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention Is All You Need,”
arXiv:1706.03762 [cs], 2017.

[2] OpenAl, “Introducing ChatGPT.” https://openai.com/blog/chatgpt, 2022.
Accessed May 2025.

[3] Google DeepMind, “Gemini.” https://deepmind.google/technologies/
gemini/, 2025. Accessed May 2025.

[4] GitHub, “GitHub Copilot Your Al Pair Programmer.” https://github.com/
features/copilot, 2023.

[5] OpenAl, “Sora.” https://openai.com/sora/, 2025. Accessed May 2025.

[6] Suno, “Suno — AI Music.” https://suno.com/home/, 2025. Accessed
May 2025.

[7] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling Laws for Neural
Language Models,” arXiv:2001.08361 [cs, stat], 2020.

[8] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-LM: Training Multi-Billion Parameter Language Mod-
els Using Model Parallelism,” arXiv:1909.08053 [cs], 2020.

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]
[27]

[28]

Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu, and Z. Chen, “GPipe: Efficient Training of
Giant Neural Networks using Pipeline Parallelism,” arXiv:1811.06965
[cs], 2019.

S. Li, F. Xue, C. Baranwal, Y. Li, and Y. You, “Sequence Parallelism:
Long Sequence Training from System Perspective,” in Proceedings of
the Annual Meeting of the Association for Computational Linguistics
(ACL), 2023.

W. Fedus, B. Zoph, and N. Shazeer, “Switch Transformers: Scaling
to Trillion Parameter Models with Simple and Efficient Sparsity,”
arXiv:2101.03961 [cs], 2021.

C. Holmes, M. Tanaka, M. Wyatt, A. A. Awan, J. Rasley, S. Rajbhandari,
R. Y. Aminabadi, H. Qin, A. Bakhtiari, L. Kurilenko, and Y. He,
“DeepSpeed-FastGen: High-throughput Text Generation for LLMs via
MII and DeepSpeed-Inference,” arXiv:2401.08671 [cs], 2024.

A. Agrawal, N. Kedia, A. Panwar, J. Mohan, N. Kwatra, B. S. Gulavani,
A. Tumanov, and R. Ramjee, “Taming Throughput-Latency Tradeoff
in LLM Inference with Sarathi-Serve,” in Proceedings of the USENIX
Conference on Operating Systems Design and Implementation, 2024.
T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language Models are Few-Shot Learn-
ers,” arXiv:2005.14165 [cs], 2020.

DeepSeek-Al, “DeepSeek-R1: Incentivizing Reasoning Capability in
LLMs via Reinforcement Learning,” arXiv:2501.12948 [cs], 2025.

D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary,
V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro,
A. Phanishayee, and M. Zaharia, “Efficient Large-Scale Language Model
Training on GPU Clusters Using Megatron-LM,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2021.

R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, A. Lev-
skaya, J. Heek, K. Xiao, S. Agrawal, and J. Dean, “Efficiently Scaling
Transformer Inference,” arXiv:2211.05102 [cs], 2022.

A. Bambhaniya, R. Raj, G. Jeong, S. Kundu, S. Srinivasan, M. Elavazha-
gan, M. Kumar, and T. Krishna, “Demystifying Platform Requirements
for Diverse LLM Inference Use Cases,” arXiv:2406.01698 [cs], 2024.
J. Kundu, W. Guo, A. BanaGozar, U. De Alwis, S. Sengupta, P. Gupta,
and A. Mallik, “ Performance Modeling and Workload Analysis of Dis-
tributed Large Language Model Training and Inference ,” in Proceedings
of the IEEE International Symposium on Workload Characterization
(IISWC), 2024.

H. Zhang, A. Ning, R. B. Prabhakar, and D. Wentzlaff, “LLMCom-
pass: Enabling Efficient Hardware Design for Large Language Model
Inference,” in Proceedings of the ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA), 2024.

W. Won, T. Heo, S. Rashidi, S. Sridharan, S. Srinivasan, and T. Krishna,
“ASTRA-sim2.0: Modeling Hierarchical Networks and Disaggregated
Systems for Large-model Training at Scale,” in Proceedings of the
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2023.

J. Bai, F. Lu, K. Zhang, et al., “Onnx: Open neural network exchange.”
https://github.com/onnx/onnx, 2019.

LlamaTeam, “The Llama 3 Herd of Models,” arXiv:2407.21783 [cs],
2024.

Microsoft, “Azure LLM Inference Trace
https://github.com/Azure/ AzurePublicDataset/blob/master/
AzureLLMInferenceDataset2023.md, 2024.

S. Jeaugey, ‘“Massively Scale Your Deep Learning Train-
ing with NCCL 247 https://developer.nvidia.com/blog/
massively-scale-deep-learning-training-nccl-2-4, 2019.

C. Ying, S. Kumar, D. Chen, T. Wang, and Y. Cheng, “Image Classifi-
cation at Supercomputer Scale,” arXiv:1811.06992 [cs], 2018.

P. Sanders, J. Speck, and J. L. Triff, “Two-tree algorithms for full
bandwidth broadcast, reduction and scan,” Parallel Computing, 2009.
X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo,
Y. Yang, L. Yu, T. Chen, G. Hu, S. Shi, and X. Chu, “Highly
Scalable Deep Learning Training System with Mixed-Precision: Training
ImageNet in Four Minutes,” arXiv:1807.11205 [cs], 2018.

20237

