
TimeCube: A Manycore Embedded Processor with
Interference-Agnostic Progress Tracking

Anshuman Gupta Jack Sampson Michael Bedford Taylor
Computer Science and Engineering
University of California, San Diego

California, USA

Abstract— Recently introduced processors such as Tilera’s
Tile Gx100 and Intel’s 48-core SCC have delivered on the promise
of high performance per watt in manycore processors, making
these architectures ostensibly as attractive for low-power embed-
ded processors as for cloud services. However, these architectures
space-multiplex the microarchitectural resources between many
threads to increase utilization, which leads to potentially large
and varying levels of interference. This decorrelates CPU-time
from actual application progress and decreases the ability of
traditional software to accurately track and finely control appli-
cation progress, hindering the adoption of manycore processors
in embedded computing.

In this paper we propose Progress Time as the counterpart
of CPU-time in space-multiplexed systems and show how it
can be used to track application progress. We also introduce
TimeCube, a manycore embedded processor that uses dynamic
execution isolation and shadow performance modeling to provide
an accurate online measurement of each application’s Progress
Time. Our evaluation shows that a 32-core TimeCube processor
can track application progress with less than 1% error even in
the presence of a 6× average worst-case slowdown. TimeCube
also uses Progress Times to perform online architectural resource
management that leads to a 36% improvement in through-
put compared to existing microarchitectural resource allocation
schemes. Overall, the results argue for adding the requisite micro-
architectural structures to support Progress Time in manycore
chips for embedded systems.

I. INTRODUCTION

Multicore processors have already become ubiquitous in
some embedded domains, such as smart phones. In these, as in
other domains utilizing multiprocessors, there is a trend toward
greater concurrency that will soon move us from an era of
multicore designs into an era of manycore designs. Manycore
processors are especially attractive for embedded applications
because they optimize energy per operation for high compute
workloads as demonstrated by recent manycore offerings, such
as Tile Gx100 [1] and Intel’s SCC [2].

The aforementioned processors, being originally designed
for cloud applications, needed to meet a set of key demands,
shown in Table I. However, finding the right balance in
managing architectural resources for an embedded system
features a parallel set of demands. Thus, similar architectures
are likely to be appropriate for both the cloud and embedded
spaces, and similar mechanisms may be employed to address
any issues limiting their adoption; Facebook, for instance, has
shown that using wimpy cores and in-order memory systems
can provide energy-efficiency with high throughput for some

This work was funded in part by NSF CAREER Award 0846152, NSF
Award 1018850, NSF Award 0811794, and NSF Award 1228992.

Requirements Cloud Systems Embedded Systems
Energy-efficiency Limit operating costs Limit power budgets
High utilization Limit cost of ownership Limit area budgets
Resource guarantees Meet QoS agreements Real-time tasks

TABLE I. SIMILARITIES IN DESIGN REQUIREMENTS FOR
PROCESSORS IN CLOUD AND EMBEDDED SYSTEMS

of their workloads [3], and similar manycore architectures can
provide area and energy efficiency for embedded systems as
well. In manycore processors, there are pressures to share
the limited on-chip resources in order to simultaneously meet
all three demands. Independently providing each processing
element sufficient resources to meet its peak demand can pro-
vide guarantees, but it would be prohibitively area-expensive.
Conversely, dividing up the total resources typically available
in manycore processors into fixed partitions may lead to local
resource shortages despite sufficient aggregate resources.

Compositions

100%
 stream

, 0%
 slope

75%
 stream

, 0%
 slope

75%
 stream

, 25%
 slope

50%
 stream

, 0%
 slope

50%
 stream

, 25%
 slope

50%
 stream

, 50%
 slope

25%
 stream

, 0%
 slope

25%
 stream

, 25%
 slope

25%
 stream

, 50%
 slope

25%
 stream

, 75%
 slope

0%
 stream

, 0%
 slope

0%
 stream

, 25%
 slope

0%
 stream

, 50%
 slope

0%
 stream

, 75%
 slope

0%
 stream

, 100%
 slope

AVERAG
E

W
o
rs

tc
a
s
e
 S

lo
w

d
o
w

n
s

0
1
2
3
4
5
6
7
8
9

10
11
12

Fig. 1. On a simulated 32-core processor (see Section III for details), we
see that slowdowns are both large, 6× on average, as well as highly variable,
from less than 2× to as much as 12× in the worst case. Thus, CPU-time
should not be used as a proxy for progress when making high-order decisions
in embedded systems using space-multiplexed manycore processors.

Sharing these resources allows higher utilization than static
partitioning. However, sharing also leads to resource con-
tention, or interference. As shown in Figure 1, interference
causes uneven and unpredictable slowdowns in application
performance, leading to difficulties in monitoring and man-
aging application progress. As a result, decisions made in
the presence of interference, such as attempts to maintain
performance guarantees, can lead to substantial inaccuracies,
as shown by Govindan et al. [4].

Our Approach. In traditional uni-core processors, CPU-time
provided the notion of interference-free progress, and could be
effectively used for tracking performance as well as scheduling
or distribution of resources. However, for space-multiplexing

manycore processors, CPU-time does not accurately reflect
interference-free progress and is inadequate for these decisions.
We propose Progress Time as a counterpart of CPU-time
for the purpose of tracking application progress in space-
multiplexed manycore systems. We define Progress Time as
the amount of time required for an application to complete
the same amount of work it has done so far, were it to have
been allocated all CPU resources.

We describe TimeCube, a manycore embedded processor
that is augmented by hardware to efficiently support dynamic
execution isolation and shadow performance modeling to en-
able the simultaneous and online estimation of Progress Times
for all applications with a high degree of accuracy. TimeCube
dynamically partitions last-level cache, memory bandwidth,
and DRAM space to enable dynamic execution isolation
and uses shadow structures to provide shadow performance
modeling and estimate Progress Times efficiently in hardware.
TimeCube then uses Progress Times to dynamically reallo-
cate portions of the partitioned critical shared resources (last
level cache and memory bandwidth) among applications to
increase system throughput while maintaining fairness among
applications by maximizing their mean Progress Time. We also
dynamically tune the application DRAM prefetchers based on
their bandwidth utilization.

Results. Our evaluation shows that the dynamic execution
isolation provided in TimeCube enables online estimation of
application progress with an average error of less than 1% on
a 32-core system, even when the slowdowns witnessed due to
interference were 6× on average and as much as 12× in the
worst case. The accuracy of Progress Time estimation makes
it highly reliable for use in high-order decisions. Our Progress
Time-centric resource allocation increases throughput by 36%
on average. The results make a compelling case for adding
the requisite micro-architectural structures to support Progress
Time in manycore chips for embedded systems.

In summary, the paper makes the following contributions:

1) We develop Progress Time as a counterpart of ap-
plication CPU-time for interference-free progress in
space-multiplexed systems. Systems can use Progress
Time to accurately track online application progress
and make high-order decisions.

2) We propose TimeCube, a manycore processor for em-
bedded systems. TimeCube provides online Progress
Time estimation with less than 1% error, even in the
presence of 6× average slowdown.

