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Abstract

Shadow memory is a critical component of many dynamic

program analysis frameworks with applications ranging

from memory debugging to computer security. Most re-

cent work has focused on optimizing the execution time

of analyses that associate a single tag with each memory ad-

dress. However, an important new class of dynamic analyses

(poly-scopic analyses) requires multiple tags for each mem-

ory address. These new analyses place additional burdens on

memory shadowing infrastructures, especially with regards

to memory overhead. Existing shadow memory infrastruc-

tures are either unequipped to handle these additional bur-

dens or result in runtime and memory overheads that make

them impractical for all but small inputs.

In this paper we propose vector shadow memories (VSMs)

as an infrastructure to support poly-scopic analyses. Fur-

thermore we introduce Skadu, a VSM implementation that

employs several novel techniques to greatly reduce the run-

time and memory overhead associated with the two major

challenges of VSMs: tag validation and garbage collection.

Our results show that on two separate poly-scopic analy-

ses, memory footprint profiling and hierarchical critical path

analysis, Skadu significantly reduces the associated mem-

ory overhead: by 14.2× and 11.4×, respectively. In both

cases, Skadu makes poly-scopic analysis practical for ordi-

nary desktop and laptop machines.

Categories and Subject Descriptors D.2.5 [Software En-

gineering]: Testing and Debugging; E.1 [Data Structures]
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1. Introduction

Memory shadowing is a general technique that has been

used in a wide range of applications: from memory analy-

sis [4, 19] to computer security [5, 17, 23]. Memory shad-

owing allows metadata, referred to as a tag, to be associated

with each memory address in a program. These tags vary

in function across different dynamic program analyses. For

example, tools such as MemCheck [19] have a 1-bit tag for

each memory location to indicate whether that address has

been properly initialized. Memory shadowing is also widely

used in computer security tools to track untrusted data [5].

Introducing Poly-Scopic Analysis While traditional appli-

cations of memory shadowing have proven useful, they are

limited in their power to identify properties of individual

program regions. Their fundamental limitation is that they

are inherently mono-scopic in nature: they examine only one

region (i.e. scope) of a program at a time, usually the whole

program. While it is possible to gather information about

multiple subregions through multiple runs of the same pro-

gram, the process is tedious and inefficient, requiring a con-

trolled environment with reproducible I/O. Furthermore, this

multiple-run approach can result in prohibitively large log

files, often terabytes in size.

The increasing prevalence of many-core and heteroge-

neous systems points towards an increasing need to localize

information within specific regions of a program. In many

cases these regions are nested, and it is necessary to sepa-

rately analyze a nested region. For example, when paralleliz-

ing programs for a multi-core processor, we would like to

identify regions that could be efficiently parallelized. Like-

wise, when scheduling a heterogeneous system containing

coprocessors with private memory hierarchies, we would

like to identify those regions that can be offloaded to a co-

processor without overflowing memory. In these cases, we

need to replicate the analyses across many different scopes



of the same program, e.g. across every function boundary or

loop body during the program’s dynamic execution. We refer

to these type of analyses as poly-scopic analyses.

A simple example of poly-scopic analysis is the self-time

calculation in serial profilers. Self-time is the time spent in

each program region, exclusive of the time spent in nested

regions. In an implementation that does not employ sam-

pling, the analysis would record the entry and exit time of

each region, and upon exit of a region, the region’s total-

time would be computed by subtracting the two, and the re-

gion’s self-time would be computed by subtracting child re-

gion total-times from the region’s total-time. This self-time

for one dynamic invocation of the region would be accumu-

lated across all invocations of the region.

Vector Shadow Memory Although self-time is poly-scopic

because it requires that we differentiate entry and exit times

across each scope, it is less complex than other poly-scopic

analyses because it does not require the use of shadow mem-

ory. Poly-scopic analyses that require metadata to be associ-

ated with memory require multiple copies of such metadata

to be associated with each memory location, one for each

scope. We refer to such a shadow as vector shadow memory

(VSM) because it associates a vector of metadata with each

memory location. One could imagine non-poly-scopic anal-

yses that also require vector shadow memory. Although the

focus of this paper is poly-scopic VSM implementations, it’s

quite likely that the techniques in this paper could be adapted

to other VSM use cases. Throughout the rest of this paper,

we will focus on poly-scopic analyses that require VSM.

Examples of Poly-scopic Analyses An early example of

a poly-scopic analysis that requires VSM is the hierarchi-

cal critical path analysis (HCPA) introduced by Kremlin [6,

7] and Kismet [8]. HCPA concurrently analyzes multiple

nested program regions (e.g. functions and loops) to calcu-

late self-parallelism, the amount of parallelism in a region

independent of its subregions. It does this by first comput-

ing both the time required to execute the instructions in the

region (i.e. work) and the longest path through the depen-

dencies between those instructions (i.e. critical path). HCPA

then computes the self-parallelism of each dynamic region

by using an equation that incorporates a region’s critical

path, its work, and the critical path of its children.

Kremlin and Kismet have demonstrated the importance

of poly-scopic analysis: HCPA has proven highly effective

at reducing the number of regions a programmer needs to

parallelize [6] and predicting the parallel performance of

sequential code [8].

Memory footprint analysis is another example of poly-

scopic analysis that requires VSM. This analysis tracks the

memory addresses touched by every region in a program to

find the total memory used by each region. The informa-

tion gained from memory footprint analysis could be used

by a heterogeneous system to determine pairings between

Suite Bench Native w/ Shadow Mem.

mark Memory Memory Exp.

(GB) (GB) Factor

Spec bzip2 0.189 28.2 149×
mcf 0.152 16.0 105×
gzip 0.200 21.7 109×

NPB mg 0.449 13.0 29×
cg 0.427 14.4 34×
is 0.384 13.9 36×
ft 1.683 66.0 39×

Geomean 0.355 20.8 59×

Table 1. Memory Overheads of Hierarchical Critical

Path Analysis (HCPA) Before Applying the Techniques

in this Paper. The memory overhead of shadow mem-

ory greatly diminishes the practicality of poly-scopic anal-

yses such as HCPA [6]. For an assortment of memory-

intensive Spec 2000 and NAS Parallel Bench (NPB) inputs,

the shadow memory analysis required a geometric mean of

20.8 GB of memory (an expansion of 59× over the pro-

grams’ native memory requirements). This paper introduces

Skadu, which reduces this memory expansion to a geometric

mean of 5.2×.

program regions and processing elements based on their re-

spective memory requirements and capabilities.

