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I. OVERVIEW

After a software system is compromised, it can be difficult
to understand what vulnerabilities attackers exploited. Any
information residing on that machine cannot be trusted as
attackers may have tampered with it to cover their tracks.
Moreover, even after an exploit is known, it can be difficult
to determine whether it has been used to compromise a
given machine. Aviation has long-used black boxes to better
understand the causes of accidents, enabling improvements
that reduce the likelihood of future accidents.

Many attacks introduce abnormal control flows to com-
promise systems. In this poster, we present BLACKBOX [2],
a monitoring system for COTS software. Our techniques
enable BLACKBOX to efficiently monitor unexpected and
potentially harmful control flow in COTS binaries. As depicted
in Figure 1, BLACKBOX constructs dynamic profiles of an
application’s typical control flows to filter the vast majority of
expected control flow behavior, leaving us with a manageable
amount of data that can be logged across the network to remote
devices. BLACKBOX can also be configured with a control
flow blacklist to prevent known and foreseen exploits.

BLACKBOX has 14.7% overhead on the SPEC CPU 2006
benchmark suite (geometric mean). Experiments demonstrate
BLACKBOX successfully logs and blacklists recent exploits.

II. MONITORING

As BLACKBOX monitors a program, it continuously con-
structs a control flow graph (CFG) of the program execution,
where a node represents one basic block and an edge repre-
sents a control flow transfer between them. Each new node and
edge in the graph represent a program action that is logged to
the remote server. The naive implementation of BLACKBOX
would (a) perform poorly on the user’s desktop and network,
(b) flood the log with normal (safe) program actions, and
(c) report spurious warnings for special cases in program code.
Four techniques make it possible for BLACKBOX to efficiently
and effectively monitor popular desktop applications such as
Microsoft Office, Google Chrome and Adobe PDF Reader.

A. Log Filtering

Since any delay in the transfer of a log entry to the remote
server could potentially allow the adversary to obscure an
attack, BLACKBOX must reduce the total log size enough
that each entry can be transferred immediately. BLACKBOX
learns the normal behavior of a program during an offline
profiling phase and records the observed CFG to a trusted
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profile that it can use to filter program actions: when the
monitored program takes any action that is already recorded
in the trusted profile, logging is elided. BLACKBOX employs
a complete shadow stack to additionally elide all conventional
function-return edges. Where a naive control flow monitor
would log millions of unique events per hour for large desktop
applications, BLACKBOX logs less than 100 events per hour,
yet consistently records the pivotal actions of exploits.

B. Trusting Unconventional Code

Windows programs commonly overwrite small fragments
of their own code at runtime, for example to wrap or replace
system calls. This violates the common security practice of
making memory either writable or executable, but not both
(W @ X). Programs also make unconventional use of the
ret instruction, for example the soft-thread dispatcher in the
Windows fibers API writes the fiber start address into the
return’s stack slot and issues a bogus ret. BLACKBOX adds
such anomalies to the trusted profile so that these otherwise
alarming program actions will be filtered from the log.

C. Trusting Dynamically Generated Code

The use of code generators is becoming increasingly popular
in desktop software, even in traditional applications such as
Microsoft Office. But random factors in JIT engines make
dynamically generated code (DGC) incompatible with the
trusted profile approach, since the low-level construction of
DGC differs significantly between observationally identical
executions. To avoid flooding the log with program actions
from ordinary (safe) DGC, BLACKBOX leverages the insight
that DGC can be trusted if (a) it was generated in the normal
way by the application’s known code generator, and (b) the
DGC routines only interact with a trusted set of entry and
exit points in the application (similar to RockJIT [3], but
supporting COTS applications, and compatible with JITs such
as the Microsoft Managed Runtime that dynamically generate
linkage functions between modules that were discovered at
runtime). Three program actions specifically focus on DGC:

« gencode write from node A to node B indicates that an
instruction in node A wrote dynamic code B.
o gencode chmod from A to B indicates that A changed
the executable permission on a page containing B.
« gencode call represents an entry/exit between dynamic
code and statically compiled code.
To avoid aliasing in common functions like memcpy, an edge
is also created from each frame on A’s call stack to B.
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Fig. 1. The three phases of BLACKBOX program monitoring.