3) We propose a Progress Time-based microarchitectural
resource allocation scheme that increases throughput
by 36% on average when compared to existing allo-
cation schemes.

4) We propose a prefetcher throttling mechanism that
tunes the prefetching intensity based on the dynami-
cally allocated bandwidth.

II. TIMECUBE DESIGN

TimeCube is a manycore processor augmented with hard-
ware mechanisms to efficiently and accurately track application
progress. Multiple applications can execute simultaneously on
TimeCube; even more than the number of cores, since it
supports temporal-multiplexing. Every application executes on

an independent core with private L1 data and instruction caches
and a DRAM prefetcher. These applications share the last-
level caches, memory bandwidth, and DRAM banks, similar
to existing commercial manycore processors [5].

The interference resulting from this resource sharing breaks
the correspondence between CPU-time and actual performance
on space-multiplexed manycore systems, which can lead to
erroneous estimations regarding progress of execution, even in
the presence of state-of-the-art virtualization techniques [4].
In existing embedded systems, many high-order decisions,
such as resource allocation and scheduling, are done in ac-
cordance to application progress. Therefore, we propose that
these decisions should be made based on application Progress
Times rather than their CPU-times, where Progress Time is
the amount of time required for an application to complete the
same amount of work it has done so far, were it to have been
allocated all CPU resources, as shown in Figure 2.

Processor	

Processor	

	
	
	
�	 Dynamic	 Execu1on	 Isola1on	
�	 Shadow	 Performance	 Modeling	

Processor	

TimeCube

w1

w2

w1,2
v1

v2

App1

App2

App1

App2

time

Fig. 2. TimeCube uses dynamic execution isolation and shadow performance
modeling to estimate the Progress Times (v1 and v2) for applications (App1

and App2) running simultaneously for CPU-time w1,2. Application Progress
Times are equal to their standalone CPU-times (w1 and w2).

While offline techniques [6][7] have been proposed to
measure the architecture-specific interference between applica-
tions, online progress tracking allows us to handle previously
unseen applications, handle live input data for known applica-
tions, capture phase-specific interference, and provide better
online control over application progress rates. As Figure 2
describes, TimeCube provides two key capabilities to en-
able highly-accurate online estimation of application Progress
Time:

• Dynamic Execution Isolation ensures that an appli-
cations execution, and hence its Progress Time, is not
unpredictably affected by other concurrently running
applications. This can allow us to not only improve
Progress Time estimation accuracy but also dynam-
ically control application progress rates. TimeCube
includes hardware mechanisms for handling interfer-
ence for microarchitectural resources, such as cache,
memory bandwidth, and memory banks. Conventional
runtime software mechanisms, such as virtual machine
monitors and hypervisors, can handle interference be-
tween I/O threads contending for network bandwidth,
or other such system-level resources, by applying
thread priorities in the scheduler and/or using backoff
algorithms to reduce contention.

• Shadow Performance Modeling allows an applica-
tion’s standalone performance to be estimated with
a high degree of accuracy using an extrapolation of
its isolated execution. TimeCube takes into account

micro-architectural resource usage to accurately esti-
mate Progress Time for a single manycore chip. For
taking into account system-level resources, we would
need to isolate and estimate performance based on all
system components including network and I/O.

Using these two capabilities, TimeCube can eliminate the
unpredictable effects of resource interference and estimate
standalone application performance with a high degree of
accuracy to generate Progress Time.

A. Dynamic Execution Isolation in TimeCube

TimeCube provides dynamic execution isolation by par-
titioning critical shared resources and dynamically allocating
portions of resources to the competing applications after regu-
lar intervals, as shown in Figure 3. This partitioning of shared
micro-architectural resources eliminates resource interference,
and an application’s execution is not affected by other con-
currently running applications. The allocation is done dynam-
ically to avoid under-utilization of resources, since different
applications have different utility for on-chip resources, which
can also vary over time. There are many shared resources in
manycore architectures, but for this paper we focus on three
resources critical to compute workloads: last-level cache, off-
chip memory bandwidth, and DRAM space. Contention over
memory controllers in an in-order memory system is low, and
the situation for our NoC is similar. In a system with high
contention for either resource, TimeCube could be extended
with fair queuing arbiters [8], or virtual channels, respectively,
to provide dynamic isolation over these resources.

Along with the core, each application also gets a dynam-
ically allocated portion of the shared last-level (L2) cache
1, a portion of the shared memory bandwidth and some
statically allocated DRAM banks (determined in software).
The partitioning and reconfiguration of resources is kept in-
visible to software, which allows us to use legacy code. The
programs execute continuously and uninterrupted even while
the resource partitions are being reconfigured, as shown in
Figure 3c.

Dynamic Cache Partitioning TimeCube partitions the
shared last-level cache between applications to provide dy-
namic execution isolation. It uses associative cache parti-
tioning, similar to the Virtual Private Caches proposed by
Nesbit et al. [8]. TimeCube partitions the cache ways between
applications by dynamically assigning a fixed number of
associative ways for each application. When an application
accesses the cache, all the associative ways are checked. On
a cache miss, the data brought in from main memory is
placed in the cache. If the number of ways occupied by the
requesting application is less than the allocated ways, another
application’s data is evicted, one that is occupying more ways
than allocated. Otherwise, the requesting application’s least
recently used data is evicted. This maintains cache allocations
between applications. However, the applications can still face
interference due to the limited cache access bandwidth; there-
fore, TimeCube multiplexes the cache accesses, as proposed
for Virtual Private Caches, based on the fraction of cache-
access bandwidth allocated to an application, which is the same

1TimeCube is a non-cache coherent architecture like Intel SCC [2]; inter-
process coherence is handled by the OS through separate memory allocation.

as the fraction of cache ways allocated, and maintains dynamic
execution isolation.

Dynamic Memory Bandwidth Partitioning TimeCube
dynamically partitions the memory bandwidth between ap-
plications to reduce interference. Even if an application is
given its allocated bandwidth, if the memory scheduling is
not done fairly, the applications might have unpredictable
slowdowns. We use a fair queueing arbiter [9], which does
fair scheduling across applications while staying within their
bandwidth quotas. The performance of individual applications
can be further improved by using state-of-the-art memory
traffic scheduling techniques, which may reorder application
memory requests based on prefetcher accuracies [10], or the
status of DRAM row buffers [11] etc. In order to limit the
possible bandwidth allocations, we bin the bandwidth i.e. we
allocate bandwidth only in multiples of a fixed percentage of
total bandwidth (1%).

Static DRAM Partitioning DRAMs are typically com-
posed of a number of banks that are fronted with a row buffer
to reduce access latency on repeated accesses to a line. In order
to reduce interference on DRAM banks, TimeCube splits the
memory banks statically among the applications along with the
corresponding row buffers; however, the number of DRAM
banks allocated to an application is not fixed and depends
on the amount of memory allocated to the application by the
operating system. Thus, an application cannot alter the contents
of another application’s row buffers to unpredictably affect its
memory access time. This bank partitioning is maintained at
the memory controllers 2 , and the memory page allocator
(OS) allocates pages to applications only on the memory banks
assigned to them, as described by Liu et al. [12]. While
this is a simpler approach compared to interference-prone
performance-preserving techniques like ballooning [13], our
experiments showed that bank partitioning does not signifi-
cantly reduce performance for typical manycore architectures,
since the memory-sensitive workloads are bottlenecked at the
DRAM pin interface and not the DRAM row buffers.