Memory Overhead of Poly-scopic Analysis Whereas re-

cent work on traditional memory shadowing techniques has

focused on reducing runtime overhead [14], a larger con-

cern with poly-scopic analysis is memory overhead. This in-

creased memory overhead is a consequence of the require-

ment that each active region have its own set of shadow

memory metadata (i.e. tags). This requirement leads to mul-

tiple tags for each memory address and a corresponding mul-

tiplicative increase in the memory usage over that required

natively.

High memory overhead has historically confined the use

of poly-scopic analyses to supercomputers or other large-

memory systems and has likely hindered the development

of new poly-scopic analyses. The scale of this problem is

demonstrated in Table 1, which shows the memory over-

head of Kremlin and Kismet’s original implementation of

HCPA: the required memory for poly-scopic analysis was

between 29× and 149× the memory required natively. Poly-

scopic analysis clearly requires new techniques to reduce

these overheads if it is to be used on typical developer ma-

chines and see widespread use. In this paper we will demon-

strate techniques that reduce the HCPA memory expansion

factor’s geomean from 59× to 5.2×.

Introducing Skadu In this paper we present Skadu, an ef-

ficient vector shadow memory (VSM) implementation. Un-

like conventional shadow memory that maps a memory ad-



dress to a tag, VSM maps a memory address to a tag vec-

tor, providing efficient read and write operations for poly-

scopic analyses without managing a separate shadow mem-

ory space for each dynamic scope of a program. Because

multiple tags for a shadow memory address tend to be up-

dated at the same time, storing them contiguously as a vec-

tor optimizes for locality, reduces translation overheads, and

allows SIMD instructions to be used.

This paper contains the following major contributions.

• We define poly-scopic analysis and introduce the concept

of vector shadow memory (VSM) to enable this class of

analyses.

• We introduce a novel dual representation that allows for

efficient management of VSM storage. The first repre-

sentation, VCache, seeks to maximize the speed at which

VSM updates are performed and serves as a cache for the

second representation. The second representation, VStor-

age, optimizes for storage efficiency and allows space-

saving techniques including garbage collection and com-

pression to be used for less frequently accessed data. This

dual representation allows us to have the best of both

worlds–fast access and efficient storage–and greatly im-

proves memory locality.

• We introduce a set of techniques that optimizes mem-

ory management as VSM logically grows and shrinks.

For instance, rather than actively allocating and deallo-

cating vectors when entering and leaving scopes, the sys-

tem leaves the storage in place but relies upon tag vali-

dation to detect when existing data stored in the vector

is no longer valid. We evaluate two techniques to reduce

the overhead of VSM tag validation: Slim Tag Validation

(SlimTV) and Bulk Tag Validation (BulkTV). SlimTV

creates a total ordering of all dynamic regions in the pro-

gram, and uses this ordering to reduce the memory over-

head of tag validation to a single value for each memory

address’s shadow vector. BulkTV further reduces tag val-

idation memory overhead by simultaneously validating

entire pages of addresses. Together, SlimTV and BulkTV

make the memory overhead of tag validation negligible.

• Skadu introduces an efficient garbage collection mecha-

nism for poly-scopic analyses with large vectors.

• We demonstrate Skadu’s effectiveness on two distinct

poly-scopic analyses: memory footprint profiling and

HCPA. The result is a reduction in memory overhead

by 14.2× for memory footprint profiling and by 11.4×
for HCPA when compared to baseline implementations.

Throughout the rest of this paper, we will expand upon

each of these contributions.

2. Vector Shadow Memory (VSM)

In this section we will examine the application of Vector

Shadow Memory (VSM) to poly-scopic analyses. We start

int main() {

  foo();

  bar();

  ...

}

void foo() {

  // no subregions

}

void bar() {

  for(i=0..10) { x++; }

  foo();

}

(a) Pseudo-code example.
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(b) Matching region tree and shadow memories.

Figure 1. Region Hierarchy Overview. The pseudo code

in (a) results in the region tree shown in (b). Poly-scopic

analyses require separate shadow memories for each scope,

as shown by the shaded regions in (b).

by introducing traditional shadow memory organization be-

fore describing the region-based poly-scopic dynamic analy-

sis employed in the paper. Finally, we overview the baseline

vector shadow memory implementation that our techniques

improve upon.

Traditional Memory Shadowing Technique In traditional

shadow memory infrastructures, each memory address has

an associated shadow memory address. Each shadow ad-

dress may contain some metadata about the associated mem-

ory address (a tag). Many shadow memory infrastructures

use a basic two-level table for accessing tags [12, 15, 19], an

organization similar to those used in virtual memory page

tables. The size of the tag can range from tiny to large: it is

common to see one bit tags in taint tracking infrastructures

while applications such as hierarchical critical path analysis

[6] require vectors of 64-bit tags.

Poly-Scopic Analysis Traditional memory shadowing re-

quires tracking only a single scope, usually the whole pro-

gram (i.e. the main function). The poly-scopic analyses we

consider in this paper require separate dynamic sub-analyses

to be simultaneously applied to multiple scopes in the pro-

gram.

Poly-scopic analyses view an execution of a program as a

hierarchical region tree. We define a region to be any single-

entry piece of code but we will focus on two particular types

of regions: functions and loops. During the execution of a

program, the regions of a program form a natural hierarchy.

Figure 1 demonstrates this hierarchy (shown in the form of
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Figure 2. Vector Shadow Memory. VSM eliminates the

need for creating a new shadow memory space for every

dynamic region by sharing storage across all the dynamic

regions in the same level. In addition to tag vectors, version

vectors are stored to provide tag validation operation in

baseline implementation.

a region tree) for an example piece of code. Each node in the

region tree is a dynamic region while an edge from A to B

indicates that B is a child of A. When a program execution

enters a region but has not exited, we say the region is active.