In the offline profiling phase, BLACKBOX records these
DGC program actions to the trusted profile. During online
monitoring, if the program generates code according to this
model, the DGC is trusted and logging is elided—but any
deviating program actions are logged as a potential code
injection. Similarly, any interaction with DGC that does not
conform to the gencode call edges in the trusted profile is
logged, even if the DGC was generated in a trusted way.

D. Preventative Monitoring

Analysis of the BLACKBOX logs may often reveal pro-
gram vulnerabilities and other potential issues before any
damage occurs. For example, it may be possible to identify
exploitable program errors, or violations to usage policies such
as restrictions on installing third-party software or plugins.
But the manual process of log analysis is inherently more
labor intensive for preventative monitoring than for triage of a
specific incident, since the goal is not to find the cause of one
problem, but to detect any foreseeable problem. BLACKBOX
facilitates preventative monitoring with two components that
highlight the most suspicious program behaviors in the log.

1) Stack Spy: Since the damaging actions of an exploit
require the use of system calls, in most cases the adversary
will cause at least one deviation in normal control flow en
route to the syscalls of the payload. BLACKBOX detects this
scenario using a stack suspicion flag per thread. The stack
suspicion flag is activated in a stack frame when an untrusted
program action first occurs, and remains activated until that
stack frame returns. All syscalls that are invoked under stack
suspicion are logged, even if the syscall site itself is trusted.

2) Sniffer Dog: For large desktop applications, profiling is
rarely able to attain complete coverage of normal execution,
so the BLACKBOX logs often contain some untrusted-but-
benign program actions. An offline log sorter called sniffer
dog employs a principle of “typical irregularities” to estimate
the probability that an untrusted program action is a safe
variant of trusted behavior. The histogram of trusted profile
training reveals how frequently new edges of each type are nor-
mally discovered between each pairing of modules (reflexive
included), and sniffer dog summarizes each with a PowerLaw
model [1]. Log entries conforming to the PowerLaw model
are given lower priority, while those exceeding the model’s
prediction for new events are given higher priority.

III. ANTI-VIRUS 2.0

One of today’s most widely deployed security strategies is
anti-virus, which relies on a labor-intensive manual analysis
by highly skilled experts that aims to develop a comprehensive
malware blacklist. The effort begins with malware diagnosis
to determine the symptoms of an infected binary, usually
by executing it in an analysis sandbox. But malware may
probe for evidence of such analysis and hide its malicious
behaviors, making the process especially difficult. Once the
effects of a virus are eventually understood, a binary signature
is generated to uniquely match infected files on disk. But
randomization of malware payloads dramatically increases this
effort, since each variant requires a different signature. As
malware development tools improve, the cost of the traditional
anti-virus approach rises, even as its reliability is eroded.

The BLACKBOX monitoring system provides an alternative
to malware diagnosis that not only reveals control flow details
of exploits as they occurred in the field, it is also immune to
evasion tactics—malware has nothing to gain by withholding
its payload while under observation, because BLACKBOX
monitors the attack target itself (at the end user’s site).

BLACKBOX also provides a low-cost, reliable alternative to
binary signature matching. Instead of attempting to uniquely
identify a malicious executable as it appears on disk, BLACK-
Box implements a control flow blacklist that blocks an exploit
at the specific point it would compromise the monitored
program. This approach is immune to superficial randomiza-
tion because malware has a limited number of opportunities
to exploit a given program. Since the BLACKBOX log and
blacklist have similar formats, the log analyst can easily
transform a log entry into a blacklist entry that prevents the
same malicious program action from recurring in the future.
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