B. Shadow Performance Modeling in TimeCube

TimeCube calculates Progress Time using an analytical
performance model that uses execution statistics collected
through shadow hardware structures placed on every core.
TimeCube collects the Progress Time for a spectrum of shared
resource allocations for all applications, as shown in Figure 4.
These collections of Progress Times are called the Progress
Time Tables, or pTables. We believe that pTables provide
resource abstraction at the right granularity, i.e. concise enough
to be calculated by the microarchitecture during program
execution and rich enough to be used in high-order decisions,
such as resource management in TimeCube. TimeCube updates
the pTables, which are stored in the cores, in parallel with
application execution, after regular execution intervals.

We now describe TimeCube’s analytical model to calculate
Progress Time for application i for an execution interval j, if
it were allocated c cache-ways and b bandwidth-bins.

2TimeCube could leave DRAM management to software given support for
dynamic execution isolation and shadow performance modeling.

Shadow	 Performance	
Modeling	

	
	
	
	
	
	

Shadow	 Cache	 Execution
Stats

Resource	
Management	

Progress-Time
Tables

Resource
Allocations

Dynamic	 Execu<on	
Isola<on	

	
	
	
	
	
	

Last	 Level	 Cache	

Memory	 Bandwidth	

DRAM	 Banks	

Shadow	 Prefetcher	

Shadow	 Banking	

C	 C	 D	 D	 D	 D	 D	 D	 D	 D	
C	 C	 D	 D	 D	 D	 D	 D	 D	 D	
C	 C	 D	 D	 D	 D	 D	 D	 D	 D	
C	 C	 D	 D	 D	 D	 D	 D	 D	 D	
C	 C	 D	 D	 D	 D	 D	 D	 D	 D	
C	 C	 D	 D	 D	 D	 D	 D	 D	 D	
C	 C	 D	 D	 D	 D	 D	 D	 D	 D	
C	 C	 D	 D	 D	 D	 D	 D	 D	 D	
C	 C	 D	 D	 D	 D	 D	 D	 D	 D	
C	 C	 D	 D	 D	 D	 D	 D	 D	 D	
C	 C	 D	 D	 D	 D	 D	 D	 D	 D	
C	 C	 D	 D	 D	 D	 D	 D	 D	 D	
C	 C	 D	 D	 D	 D	 D	 D	 D	 D	
C	 C	 D	 D	 D	 D	 D	 D	 D	 D	
C	 C	 D	 D	 D	 D	 D	 D	 D	 D	
C	 C	 D	 D	 D	 D	 D	 D	 D	 D	

M
em

ory	 Controller	
M
em

ory	 Controller	

M
em

or
y	
Co

nt
ro
lle
r	

M
em

or
y	
Co

nt
ro
lle
r	

DIM
M
s	

DIM
M
s	

DI
M
M
s	

DI
M
M
s	

C DCores L2 Cache Block

Intervaln

Execute and
Collect Stats

Resource Allocation
Reconfiguration

Create pTables

time

(a) (b) (c)
Fig. 3. TimeCube partitions the critical shared resources to provide dynamic execution isolation, and uses execution statistics based analytical performance
estimation to provide shadow performance modeling (a). TimeCube is a scalable architecture (b) with spatially distributed cores (C) and L2 cache blocks (D)
connected over a network-on-chip, or NoC. TimeCube creates Progress Time Tables, a collection of Progress Times over the entire spectrum of cache and
memory bandwidth allocations, which are then used for resource management. Every interval TimeCube collects statistics, creates pTables, and allocates and
reconfigures shared resources simultaneously for all applications, all in parallel with execution (c).

0% 100%
Cache

50%

0%

100%

B
andw

idth

Progress-Time
for app i, cache c
and bandwidth b

Fig. 4. Progress Time Tables. TimeCube calculates Progress Times for all
possible allocations of last-level cache and the memory bandwidth for each
application. The bandwidth is binned and the cache-ways are allocated in
powers of two.

ExecT imej [i, c] = constj + (L2Hitj [i, c]× L2HitLatencyj [i, c])

+(PrefHitj [i, c]× PrefHitLatencyj [i, c])

+(PageHitj [i, c]× PageHitLatencyj [i, c])

+(PageMissj [i, c]× PageMissLatencyj [i, c])

+(PageCnflj [i, c]× PageCnflLatencyj [i, c])

(1)

TimeCube’s analytical model estimates the hypothetical ex-
ecution time for the work done by an application in the last
interval, but for an arbitrary cache and bandwidth allocation,
by estimating the delays caused by the in-order 3 L1 private
cache misses in the shared L2 cache, prefetcher and the DRAM
(Equation 1).

We assume that the in-core execution time remains un-
affected by changing cache and bandwidth allocations. We
represent this in-core execution time by constj for interval
j in our analytical model. We collect this value for the current
execution by counting the cycles for which the application
executed while discarding the cycles spent waiting on L1
private cache misses. We then use this value as the in-core
execution time for calculating application Progress Times
for the next interval for all possible cache and bandwidth
allocations. The time spent inside I/O calls is included within
the cycles spent inside the core (constj), not waiting for the
memory system. We assume this time to be independent of the
cache and memory bandwidth allocation.

To find the time spent in L2 caches we use a shadow cache

3TimeCube has an in-order memory system, like RAW [14], where the core
is stalled during its memory miss. Thus, there is no miss concurrency for a
single application.

structure, described below, to estimate the L2 cache hits for
the cache size c. We measure the average L2 hit latency for
the current cache and bandwidth allocation, and use it for all
possible allocations for the next interval. Similarly, we use a
shadow prefetching structure, described below, to estimate the
number of prefetch hits, while using the average prefetch hit
latency from the current execution. When a request misses both
L2 and the prefetcher, it is served by the main memory. We
measure the DRAM page hit, miss and conflict latencies for the
current execution, and use them alongwith the page hit, miss
and conflict rates calculated using a shadow DRAM structure,
described below, to calculate the remaining components of our
analytical model.

With this model we calculate Progress Time for all possible
cache and bandwidth allocations for all applications for next
interval. According to this model we need to estimate certain
shadow L2 cache, prefetcher, and DRAM statistics to estimate
the execution times for different resource allocations. We use
the following shadow hardware structures to collect these
shadow statistics:

• Shadow-Tags [15] provide an efficient hardware mech-
anism to estimate the cache miss rates for any arbitrary
cache size. In order to reduce the shadow cache
overheads we use set-sampling.

• Shadow Prefetchers run a dummy prefetching algo-
rithm by tracking miss streams and launching fake
prefetches, i.e. while the prefetch request is created, no
actual data request is sent to the memory system, and
maintain shadow statistics such as prefetches issued,
prefetch hit rate, and prefetch hit latency.