Due to the nature of hierarchical region tree, multiple active

regions with different scopes can exist at a specific moment

in a program’s execution.

One way to handle analyzing multiple independent re-

gions could be to include a copy of the shadow memory

for each dynamic region, as shown in Figure 1(b). Unfor-

tunately, this naive approach incurs excessive runtime over-

head. First, it has to create, maintain, and destroy a large,

page table-like data structure for each dynamic region. Sec-

ond, for every memory operation, it has to traverse multiple

shadow memory data structures to retrieve tags for the given

address, even though those tags are associated with a single

address. These shortcomings led us to idea of vector shadow

memory.

Vector Shadow Memory (VSM) Vector shadow memory is

a type of shadow memory that has a vector of tags associated

with each address. For poly-scopic analyses, a key insight

that allows us to create a memory-efficient VSM implemen-

tation is that there is at most one active region in any given

level in the region tree. Skadu’s VSM takes advantage of this

hierarchical property to minimize the runtime overhead as-

sociated with multiple shadow address spaces. As shown in

Figure 2, every region in a given level of the tree is mapped

to the same tag storage, forming a tag vector with one entry

per level of the tree. Reusing the same storage across regions

means that no setup and cleanup overhead is incurred, much

like in a callstack.

Sharing storage, however, brings two major challenges.

First, a VSM must ensure that stale tags from previous in-

vocations of the static region are ignored using an operation

called tag validation. This is because a tag is valid only until

the program exits the region in which the tag was last up-

dated. Upon a tag vector access, VSM must check if each

tag element is still valid and reset to the default value if not.

However, naively implemented tag validation requires a sig-

VerTag [1..N] Ver [1..N]

Tag [1..N] Ver [1..N]

… …

Tag [1..N] Ver [1..N]

Tag [1..N]

Tag [1..N]

…

Tag [1..N]

Ver

…

Ver

Tag [1..N]

Tag [1..N]

…

Tag [1..N]

Ver

(a) baseline (b) SlimTV (c) BulkTV

Figure 3. Space Overhead of SlimTV and BulkTV. Com-

pared to the baseline where each tag requires version infor-

mation, SlimTV uses a version information for a whole tag

vector. BulkTV further reduces the space overhead by shar-

ing a single version number across a range of memory ad-

dresses. Each row corresponds to the shadow memory infor-

mation for a single address.

nificant amount of memory because every tag must also have

an associated id that tracks the region that last updated the

tag. Section 3 discusses how Skadu achieves tag validation

with negligible memory overhead.

Second, the tag vector length for a memory address varies

with the program’s execution. This variance can lead to a

large amount of memory allocated to storing tags for dy-

namic regions that are no longer alive. A VSM must em-

ploy some form of garbage collection to reclaim unneeded

storage that results from these effects. Section 4 discusses

Skadu’s efficient garbage collector for large-tag analyses.

3. Lightweight Tag Validation

Tag validation is an essential operation in a VSM. As de-

scribed in the previous section, VSM uses version informa-

tion to determine ownership of tags. Unfortunately, naive

tracking of version information is scalable neither in mem-

ory overhead nor in performance; it multiplies the native

space and time complexity by Θ(n), where n is the depth

of the deepest region that accesses a specific memory ad-

dress. This section introduces two techniques that enable

lightweight tag validation: Slim Tag Validation (SlimTV)

and Bulk Tag Validation (BulkTV).

Figure 3 compares the space overhead of these tech-

niques against a baseline implementation. Whereas the base-

line stores every active region’s version for tag validation,

SlimTV stores only a single version. BulkTV further reduces

the tag validation overhead by sharing a single version ID

across multiple addresses. Together, they make the space re-

quirements of tag validation almost negligible and signifi-

cantly lower the runtime overhead.

3.1 Baseline Implementation

We begin with a baseline implementation that is based on

the work by Garcia et al [6], and is shown in Figure 3a.

This baseline implementation features a simple procedure

to check tag validity that is based on a design property of

the shadow memory: sharing of poly-scopic memory is lim-

ited to regions within the same level of the region tree. The



Figure 4. A SlimTV Example. (a) SlimTV exploits the

ordering encoded in the version ID of dynamic regions in the

program. (b) Illustrates the tag validation process. Suppose

a memory location is accessed first in region 4 and later

in region 7. After the access in region 4, tag[1:3] will be

logged with the region’s version number, 4. When the same

address is accessed in region 7, the version vector [1, 5, 6, 7]

is compared against the stored version number, 4. From the

comparison, SlimTV detects that only region level 1 started

before the previous tags were written. SlimTV therefore

sets tag[2:3] to the value that they would be set to if that

memory location had never been accessed (i.e. scrubs them)

and updates the version field in the shadow memory.

baseline implementation utilizes this sharing property by as-

signing a unique ID to each region in a level. The unique IDs

of all active regions are stored in a version vector associated

with a tag vector and updated whenever that memory loca-

tion is updated. This stored version vector is then used for

tag validation on each read: if there is a mismatch between

the ID of the current active region in a level and the ID for

that level in the version vector, then the tag for that level is

invalid.

The baseline implementation suffers from the drawback

that it requires storing a version vector for every shadow

memory address. This storage requirement leads to a mul-

tiplicative space overhead of Θ(n) just for tag validation,

where n is the depth of the region. This approach also in-

curs a large number of memory loads and stores from read-

ing/writing version vectors, resulting in higher runtime over-

head.

3.2 Slim Tag Validation (SlimTV)

Skadu introduces a new tag validation technique known as

Slim Tag Validation (SlimTV). SlimTV improves upon the

baseline implementation by eliminating the need to store

a version vector with each tag vector; only a single value

needs to be stored. This technique not only reduces the

space overhead from Θ(n) to Θ(1) but also eliminates the

excessive loads/stores associated with accessing the stored

vector, greatly reducing the runtime overhead.

SlimTV relies on the key insight that unique IDs can be

used to create a total ordering of all dynamic regions in the

dynamic region tree. SlimTV assigns IDs to regions in the

order in which they begin. During the access of a tag vec-

tor only the ID of the most recently entered, active region is

stored, ensuring that is the stored ID is the largest current ID.

The stored ID is compared with the vector containing one

ID for each currently active region. Active regions with IDs

greater than the stored ID started after that region and are

therefore invalid. SlimTV reduces the problem of tag valida-

tion to finding the minimum region level with an invalid tag:

active regions at deeper levels must have started later and

therefore are also invalid.

Figure 4 provides an example of SlimTV’s tag validation.

In this example a memory address is written to in the region

with version 4. This single version number is then stored

along with the tags for each active region. This same address

is read later in the region with version 7, at which time the

active version vector is 〈1,5,6,7〉. Of the active regions only

the first (1) has an ID less than the stored version (4); starting

from region 5, all other regions are invalid, and must be

cleared – i.e. set to their initial value as if those addresses

had never been touched before. We refer to this process of

finding and clearing invalid values as scrubbing.

Theorem 1. Suppose Vcurr is the current version vector

while v and T are the version and tag vector stored in

shadow memory for an arbitrary memory address. T [i] is

valid if and only if Vcurr[i] ≤ v.

Proof. Assume for contradiction that Vcurr[i] > v but T [i]
is valid. Let Vold be the version vector when v and T were

stored. Because T [i] is valid, Vold[i] == Vcurr[i], and there-

fore Vold[i] > v. However, this is a contradiction because

v (the stored version ID) is by design the largest ID at the

time of access, meaning that it should be the largest value in

Vold.

3.3 Bulk Tag Validation

Skadu’s SlimTV technique reduces the memory overhead of

tag validation to a constant factor but this may still result in

significant memory overhead. For example, when shadowing

every byte of memory, the overhead incurred from an 8-byte

version identifier is 8X the original memory space. Skadu

therefore introduces an additional technique, Bulk Tag Val-

idation (BulkTV), shown in Figure 3c, that can reduce the

memory overhead to a negligible amount while additionally

reducing the runtime overhead.

BulkTV’s key idea is to amortize the tag validation’s

memory overhead across many addresses. BulkTV accom-

plishes this amortization by using only a single version num-

ber for a range of memory addresses (a page). Each page

of shadow memory data will include a number of tag vec-

tors, one for each address, but only a single version number.

When any of the tag vectors of any addresses needs to be up-

dated, the SlimTV scrubbing algorithm will be applied to all

of the addresses corresponding to that page, scrubbing stale

values, and ensuring that the new version number correctly



1 void scrubBulkTV(Addr addr, Vector<Version> verVector) {
2 // do common work for all the tag vectors in the page
3 Page page = getPage(addr);
4 Version version = page.version();
5

6 if (version == verVector.lastElement()) return;
7

8 int scrubStart = 1 + maxValidLevel(version, verVector);
9 page.setVersion(verVector.lastElement());

10

11 // foreach mem addr, scrub invalid tags in tag vector
12 for (Vector<Tag> tagVector : page.tagVectors())
13 for (int level = scrubStart to tagVector.size())
14 tagVector[level].clear();
15 }

Figure 5. BulkTV’s Pseudocode. BulkTV builds upon

SlimTV, significantly reducing tag validation’s memory

overhead by sharing a single version across all the version

vectors in a page. BulkTV finds the maximum valid level

of the tag vectors in the page (line 8). Once BulkTV finds

the maximum valid level, it scrubs invalid tag elements – for

each address, it traverses the tag vector and sets invalid ele-

ments to the default value.

characterizes the entire page of tag vectors. Figure 5 shows

the pseudocode of BulkTV.

The memory savings of BulkTV is clearly tied to the size

of the page: the bigger the page, the bigger the benefit. For

example, a modest 4KB page leads to a drastic reduction of

validation storage by 4096× when shadowing every byte.

BulkTV can also have an impact on the runtime overhead

of tag validation. BulkTV negatively impacts runtime by

adding overhead associated with validating a whole page—

we must scrub tag vectors corresponding to all of the ad-

dresses, even though those memory addresses may never end

up being accessed. This factor ultimately depends on the lo-

cality of memory accesses: higher locality will lead to less

wasted scrubbing.

Spatial locality often causes consecutive calls to the func-

tion maxValidLevel to return the same result, resulting in

few if any invalidations after the first call. This means that

one of the deepest levels is the highest valid level and there-

fore reverse linear search will quickly find the maximum

level. The exact runtime behavior is dependent on the lo-

cality exhibited throughout the program but our results in

Section 6 show that only a moderate amount of locality is

needed to result in a net reduction in runtime overhead.

4. Efficient Storage Management

For runtime efficiency we would like to avoid freeing ele-

ments of tag vectors immediately when a region exits. How-

ever, leaving these invalid tags in shadow memory increases

the memory overhead associated with VSMs. This overhead

may not be important for analyses that require a small tag

(e.g. a vector of 1-bit tags for each memory location tracked

by memory footprint profiling) but some analyses require

large tags (e.g. a vector of 64-bit tags for each memory lo-

cation tracked by HCPA). In these large-tag analyses, sim-

ply leaving invalid tags in memory can severely increase

memory overhead. Skadu supports garbage collection as a

method for balancing runtime and memory overhead for

these large-tag applications.

Skadu’s garbage collector applies the tag validation to ex-

isting vectors, releasing invalid tag elements as they are un-

covered. However, efficient garbage collection is challeng-

ing for two primary reasons. First, there is a trade-off be-

tween ease of garbage collection and the speed of access:

garbage collection can reclaim memory most aggressively

when data from invalidated levels is grouped together but

access speed is optimized when data from the same address

is grouped together. Second, garbage collection should avoid

addresses that will be frequently used in the near future so as

to avoid frequent vector resizing. In this section, we discuss

how Skadu overcomes these two challenges.

Dual Representation The key idea behind Skadu’s storage

management is to separate fast, short-term shadow memory

from space-efficient, long-term shadow memory. Figure 6a

shows the interaction between these two representations,

VCache and VStorage.