• Shadow Banking tracks the current state of the DRAM
row buffers by modeling DDR behavior for DRAM
requests and maintains shadow statistics such as page
hits, misses, and conflicts. Our experimental results
suggest that shadow banking may not be absolutely
essential for this system; using a fixed memory latency
imparts on average an error of only 2% in estimating
application Progress Times.

We use one shadow-tags structure per core, and one shadow
prefetcher and shadow banking structure per cache configu-
ration per core. 40B are required to store an application’s
pTables. Our experimental results show that these mechanisms

do not have significant area (2.46%) and energy (0.24%)
overheads.

The hardware also needs to estimate bandwidth stalls to
estimate application performance. We use cache misses and
prefetch statistics to calculate the required bandwidth (Equa-
tion 2). If the allocated bandwidth exceeds required bandwidth
then we assume no bandwidth stalls. Otherwise, the bandwidth
stalls are accounted for by reducing performance by the ratio of
required and allocated bandwidths (Equation 3). This is based
on the assumption that the memory requests are uniformly
randomly distributed over program execution.

ReqBWj [i, c] =
L2Missesj [i, c] + PrefRqsj [i, c]− PrefHitsj [i, c]

ExecT imej [i, c]
(2)

Performancej [i, c, b] =

{
Instructionsj [i]

ExecTimej [i,c]
, if ReqBWj [i, c] ≤ b

Instructionsj [i]×b

ExecTimej [c]×ReqBWj [i,c]
, otherwise

(3)

pTablesj [i, c, b] =
Performancej [i, c, b]

Performancej [i, ctotal, btotal]
× IntervalT ime

(4)
Progress Timei =

∑
interval j

pTablesj [i, calloc, balloc] (5)

Every cell in pTables stores the Progress Time for the
corresponding cache and bandwidth allocation by multiplying
the interval-time with the ratio of the performance for this
allocation and the one with all the cache and memoery
bandwidth allocated (ctotal,btotal), as shown in Equation 4.
TimeCube sums up an application’s Progress Times for all
past intervals, for the actual cache and bandwidth allocations
(calloc,balloc), to get its total Progress Time (Equation 5).

TimeCube, in-line with existing commercial manycores
like Tile64, uses wimpy cores and in-order memory systems
to provide energy-efficiency with high throughput. However,
performance for out-of-order cores can be modeled as well,
as shown by Moreto et al. [16]. Moreover, even though Time-
Cube is designed for multiprogramming rather than parallel
programming, it is reasonable to believe that the techniques
outlined here would support consolidated multi-threaded appli-
cations as well if given their associated performance models.

Progress Times can also be used on multi-chip embedded
systems, and potential processor heterogeneity can be managed
in a way similar to existing heterogeneous systems, which
calibrate processor performances over a workload. TimeCube
can likewise re-normalize the Progress Time estimates over
heterogeneous processors.

C. Resource Management in TimeCube

Progress Times can be readily used for high-order decisions
in an embedded system; for example, application schedulers
can use Progress Times to track application progress and
assign higher priorities to applications which are not able to
make sufficient progress. The system can allocate resources
to applications based on system-level policies, such as high
throughput or high fairness, while satisfying SLAs or real-time
constraints, such as guarantees of forward progress, minimum
execution rate, or maximum slowdown.

At the microarchitectural level, even though manycore
processors have large quantities of shared resources such as

cache and memory bandwidth, the per core cache size and per
core bandwidth is low. Thus, system performance is especially
sensitive to memory resource allocation. We can use the
pTables to determine a shared resource allocation between
the applications based on application characteristics as well
as system objectives, such as fairness and high throughput.

In a system with multiple concurrent applications contend-
ing for shared resources, an application’s progress depends on
the amount of resources allocated to it. In a fair system, the
progress should be similar between the applications, which
means that even if there is a shortage of resources, they are
distributed such that the applications which provide lower
performance are also given a fair share. However, to attain
a high overall system performance, more resources should be
given to the applications which provide higher performance.
Thus, these two system objectives require conflicting resource
distribution strategies.

TimeCube attempts to address the two conflicting goals
simultaneously. For every interval j, it finds a cache (ĉ) and
bandwidth (b̂) distribution to maximize the geometric mean
of application progress, or Progress Times, to find a balance
between throughput and fairness.

Mean Progress Timej,ĉ,b̂ =
∏

i

(Progress Timei + pTablesj [i, c, b])

(6)
This formulation tries to maximize the forward progress

of every application, while reducing unfair slowdowns for
applications with lower performance. The arithmetic mean
on the other hand would maximize only throughput while
absolutely ignoring fairness. After several time intervals, mean
Progress Time can be approximated to -

Mean Progress Timej,ĉ,b̂ =
∑

i

pTablesj [i, c, b]

Progress Timei

(7)

We need an efficient algorithm to maximize the mean
Progress Time for the system every time slice. Using the
pTables, we can calculate the metric for all possible resource
distributions and choose the best allocation; however, this
brute force method is inefficient. We employ a dynamic
programming based algorithm to calculate the cache and
bandwidth allocation that maximizes mean Progress Time.
This algorithm is based on the insight that we can reuse the
result of a subproblem, i.e. a subset of cache and bandwidth
partitioned between a subset of applications to maximize their
mean Progress Time. We create a 3 dimensional cube, the
Simultaneous Performance Optimization Table, or SPOT, and
use the algorithm, shown in Equation 8, to derive the optimal
allocation in the last cell of SPOT, i.e. SPOTc[N, $t, Bt]. This
calculation is done in parallel with execution.

SPOTv[i, $, B] = Max possible mean progress− time

for i apps, $ cache, and B bandwidth

SPOTc[i, $, B] = Cache and bandwidth distribution

for SPOTv[i, $, B]

SPOTv[i, $, B] = max$′,B′{SPOTv[i− 1, $− $′, B −B′]

+pTables[i, $′, B′]}
SPOTc[i, $, B] = SPOTc[i− 1, $− $′, B −B′]

.append([$′, B′]max)

BestPartition = SPOTc[N, $t, Bt] (8)

In our experiments, we give equal shares of cache and band-
width to all applications at the start of a run. In a real-world
system, applications can be started off with a predetermined
fixed starting cache and bandwidth allocation.

For a 32-core TimeCube instance, the hardware allocation
mechanism occupies 2.19% of the chip area and 0.23% of the
total execution energy. This formulation can handle I/O threads
as well, since if a thread is blocked on I/O, the application’s
pTables will show a low Progress Time for resources, which
can then be allocated to other threads. This also elegantly
handles more applications than cores because of its additive
(rather than multiplicative) formulation. The pTables for the
suspended applications are stored within their context.

D. Prefetcher Throttling

When applications are dynamically allocated memory
bandwidth, prefetchers need to be dynamically tuned. For
example, for a certain cache and bandwidth partition, an
application might face a shortage of bandwidth and the band-
width loss due to incorrect prefetches might overshadow the
latency savings because of correct prefetches. We propose a
new mechanism which dynamically adjusts the prefetching
aggressiveness to maximize the utilization of the dynamically
changing available memory bandwidth and can work in con-
junction with any existing prefetcher accuracy improvement
mechanism.