Skadu initially places tag vectors in the VCache, evicting

them to the VStorage only as needed. The VCache is geared

toward fast-access time; sized appropriately, it minimizes

the number of accesses to the slower-access VStorage. The

VStorage is designed for long-term storage and therefore

attempts to minimize memory overhead. It does this through

a level-based storage infrastructure that facilitates efficient

garbage collection.

Vector Cache (VCache) The VCache stores frequently

used tag vectors, making common case access time fast.

These tag vectors are stored in an array format to further

reduce access time. Unlike conventional hardware caches,

VCache does not pull in shadow storage associated with

consecutive addresses because it does not improve perfor-

mance to do so. Because of this, the VCache uses SlimTV

for low-overhead tag validation but not BulkTV.

Figure 6b shows the structure of the VCache. Each cache

line contains the version and the tag vector associated with

a memory address. All cache lines have the same allocated

maximum vector size for better performance at the cost of

possibly wasted memory but the actual size of the vector is

stored with each line. VCache’s memory requirement is very

small compared to that of VStorage because of the reduced

address space it covers. The VCache is direct mapped to

reduce access time while still providing good hit ratios. The

VCache is automatically resized if the maximum vector size

is reached.
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Figure 6. Overview of Skadu Shadow Memory Organization. (a) To exploit the memory footprint and liveness characteris-

tics of hierarchical regions, Skadu uses a VCache, reducing memory requirements and improving performance. (b) The VCache

is optimized for the performance, handling most shadow memory requests and allowing a memory-efficient organization of the

VStorage. (c) The VStorage is optimized for low memory overhead with the addition of a level table. These level tables group

tags by scope (i.e. their location in the dynamic region tree), allowing efficient storage deallocation when a scope is exited.

Paired with BulkTV, this three-level organization enables low-overhead storage of infrequently accessed tags. Bits from the

memory address are used to hash into both the SegTable and Tag Table.

Vector Storage (VStorage) The VStorage acts as a mem-

ory efficient backing store for tag vectors evicted from the

VCache. The VCache handles most shadow memory ac-

cesses, allowing the VStorage to focus on reducing memory

rather than runtime overhead.

Figure 6c shows the structure of the VStorage. The VS-

torage utilizes a three-level structure that is similar to tradi-

tional shadow memory infrastructures 1 but with the novel

addition of a level table. The VStorage groups tags by their

level (or the index in the vector) rather than the address they

shadow. The VStorage also employs BulkTV: all tag tables

associated with a segment table entry share a single version

ID, which is located in the segment table next to the level

table pointer.

Garbage Collection This distribution of tags enables effi-

cient garbage collection, exploiting the fact that all the tags

in a tag table become invalidated when regions–and there-

fore levels–are exited. The garbage collection is performed

during BulkTV. When a fetch or eviction occurs at VStor-

age, BulkTV compares the current version vector against the

stored BulkTV version, finding out the deepest level whose

tag table is still valid. All the tag tables associated with

deeper levels must be invalidated.

The VStorage organization makes invalidation of a tag

table simple. Skadu maintains a list of free tag tables: tag

invalidation only requires sending off the tag table to be

asynchronously scrubbed and returned to the free list. This

makes garbage collection extremely lightweight. After a tag

table is invalidated, its associated level table entry points to

either a clean tag table or a null table, depending on the

current tag vector size.

5. Case Studies

To demonstrate Skadu’s effectiveness, we implemented two

poly-scopic analyses with Skadu: a memory footprint pro-

1 Although not shown, this structure is easily modified to handle 64-bit

addressing via an additional table before the segment table, similar to what

was proposed in [25].

filer and hierarchical critical path analysis (HCPA). The first

represents a relatively lightweight application of Skadu with

vectors of small 1-bit tags whereas the second represents a

heavyweight one with vectors of larger 64-bit tags. In ad-

dition to the techniques described in previous sections, we

additionally applied dynamic compression to further reduce

memory overhead.

5.1 Memory Footprint Profiler

The memory footprint profiler tracks the number of mem-

ory locations accessed in each dynamic region and reports

the average memory footprint for each static region. It illu-

minates a program’s region-specific memory usage, guiding

memory optimizations.

Tag Format Each tag is a single bit that tracks whether

or not the address has been touched by a region. This leads

to a tag vector of n bits, where n is the depth of the region

accessing the address. The profiler watches for the first touch

of an address (i.e. tag changing from 0 to 1), incrementing a

counter associated with the region when this event happens.

This counter is checked when a dynamic region exited; its

value then propagates to the statistics associated with the

corresponding static region.

The region hierarchy leads to an inclusion property for

memory footprint analysis: if a memory address is touched

in a region, it must also have been touched in all its ancestor

regions. Thus tag vectors are always a sequence of 1’s fol-

lowed by 0’s. The footprint profiler exploits this property by

performing a simple run-length encoding based compression

on the tag vector.

The footprint profiler is able to directly work with the

encoded version of the vector, eliminating the need to con-

stantly encode/decode the vector and therefore avoiding ad-

ditional runtime overhead. The efficiency of this encoded

representation places even more importance on efficient

tag validation; the footprint profiler uses both SlimTV and

BulkTV to make validation as space and time efficient as

possible.



Efficiently Measuring Memory Footprint Each memory

access triggers a check to see if the footprint of the active

regions needs to be increased. This check involves three

steps: tag validation, footprint update, and tag update. The

tag validation step reads and updates the stored tag vector

with the techniques described in Section 3. The footprint

update step finds and updates the range of region levels

whose memory footprint should be incremented. The tag

update step updates shadow memory with the new tag and

version for the given address.

Implementation The memory footprint analyzer uses LLVM

2.8 [9] to insert functions calls into the source code that de-

marcate region boundaries and trigger events on memory

accesses. These functions are implemented in a runtime li-

brary that is linked in at compile time. The footprint analyzer

uses functions and loops as regions because they are natural,

programmer-centric boundaries.

We modified the traditional two-level shadow memory

organization described in Section 2 to support tag validation

and a 64-bit address space. Each segment table and tag table

covers 4GB and 64KB of address space, respectively. Each

tag is an 8-bit integer, supporting a region tree of depth

256. This was more than enough for all benchmarks we

examined in our results. The footprint analyzer supports

the use of baseline tag validation, SlimTV, or BulkTV; this

allowed us to examine the overheads associated with each of

these techniques. Since the encoded tag size is already only

extremely small, we do not use garbage collection.