Stream
Tracker

Prefetch
Buffer

Prefetch
Aggression
Controller

Prefetch
Filter

Misses

Prefetches

Required BW
with and w/o
Prefetching

Allocated BW

Aggression
Level

Prefetcher

Throttler

L2

Memory

Shadow
Prefetcher

Fig. 5. The prefetcher throttling mechanism changes the prefetcher aggression
based on the bandwidth requirements and availability. The prefetch aggression
controller (PAC) finds the aggression level to best utilize the available
bandwidth, and the prefetch filter drops the corresponding ratio of prefetches.

The prefetch throttler reduces the number of prefetches
without affecting the internals of the prefetcher by dropping
a fixed ratio of prefetches issued by the prefetcher. This fixed
ratio is called the prefetch aggression level and it is determined
by the prefetch aggression controller, or PAC, based on the
utility of prefetches to an application, as shown in Figure 5.

The PAC takes in the allocated bandwidth for the applica-
tion and the required bandwidth for the application with and
without prefetching, as calculated by the shadow prefetchers.
It uses them to determine the required bandwidth at differ-
ent aggression levels, and assumes that prefetcher accuracy
remains the same, leading to a proportional drop in prefetch
hits. This provides a rough estimate for the number of memory

Cores 32, x86-64 ISA, 3GHz, superscalar, in-order memory
L1 cache 32KB inclusive, 4 way associative, 8 word line,

1 bank, 3 cycle hit, pipelined, 1 read/write port
L2 cache 128 cache-ways, 1 bank per cache-way, 128KB

per bank, 8 word line, 4-way associative, pipelined,
1 read/write port

Network 64-wide, mesh, dynamic router, 1-cycle hop
Prefetcher stream prefetcher, 128 streams, 32 buffers
Memory 4 controllers, bit-interleaved, 4 DIMMs/channel, 4

Ranks/DIMM, 8 Banks/Rank, 64MB/Bank, 16 Banks
and 1GB DDR3 per core, 96Gb/s memory bandwidth

TABLE II. PROCESSOR MODEL

Operation Energy Operation Energy
Instruction Execution 57.2 L2 Data Write 70.9
L1 Tag Match 22.5 Memory Read 5230.1
L1 Data Read 36.0 Memory Write 5120.0
L1 Data Write 38.2 L2 Data Read 65.7
L2 Tag Match 42.2 Network Send 6.2
Progress Time Calc 53.4 Network Rcv 6.4
Shadow-Tag Shift 21.1 Network Hop 4.3

TABLE III. ENERGY (PJ) CONSUMED FOR OPERATIONS

requests at an aggression level. To determine bandwidth for
that aggression level, the PAC determines the overall latency
by assuming that the average prefetch hit latency savings
remains the same at different aggression levels, and using it
to calculate the total latency savings by using the estimated
number of prefetch hits. Once the PAC determines the required
bandwidth for different aggression levels, it finds the prefetch
aggression level for which the required bandwidth is the
same or slightly higher than the allocated bandwidth, and the
prefetcher accordingly drops a fixed ratio of prefetches during
the next execution interval.

III. TIMECUBE EVALUATION

In this section, we describe our processor model and the
benchmarking methodology. We model our evaluation proto-
type along the lines of commercial manycore processors (e.g.
Tile64 [5]). Each core is superscalar, i.e. it can simultaneously
execute multiple instructions, but the memory system requests
are sent in-order. We use a reconfiguration interval of 25
million cycles. We use PTLsim [17] and a memory-system
emulator to simulate execution of multiple applications on a
single many-core chip while sharing last level cache and off-
chip memory. The emulator internally uses DRAMsim2 [18]
for modeling details of the DRAM memory system. Detailed
specifications of our evaluation model are presented in Table II.
We analytically model the area and power consumption using
area and energy numbers obtained from RAW [14] [19] [20]
and McPAT [21] scaled to 45nm, as specified in Table III. In
order to reduce simulation run times, we extract application
representative phases using SimPoint [22] and then concur-
rently run SimPoint combinations.

Benchmarks and their Classification In order to simulate
a typical manycore processor workload, we run combinations
drawn from 26 benchmarks that span SPEC2K, SPEC2K6,
and an I/O intensive benchmark suite we developed internally
to model data-intensive workloads, as shown in Table IV.

slope

L2 Cache Size

1KB
4KB

16KB
64KB

256KB

R
e
q
u
e
s
ts

 p
e
r

K
ilo

 I
n
s
ts

0

0.5

1

1.5

2

2.5

3

3.5

4

Prefetcher

No Prefetcher

stream

L2 Cache Size

1KB
4KB

16KB
64KB

256KB

R
e
q
u
e
s
ts

 p
e
r

K
ilo

 I
n
s
ts

0

5

10

15

20

25

Prefetcher

No Prefetcher

cliff

L2 Cache Size

1KB
4KB

16KB
64KB

256KB

R
e
q
u
e
s
ts

 p
e
r

K
ilo

 I
n
s
ts

0

0.5

1

1.5

2

2.5

3

Prefetcher

No Prefetcher

(a) (b) (c)
Fig. 6. Benchmarks can be classified based on the sensitivity of their miss rate to L2 cache sizes. For some applications like bzip2 (a) cache size has a steady
impact on miss rate, while for others like apsi (b) it has no effect, and some applications like mgrid (c) have a cliff-like profile.

Benchmark uops 32KB L2Hit L2Hit Type Benchmark uops 32KB L2Hit L2Hit Type
/Inst MPKI 128KB 16MB /Inst MPKI 128KB 16MB

IO/webCrwlr 1.67 8.01 12.27% 20.52% slope IO/faceDetect 1.71 0.27 60.81% 60.96% strm
IO/fotoBlur 1.69 11.34 10.79% 17.22% slope IO/diskBckup 1.70 9.33 12.87% 19.21% slope
FP2000/wupwise 1.68 15.37 0.07% 1.11% cliff FP2000/ammp 1.68 9.14 3.21% 97.25% slope
FP2000/swim 1.68 28.86 0.00% 56.47% cliff FP2000/lucas 1.73 5.38 0.00% 0.04% strm
FP2000/mgrid 1.68 2.52 0.00% 35.96% cliff FP2000/fma3d 1.73 3.44 4.05% 22.53% cliff
FP2000/applu 1.68 2.56 4.38% 7.87% strm INT2000/parser 1.65 8.52 11.32% 97.72% slope
INT2000/vpr 1.65 11.82 8.99% 87.82% slope INT2000/bzip2 1.70 2.21 3.08% 78.48% slope
FP2000/art 1.68 45.02 0.00% 0.00% strm INT2000/twolf 1.65 19.03 3.55% 88.51% slope
FP2006/equake 1.67 11.41 7.68% 11.89% strm FP2000/apsi 1.68 22.64 0.00% 00.00% strm
INT2006/astar 1.71 1.47 27.36% 40.57% slope FP2006/namd 1.71 2.49 62.77% 87.94% slope
INT2006/bwaves 1.73 0.17 0.39% 2.01% cliff INT2006/sjeng 1.70 1.08 53.55% 74.23% slope
FP2006/h264ref 1.67 1.54 18.57% 59.90% slope FP2006/soplex 1.71 2.56 10.19% 56.23% slope
INT2006/hmmer 1.68 2.60 2.70% 84.69% cliff INT2006/specrnd 1.65 0.06 4.17% 4.31% strm

TABLE IV. BENCHMARK CHARACTERISTICS. WE USE BENCHMARKS THAT PROVIDE A DIVERSE MIX OF MEMORY CHARACTERISTICS SUCH AS MISS
RATES IN L1, HIT RATE IN L2, AND CACHE MISS PROFILES.

This selection provides a rich spectrum of cache and memory
characteristics, as well as instruction level heterogeneity as
shown by uops/inst, and includes applications such as web
crawlers, photo filters, face detection, computer aided design
tools, scientific computations, data compression, parsing, im-
age recognition, and security algorithms.

The manycore evaluation space, where we run all possible
benchmark combinations, is very large. Moreover, it provides
no intuition about the benchmarks that we have not included
in our evaluation. In order to limit the evaluation space as
well as incorporate a structure into our evaluation, we classify
our benchmarks according to a three-type taxonomy 4, and
then examine runs that include different ratios of the three
types. The taxonomy is as follows: An application which sees
no drop in miss rate with increasing cache size is a stream
application, an application which sees a sudden drop in miss
rate with cache size is a cliff application, and an application
whose miss rate drops gradually with increasing cache size is
a slope application, as described in Figure 6. We can then run
representatives of these classes to estimate behavior of similar
applications to refine our manycore evaluation space. For our
experiments, we run workloads with incrementally changing
composition of benchmarks classes. For each composition,
we run all possible combinations of benchmarks within every
benchmark class, and report the arithmetic mean of their
results.

4In the applications examined, cache sensitivity was a strong classifier
that predicted other characteristics, such as stream applications having good
prefetching behavior and high bandwidth requirements. For a workload with
high variance within cache sensitivity categories, additional classification axes
would be beneficial.

A. TimeCube’s pTables are Highly Accurate

In this subsection, we evaluate the mechanisms for creating
pTables in TimeCube. For validation of our performance
estimation model, we measure an application’s estimated
standalone performance in concurrent mode and its actual
performance in the standalone mode. We ran experiments using
the methodology explained previously, and the results show
that we are able to estimate an application’s standalone per-
formance and its estimated slowdown with 1% average error,
as shown in Table V. Thus, we can reliably use TimeCube’s
pTables for progress measurement and resource management
in embedded systems.

strm slope cliff error strm slope cliff error
(%) (%) (%) (%) (%) (%) (%) (%)
100 0 0 0.39 25 50 25 0.19
75 0 25 0.41 25 75 0 0.16
75 25 0 0.27 0 0 100 7.04
50 0 50 1.26 0 25 75 1.76
50 25 25 0.51 0 50 50 0.61
50 50 0 0.01 0 75 25 0.40
25 0 75 1.72 0 100 0 0.35
25 25 50 0.49 AVERAGE 1.01

TABLE V. TIMECUBE CREATES PTABLES WITH 1% AVERAGE ERROR
OVER A SPECTRUM OF BENCHMARK COMPOSITIONS, AND CAN RELIABLY

USE THEM FOR TRACKING PROGRESS AND MANAGING RESOURCES.

B. Increased Resource Utilization

Throughput is a first order concern for concurrent many-
core systems. We quantitatively analyze the throughput ob-
tained with Progress Time based resource allocation and com-
pare our scheme against a baseline in which we first partition

Compositions

�100%
stream

, 0%
 slope

�75%
 stream

, 0%
 slope

�75%
 stream

, 25%
 slope

�50%
 stream

, 0%
 slope

�50%
 stream

, 25%
 slope

�50%
 stream

, 50%
 slope

�25%
 stream

, 0%
 slope

�25%
 stream

, 25%
 slope

�25%
 stream

, 50%
 slope

�25%
 stream

, 75%
 slope

�0%
 stream

, 0%
 slope

�0%
 stream

, 25%
 slope

�0%
 stream

, 50%
 slope

�0%
 stream

, 75%
 slope

�0%
 stream

, 100%
 slope

AVERAG
E

N
o

rm
a

liz
e

d

 S
y
s
te

m
 T

h
ro

u
g

h
p

u
t

0.5

0.7

0.9

1.1

1.3

1.5

1.7
TimeCube

Baseline

(a)

Compositions

100%
 stream

, 0%
 slope

75%
 stream

, 0%
 slope

75%
 stream

, 25%
 slope

50%
 stream

, 0%
 slope

50%
 stream

, 25%
 slope

50%
 stream

, 50%
 slope

25%
 stream

, 0%
 slope

25%
 stream

, 25%
 slope

25%
 stream

, 50%
 slope

25%
 stream

, 75%
 slope

0%
 stream

, 0%
 slope

0%
 stream

, 25%
 slope

0%
 stream

, 50%
 slope

0%
 stream

, 75%
 slope

0%
 stream

, 100%
 slope

AVERAG
E

N
o

rm
a

liz
e

d
 p

e
rf

o
rm

a
n

c
e

 f
o

r
s
lo

w
e

s
t

a
p

p
lic

a
ti
o

n

0.5

0.7

0.9

1.1

1.3

1.5
TimeCube

Baseline

(b)
Fig. 7. TimeCube’s Progress Time-based resource allocation leads to higher
throughput (a) for the system (36% on average), and higher performance (b)
for the applications (19% on average) due to better resource utilization.

the caches to minimize the cache misses [15], and then we
partition the bandwidth to provide equal slowdown between
applications [9]. Our baseline provides a higher performance
compared to existing commercial manycore system resource
allocations, which provide fair bandwidth sharing between
applications, but do not minimize cache miss rates by through
demand-based dynamic cache allocation.

We observed that throughput improves by 36% on average
for our scheme, compared to the baseline, as shown in Fig-
ure 7(a). These gains are made possible due to simultaneously
allocating different resources with a shared objective, leading
to increased resource utilization, as opposed to existing archi-
tectures that end up allocating different resources (cache and
bandwidth) with possibly conflicting objectives (throughput
and fairness respectively), due to the lack of system-wide
online performance metrics, such as the Progress Time. This
higher resource utilization also leads to an improvement in
application performances by 19% on average, as shown in
Figure 7(b). pTables provide the required information that
helps us allocate these resources simultaneously and increase
utilization.

C. Prefetcher Throttling

We ran experiments over the previously described workload
mixes to test the benefits of prefetcher throttling across a range
of allocated bandwidths (Figure 10). We use nine aggression
levels (0-8) in TimeCube. Our experiments show that at lower
bandwidths, it is beneficial to turn off prefetching as bandwidth
is precious and should not be wasted on potentially bad
prefetches. At higher bandwidths, however, we could afford

Pipeline (34.51%)

L2 Evict (26.84%)

L1 Evict (1.06%)

Prefetcher (12.52%)

pTables (0.01%)

L1 Access (12.96%)

L2 Access (0.50%)
Memory Access (11.16%) Others (0.45%)

Fig. 8. Energy distribution in TimeCube. Energy consumed by pTables
(0.01%) is very small.