5.2 Hierarchical Critical Path Analysis

Overview Hierarchical critical path analysis (HCPA) is a

dynamic program analysis that computes the self-parallelism

of each program region [6, 8]. Self-parallelism is the paral-

lelism of a region exclusive of the parallelism of its child re-

gions. HCPA calculates self-parallelism by performing criti-

cal path analysis (CPA) on every region of the program, uti-

lizing the program hierarchy to determine the relationships

of regions. CPA incurs a large amount of overhead as it re-

quires every operation to be instrumented; this is required to

find the critical path of the program, its longest set of depen-

dent instructions.

HCPA concurrently calculates CPA on multiple regions,

requiring a tag vector of n 64-bit timestamps for n active

regions. The size of each tag makes memory overhead a se-

vere issue in HCPA, much more so than the memory foot-

print profiler. HCPA further exacerbates the memory over-

head problem by treating loop bodies as regions; this is in

addition to the function and loop regions seen in the mem-

ory footprint profiler. The addition of loop bodies increases

the depth of the region tree, increasing tag vector sizes and

the memory overhead as a result.

HCPA operates on all instructions not just the loads

and stores that were instrumented in the memory footprint

profiler. This increased instrumentation increases perfor-

mance overhead. HCPA does not access shadow memory

on all instructions though: all non-memory operations uti-

lize a shadow register file. This shadow register file is much

smaller than shadow memory and can therefore be optimized

for access time rather than space overhead in much the same

way as the VCache.

HCPA follows a three step procedure for handling loads.

First, it accesses shadow memory to load in the tag vector

(the timestamps) for the specified memory address. Next,

it calculates the updated tag vector for the target register

based on three factors: the loaded tag vector, the tag vector

of control dependences, and the estimated cost of a load.

Finally, it updates the shadow register file entry for the target

register. The process for a store is similar except that the tag

vector is initially loaded from the shadow register file and

finally stored in shadow memory.

Implementation HCPA uses LLVM to instrument code so

that instructions of interest trigger an appropriate handler

in the HCPA library. This process is similar to the process

for memory footprint analysis, but HCPA instruments nearly

all instructions, not just memory loads and stores. The ad-

ditional instrumentation is required to calculate the critical

path through the program.

HCPA utilizes all of Skadu’s techniques in order to reduce

both the memory and runtime overhead. Shadow memory

operations first access the VCache to determine if the target

address is available. A VCache miss forces a load from and

eviction to the VStorage in the case of a load instruction;

a miss on a store instruction simply requires an eviction

to the VStorage. HCPA uses a tag table that covers 4KB

of address space, which is smaller than the tag tables used

by the memory footprint analyzer that cover 64KB. This

smaller size reduces the runtime overhead associated with

BulkTV, helping offset the increased runtime from having a

variable size tag vector in HCPA.

We implemented dynamic compression in HCPA, lever-

aging Skadu’s VCache-VStorage organization. Since the

VCache is a smaller memory serving frequently accessed

addresses and VStorage is a large memory serving infre-

quently accessed addresses, we compress most tag tables in

VStorage at the granularity of a level table. Only a list of

recently referenced level tables are left uncompressed. This

list works like a victim cache, protecting against large per-

formance penalties during bursts of high miss rates in the

VCache. These bursts would otherwise incur decompres-

sion costs on top of the already high cost of accessing the

VStorage.

6. Experimental Results

Methodology We examine the effectiveness of Skadu’s

proposed techniques using the two analyses described in

Section 5: a memory footprint profiler and hierarchical criti-

cal path analysis (HCPA). Our experiments focus on both the

memory and performance overheads associated with vector
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Figure 7. Memory Overhead Reduction and Speedup in Footprint Profiler. Skadu reduces the memory expansion factor

from the baseline’s 17.8× to 1.4× while maintaining comparable execution time. Numbers on the top represent the (a) memory

expansion factor and (b) slowdown versus native execution when both SlimTV and BTV are employed.

Benchmark Native Native Region Depth

Suite Name Mem Exec. Mem HCPA

(MB) (Sec) Profiler

SpecInt bzip2 189 57.1 17 25

gzip 200 41.0 17 21

mcf 152 90.5 48 53

vpr 3 72.5 13 17

SpecFP art 2 6.5 10 11

equake 37 114 7 21

mesa 20 120 20 26

NPB cg 55 6.4 6 10

ft 419 11.4 11 18

is 68 2.0 4 7

lu 43 82.9 6 12

mg 434 5.6 8 13

Table 2. Benchmark Characteristics. We examined 12

benchmarks from three benchmark suites. These bench-

marks display a wide variety of characteristics including

memory usage (2MB to 434MB) and execution time (2 sec-

onds to 2 minutes).

shadow memory (VSM). We tracked the maximum mem-

ory overhead because it determines the minimum amount of

memory required to successfully run the analysis. All mea-

surements were performed on a 32-core system (8X AMD

Opteron 8380 Quad-core processors) with 256 GB of mem-

ory running on the Linux 2.6.18 Kernel. For compression,

we employed the miniLZO 2.06 library [1].

We examined 12 benchmarks across three benchmark

suites: SpecInt 2000, SpecFP 2000, and NAS Parallel Bench

(NPB) [3]. Due to the limitations in our toolchain, we tar-

geted non-recursive programs written in C programming

language. Underscoring the benefits of the techniques in this

paper, bt and sp only run when Skadu is enabled; without

Skadu they exit with out-of-memory errors on the 256 GB

system. ep was excluded since the program has few memory

accesses.

Table 2 characterizes each benchmark’s native execution,

listing runtime, memory footprint, and region depth. SpecFP

and NPB benchmarks tend to have regular memory access

patterns and contain many dense, array-based operations.

Conversely, SpecInt benchmarks have more irregular mem-

ory access patterns in addition to deeper region hierarchies.

We used SpecInt and SpecFP’s ’ref’ input set and NPB’s ’A’

input set for all results.

6.1 Memory Footprint Profiler

As mentioned in Section 5, the memory footprint profiler

uses SlimTV and BulkTV for its VSM implementation.

The footprint profiler’s overheads stem almost solely from

tag validation as the run-length encoding of a tag vector

produces a representation that requires only 8-bits to store

and can be directly manipulated to minimize overhead. The

prominence of tag validation in the overheads of this analysis

makes it a good target to evaluate the impact of tag valida-

tion. The results are compared against those in the baseline

implementation. This baseline implementation associates a

version with every tag; the vector size in this baseline imple-

mentation is fixed to the deepest region level in the program.

Figure 7 shows the memory expansion factors and run-

time overheads from the memory footprint profiler. This

graph is sorted in order of increasing native memory foot-

print. The numbers on top of the bars represent the final

memory expansion factor and slowdown compared to the

native execution. Skadu shows impressive reductions in the

memory expansion factor of the memory footprint profiler

when combining SlimTV and BulkTV. Skadu reduces the

memory expansion factor by a geomean of 13.0×. Bench-

marks with larger memory footprints show overall better re-

ductions, 15.5× for top six benchmarks in memory footprint.
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Figure 8. Benefits of SlimTV and BulkTV with Garbage Collection in HCPA. Combining SlimTV, BulkTV and Garbage

Collection reduces HCPA’s memory expansion factor by 8.3× compared to the baseline implementation at a cost of only 9% in

performance overhead. Numbers on the top represent the (a) memory expansion factor and (b) slowdown of Skadu compared

to native execution. The techniques are even more effective for benchmarks with large memory footprint (top6), incurring a

memory expansion factor of only 4.4×. Even further benefits are attained when compression is enabled.

SlimTV effectively reduces the memory expansion factor

and improves performance. SlimTV’s main benefits stem

from its replacement of the version vector with a scalar

version. These benefits will therefore be more pronounced

in programs with deep region hierarchies. For example, mcf

sees the largest reduction in memory expansion because of

its region depth (48) that is more than twice the closest

benchmark (20). SlimTV also speeds up the analysis by a

factor of 3.1× because it eliminates the the large number of

loads and stores associated with accessing version vectors.

BulkTV provides additional benefits beyond that of

SlimTV. BulkTV reduces the memory overhead of tag vali-

dation from 7× (a 56-bit version for every 8-bit tag) to nearly

zero (one 64 bit version per 64KB tag table). BulkTV is more

effective at reducing memory expansion on programs with

large memory footprints: the benefit increases as more tag

tables are in use. Figure 7 shows this phenomenon: while the

smallest (leftmost) benchmarks see little additionally bene-

fit from BulkTV, the remaining benchmarks see significant

improvements in the memory expansion factor. BulkTV also

helps improve performance as explained in Section 3. With

SlimTV and BulkTV, the geomean memory expansion fac-

tor is only 1.4× while slowdown is a manageable 12.3×.

6.2 Hierarchical Critical Path Analysis (HCPA)

Hierarchical critical path analysis is much more costly than

the memory footprint profiler in terms of both memory and

performance. HCPA’s baseline version results in a memory

expansion factor of 59.0×, severely limiting its use outside

of supercomputers and other high memory environments.

HCPA utilizes Skadu’s full array of techniques to reign in

its overheads. The results are impressive. Skadu’s SlimTV,

BulkTV and Garbage Collection reduces the memory expan-

sion factor to 7.1×, a reduction of 8.3× compared to the

baseline implementation. When Skadu’s compression is en-

abled as described in Section 6.3, memory expansion is fur-

ther reduced to 5.2×, a reduction of 11.4×.

Figure 8 shows the memory and performance improve-

ments from SlimTV, BulkTV and Garbage Collection.

Benchmarks are presented in the same order as they were

in Figure 7: in order of increasing memory footprint. The

numbers on top of the bars show the memory expansion

factor and slowdown vs native when using all of Skadu’s

techniques except dynamic tag compression. We set the

VCache size to cover 1MB of addresses while the list of

uncompressed level tables covered 4MB. This represented a

decrease in the number of uncompressed level tables com-

pared to the memory footprint profiler. This was a result

of a reduced reliance on this list to improve performance:

HCPA’s use of VCache greatly reduces tag table storage

because of nursery effects common in garbage collection

infrastructures.

SlimTV not only reduces the memory expansion factor

but also improves performance, an outcome similar to what

we witnessed in the footprint profiler. SlimTV has a smaller

effect on HCPA’s memory usage than it did on the footprint

profiler’s memory usage, with a geomean reduction of 1.7×
for HCPA versus 6.6× for the footprint profiler. This dif-

ference arises because the baseline HCPA implementation’s

memory overhead is almost equally split between tags and

tag validation; in the memory footprint profiler, almost all

the overhead was a result of tag validation. This more eq-

uitable split also leads to smaller performance gains for im-

proved tag validation in HCPA.

Skadu’s BulkTV and garbage collection with VCache-

VStorage architecture (labeled GC in Figure 8) has a signifi-

cant impact on the memory expansion factor. These benefits

ranged from 1.9× (art) to 39× (gzip) with a geomean of

8.3×. SpecInt benchmarks tend to show greater memory re-

ductions because they move between regions more quickly



than the other benchmarks. The runtime overhead is only

15% more than when using only SlimTV.

6.3 Dynamic Tag Compression

In addition to SlimTV and BulkTV, dynamic tag compres-

sion can further reduce the memory overhead in VSM. It

saves memory by compressing not-recently-used tag tables.

However, the saving comes at a cost: increased runtime over-

head. This overhead consists of two components: the com-

pression/decompression algorithms and the eviction algo-

rithm used for the list of uncompressed level tables. This

list uses a “clock” eviction policy[20] that requires an ac-

cess bit be updated every time an entry in the list is touched.

While a simpler eviction policy may seem desirable (e.g. di-

rect mapped cache), the higher hit ratio of the clock algo-

rithm more than offsets its maintenance costs.

Table 3 shows the impact of dynamic tag compression.