Core (20.34%)

Networks (4.77%)

L2 Tag (6.87%)

Memory Controller (0.30%)

L2 Data (58.48%)

Shadow Tags (1.40%)

Other (6.73%)
pTables (1.11%)

Fig. 9. Area distribution in TimeCube. The area consumed by shadow-tags
and pTables is small (1.40% and 1.11%, respectively). Area consumed by
resource allocation is 2.19%.

to spend some bandwidth on inaccurate prefetches in lieu of
the latency savings of prefetch hits. Our throttling mechanism
figures out the right point at which to change the prefetcher
aggression level. This leads to improved performance over
static policies in the regime where the available bandwidth
lies in between the bandwidths required with prefetching fully
ON or fully OFF. Hence, prefetcher throttling provides a
near optimal performance at all bandwidths by approximately
tracking the Pareto curve for all throttling levels.

D. Area and Energy Distribution in TimeCube

We now analyze the energy and area distribution for
TimeCube. For an example 32 application mix, we observe
that the portion of total energy consumed in L2 access is low
(0.50%), as shown in Figure 8. Most of the energy is consumed
in core execution (47.47% including L1 access) and main
memory operations (45.36% for access and writeback). Energy
consumed for supporting Progress Time is low, i.e. 0.01%,
while the energy consumed in using Progress Time to allo-
cate resources was 0.23%. The microarchitectural mechanisms
required to estimate Progress Time consume less than 3%
chip area. Shadow-Tags consumes 1.40%, and pTables 1.11%,
as shown in Figure 9. Area consumed by hardware resource
allocation (2.19%) is small as well. Overall, the mechanisms
for measuring and using Progress Time in TimeCube are
energy and area efficient.

IV. RELATED WORK
Interference in manycore systems. The emergence of
manycore embedded computing, which offers higher density
and energy-efficiency, was punctuated by the arrival of Tilera’s
Tile Gx100 [1] and Intel’s 48-core SCC [2]; this has further
necessitated the reduction/measurement of interference in em-
bedded systems, as these manycore processors rely on shared
resources that greatly impacts application performances, as

High Bandwidth Regime

Bandwidth per app (Gbps)

1.500

2.625

3.750

4.875

6.000

7.125

T
h
ro

u
g
h
p
u
t
p
e
r

a
p
p

0

0.2

0.4

0.6

0.8

No Prefetching

Throttled Prefetching

Low Bandwidth Regime

Bandwidth per app (Gbps)

0.375

1.125

1.875

2.625

3.375

T
h
ro

u
g

h
p

u
t
p

e
r

a
p

p

0

0.2

0.4

0.6

0.8

No Throttling

Throttling

(a) (b)
Fig. 10. Prefetcher Throttling maximally utilizes the available bandwidth by intelligently switching between full prefetching, no prefetching, as well as in
between aggression levels. When provided with sufficient bandwidth, prefetch throttler sends all requests to memory(a), however for lower bandwidth regimes,
prefetch throttler switched off prefetching completely to avoid wasting bandwidth on incorrect prefetches (b). Prefetcher throttling mechanism changes the
aggression levels at the right point between these two regimes, which leads to a better performance than both no prefetching and full prefetching.

described by Tang et al. [23]. This can lead to difficulties in ex-
isting resource management techniques for multiprogrammed
embedded systems, such as the ones proposed by Lipari et
al. [24], Bernat et al. [25], and Beccari et al. [26]. Govindan
et al. [4] show that even with the use of software mechanisms,
such as hypervisors, the unpredictability in slowdowns when
sharing architectural resources is very high. Stillwell et al. [27]
also examined the performance impact of resource sharing
in servers at the system level, reducing the effectiveness of
techniques such as resource reservation [28] and proportional
resource sharing [29] for real-time systems. For resource-
sharing embedded systems, it is important to accurately es-
timate the progress of applications and exercise control over
it in order to maintain performance guarantees and improve
resource utilization, as also pointed out by Buttazzo [30].

Progress Time provides a performance abstraction for
interference-free execution. Such abstractions can be useful
for high-order decisions such as resource management and
progress tracking, as suggested by Zhang et al. [31], in
manycore systems.

Dynamic Execution Isolation. Performance isolation has
been proposed as a means to reduce resource interference.
Verghese et al. [32] proposed mechanisms for performance
isolation for resources such as I/O bandwidth and storage,
while Banga et al. [33] suggested resource containers to
isolate and account for system-level resource usage. However,
since typical manycore architectures rely on shared processor
resources, this performance isolation (and not just resource
isolation [8]) should be extended to the micro-architectural
levels to account for application slowdowns due to sharing of
processor resources.

Shadow Performance Modeling. TimeCube creates
Progress Times using an analytical performance estimation
model similar to the one proposed by Solihin et al. [34].
We further enhance our model by tracking prefetches, adding
memory bandwidth constraints by tracking dirty lines, similar
to the mechanism proposed by Kaseridis et al. [35], and
modeling the details of DRAM DDR protocol and bank buffer
behaviors. For our model we need cache miss estimates for
arbitrary cache sizes. Shadow cache techniques have been
proposed for associative caches, such as by Zhou et al. [36],

which are based on the LRU-stacking property [37].

Shared Resource Management. We allocate multiple
resources simultaneously in conjunction with resource parti-
tioning schemes. Our allocation scheme is online as opposed
to offline profiling based allocation schemes proposed by Liu
et al. [6] and Suh et al. [7]. Bitirgen et al. [38] also proposed
simultaneous cache and bandwidth allocation using machine
learning; however, their technique provides no information
about application slowdowns and requires a training phase.
Srikantaiah et al. [39] also propose simultaneous resource al-
location, but they assume a simple exponentially decaying miss
rate with increasing cache size, which is an oversimplification,
as shown in Figure 6. Federova et al. [40] examined OS-level
scheduling to optimize CMT (multithread CMPs) performance;
however, we are able to provide a finer grained control over
application execution rates. Previous work has also proposed
individual resource allocation; for example, Hsu et al. [41] tune
their cache allocation algorithm to maximize different metrics
such as fairness and throughput; and Guo et al. [42] allocate
cache partitions based on QoS provided by choosing between
strict, elastic, and opportunistic schemes.

TimeCube’s distributed memory controllers can utilize any
memory scheduling scheme which fairly distributes the avail-
able bandwidth between applications. There exist many fair
scheduling techniques, such as stall-time fairness [43], or self-
optimizing controllers [44]. However, we use the fair queue
arbiter [8], since it does fair-scheduling while staying within
allocated bandwidth limits for each application.

Our proposed dynamic prefetcher throttling mechanism
can be used in conjunction with mechanisms that improve
prefetcher accuracy or timeliness such as Ebrahimi et al. [45]
and Lee et al. [10]. Our motivation for prefetcher throttling
is to reduce bandwidth pressure which cannot be significantly
reduced by existing mechanisms, such as changing prefetching
distance as in FDP [46], which also can be used in conjunction
with our mechanism.