It further reduces memory overhead by 25.5% for HCPA on

average, achieving a memory expansion factor of 5.2× ver-

sus native execution and 11.4× reduction against our base-

line. Results are even better for the top six memory intensive

applications, where memory overhead is reduced by 37.4%,

achieving a final memory expansion factor of 2.8×. For

footprint analysis, the memory savings were around 11.9%,

increasing Skadu’s memory reduction against our baseline

from 12.7× to 14.2×. Dynamic tag compression is more ef-

fective for reducing HCPA’s memory overhead because tag

tables in HCPA benefit from our optimization that improves

the compression ratio. Rather than compressing raw tag ta-

bles, we compressed the differences between two tag tables

with adjacent levels. The intuition behind this optimization

is that timestamps offsets between two levels are often con-

stants, allowing better compression ratio. The impact on the

execution time for HPCA is quite moderate (1.1×).

7. Related Work

Skadu’s related work is in four areas: shadow memory ap-

plications and design, compression, and garbage collection.

Applications of Shadow Memory Shadow Memory is a

generally applicable technique that has been used in many

different areas. These areas include security [5, 17, 23], data

race detection [18], copy profiling [22], cache contention

detection [26], and memory debugging [4, 19] among many

others. Skadu’s target applications differ from these previous

applications in that they are analyses that seek to answer

questions about many independent program scopes; previous

applications of memory shadowing seek to answer questions

about the program as a whole or at least some defined portion

of it. Skadu therefore enables a whole new class of scope-

based dynamic program analyses, demonstrated in this paper

through two case studies with memory footprint profiling

and hierarchical critical path analysis [6, 8].

Shadow Memory Design Wide applicability of shadow

memory has led to a wide range of shadow memory architec-

Mem. Exp. Factor Impact

Bench No With Mem. Added

Comp. Comp. Reduct. Slowdown

mg 5.8X 2.1X 63.7% 1.2X

ft 4.8X 2.3X 52.5% 1.1X

bzip2 4.8X 3.1X 35.7% 1.0X

cg 5.1X 3.5X 31.2% 1.2X

equake 6.0X 4.3X 28.3% 1.2X

is 5.1X 4.0X 22.2% 1.2X

gzip 2.4X 1.9X 22.1% 1.0X

lu 8.0X 6.6X 17.2% 1.4X

mcf 4.4X 3.9X 11.0% 1.9X

art 41.3X 37.9X 8.2% 1.1X

vpr 25.5X 25.5X 0.0% 1.0X

mesa 8.6X 8.7X 0.0% 1.0X

geomean 7.1X 5.2X 25.5% 1.1X

top6 4.4X 2.8X 37.4% 1.2X

Table 3. Performance Impact of Dynamic Tag Compres-

sion on HCPA. Dynamic tag compression further reduces

the memory overhead at the cost of increased runtime. For

example, it reduces the memory expansion factor of HCPA

from 7.1× to 5.2×, or by 25.5%. The runtime slowdown is

manageable 1.1×. For the top 6 memory intensive programs,

the savings average 37.4%.

tures. Some of these approaches use only a single-level im-

plementation [5, 18], relying on assumptions about the size

of address space (e.g. 32-bit addresses) and often allocating

half of the address space for shadow memory. This single-

level approach is not robust: it often fails in the face of pro-

grams that make assumptions about memory placement and

often clash with operating systems which have assumptions

about object locations. MemCheck [19], pinSEL [12], and an

array of tools [10, 13, 16] built using Valgrind [15] use a two-

level translation table similar to the one described in Sec-

tion 2. This approach works well for 32-bit address spaces

but does not scale well to 64-bit spaces. Recent work has ex-

panded this basic structure to three-levels to better support

64-bit address spaces [24, 25].

While Skadu’s VStorage uses a three-level address trans-

lation organization similar to that of Umbra [25], Skadu’s

overall architecture is optimized to meet the needs of region-

based analysis and vector shadow memory operations. Skadu

introduces novel shadow memory features such as the VCache,

level tables, garbage collection, and tag compression. These

additions are unnecessary in traditional memory shadowing

applications but are critical in meeting the exacting demands

of region-based analysis.

A number of tools propose specialized hardware to re-

duce the overhead of memory shadowing [11, 21, 27]. Spe-

cialized hardware could also potentially be used to acceler-

ate Skadu further.



Our previous work [6] implemented a basic version of

vector shadow memory that is comparable to the baseline

numbers reported in this paper. The prior version is not

practical outside of supercomputer environments because of

extreme memory requirements. This paper introduces tech-

niques to reduce memory requirements so as to make poly-

scopic analyses available to a broader range of develop-

ers. Skadu introduces a number of techniques (e.g. SlimTV,

BulkTV, and garbage collection) to reduce the memory over-

head of VSMs, formally defines VSM, and defines a class

of analyses, poly-scopic analyses, that rely on VSMs. This

work additionally introduces memory footprint analysis as

an additional example of poly-scopic analysis.

Memory Compression Skadu’s basic compression archi-

tecture is influenced by compressed memory systems such as

IBM’s Memory Expansion Technology (MXT) [2] and Con-

nectix RamDoubler. In these systems, caches usually con-

tain uncompressed data while main memory is compressed.

Skadu has uncompressed data in its VCache but its VStorage

is a mix of compressed and uncompressed data. While a ma-

jority of the VStorage is compressed, a frequently used sub-

set is left uncompressed; this “uncompressed buffer” greatly

reduces the overhead of compression while incurring only

moderate memory overhead. Skadu also increases the effec-

tiveness of compression by exploiting the regularity across

levels: the differences between tag tables are more regular

than the tag tables themselves, leading to an increased com-

pression ratio.

8. Conclusion

This paper has demonstrated a set of techniques for en-

abling poly-scopic dynamic analyses through a set of space-

efficient Vector Shadow Memory optimizations including

lightweight tag validation, garbage collection, and dynamic

compression. Our results, using two dynamic analyses, are

strong. We show that Skadu reduces the footprint analysis’

space overhead from 17.8× to 1.3×. Furthermore, it reduces

HCPA’s space overhead from 59.0× to 5.2×. In both cases,

Skadu makes the poly-scopic dynamic analysis practicable

where otherwise it would not be.
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