V. CONCLUSION

Manycore processors have to tackle the challenge of in-
terference due to space-multiplexing, which can cause large

and unpredictable slowdowns if left unmanaged. Overcoming
this hurdle can improve their usability for embedded systems,
which need to accurately measure application progress and
maintain guarantees about quality of execution. Progress Time
can be used to quantify application progress irrespective of
resource heterogeneity. TimeCube, a manycore processor, uses
dynamic execution isolation and shadow performance model-
ing to accurately estimate Progress Time with just 1% error and
uses them for resource management, increasing throughput by
36%. Overall, the results argue for adding the requisite micro-
architectural structures to support Progress Time in manycore
chips for embedded systems.

REFERENCES

[1] R. Schooler, “Tile processors: Many-core for embedded and cloud
computing,” in Workshop on High Performance Embedded Computing,
2010.

[2] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, S. Borkar, V. De,
R. C. D. Wijngaart, and T. Mattson, “A 48-Core IA-32 Message-Passing
Processor with DVFS in 45 nm CMOS,” in ISSCC, 2010.

[3] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele, “Many-
core key-value store,” in International Green Computing Conference
and Workshops, 2011.

[4] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam, “Cuanta:
quantifying effects of shared on-chip resource interference for consoli-
dated virtual machines,” in SOCC, 2011.

[5] Bell et al., “TILE64 Processor: A 64-Core SoC with Mesh Intercon-
nect,” in ISSCC, 2008.

[6] C. Liu et al., “Organizing the last line of defense before hitting the
memory wall for CMPs,” in HPCA, 2004.

[7] G. E. Suh, S. Devadas, and L. Rudolph, “Analytical cache models with
applications to cache partitioning.” in HPCA, 2002.

[8] K. J. Nesbit, J. Laudon, and J. E. Smith, “Virtual private caches,” in
ISCA, 2007.

[9] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair queuing
memory systems,” in MICRO, 2006.

[10] C. J. Lee, O. Mutlu, V. Narasiman, and Y. Patt, “Prefetch-aware dram
controllers,” in MICRO, 2008.

[11] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” in ISCA, 2000.

[12] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu, “A software
memory partition approach for eliminating bank-level interference in
multicore systems,” in PACT, 2012.

[13] C. A. Waldspurger, “Memory resource management in vmware esx
server,” SIGOPS Oper. Syst. Rev.

[14] M. B. Taylor et al., “Evaluation of the Raw Microprocessor: An
Exposed-Wire-Delay Architecture for ILP and Streams,” in ISCA, 2004.

[15] M. Qureshi and Y. Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches,” in MICRO, 2006.

[16] M. Moreto, F. Cazorla, A. Ramirez, and M. Valero, “Online prediction
of applications cache utility,” in Embedded Computer Systems: Archi-
tectures, Modeling and Simulation, IC-SAMOS 2007.

[17] M. T. Yourst, “Ptlsim: A cycle accurate full system x86-64 microarchi-
tectural simulator.” in ISPASS, 2007.

[18] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and B. Ja-
cob, “Dramsim: A memory-system simulator,” in SIGARCH Computer
Architecture News, September 2005.

[19] J. S. Kim, M. B. Taylor, J. Miller, and D. Wentzlaff, “Energy charac-
terization of a tiled architecture processor with on-chip networks,” in
ISLPED, 2003.

[20] M. B. Taylor, “The raw processor specification,” in Technical Memo,
CSAIL/Laboratory for Computer Science, MIT, 2004.

[21] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO, 2009.

[22] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in ASPLOS, 2002.

[23] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, “The im-
pact of memory subsystem resource sharing on datacenter applications,”
in ISCA, 2011.

[24] G. Lipari and S. K. Baruah, “Efficient scheduling of real-time multi-
task applications in dynamic systems,” in Real Time Technology and
Applications Symposium, 2000.

[25] G. Bernat and A. Burns, “Multiple servers and capacity sharing for
implementing flexible scheduling,” Real-Time Syst., Jan. 2002.

[26] G. Beccari, S. Caselli, and F. Zanichelli, “A technique for adaptive
scheduling of soft real-time tasks,” Real-Time Syst., Jul. 2005.

[27] M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova, “Resource
allocation using virtual clusters,” in International Symposium on Cluster
Computing and the Grid, 2009.

[28] L. Abeni and G. Buttazzo, “Resource reservation in dynamic real-time
systems,” Real-Time Syst., Jul. 2004.

[29] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke, and
C. Plaxton, “A proportional share resource allocation algorithm for real-
time, time-shared systems,” in Real-Time Systems Symposium, 1996.

[30] G. Buttazzo, “Research trends in real-time computing for embedded
systems,” SIGBED Rev., 2006.

[31] X. Zhang, S. Dwarkadas, G. Folkmanis, and K. Shen, “Processor
hardware counter statistics as a first-class system resource,” in Workshop
on Hot Topics in Operating Systems, 2007.

[32] B. Verghese, A. Gupta, and M. Rosenblum, “Performance isolation:
sharing and isolation in shared-memory multiprocessors,” in ASPLOS,
1998.

[33] G. Banga, P. Druschel, and J. C. Mogul, “Resource containers: a new
facility for resource management in server systems,” in OSDI, 1999.

[34] Y. Solihin, V. Lam, and J. Torrellas, “Scal-tool: pinpointing and quan-
tifying scalability bottlenecks in dsm multiprocessors,” in SC, 1999.

[35] D. Kaseridis, J. Stuecheli, J. Chen, and L. K. John, “A bandwidth-aware
memory-subsystem resource management using non-invasive resource
profilers for large cmp systems.” in HPCA, 2010.

[36] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and
S. Kumar, “Dynamic tracking of page miss ratio curve for memory
management,” in ASPLOS, 2004.

[37] M. D. Hill, “Aspects of cache memory and instruction buffer perfor-
mance,” Ph.D. dissertation, 1987.

[38] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated management
of multiple interacting resources in chip multiprocessors: A machine
learning approach,” in MICRO, 2008.

[39] S. Srikantaiah and M. T. Kandemir, “Srp: Symbiotic resource partition-
ing of the memory hierarchy in cmps.” in HiPEAC, 2010.

[40] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum, “Performance
of multithreaded chip multiprocessors and implications for operating
system design,” in Proceedings 2005 USENIX Technical Conference,
2005.

[41] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni, “Communist,
utilitarian, and capitalist cache policies on cmps: caches as a shared
resource,” in PACT, 2006.

[42] F. Guo, Y. Solihin, L. Zhao, and R. Iyer, “A framework for providing
quality of service in chip multi-processors,” in MICRO, 2007.

[43] O. Mutlu and T. Moscibroda, “Stall-time fair memory access scheduling
for chip multiprocessors,” in MICRO, 2007.

[44] E. Ipek, O. Mutlu, J. F. Martı́nez, and R. Caruana, “Self-optimizing
memory controllers: A reinforcement learning approach,” in ISCA,
2008.

[45] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Prefetch-Aware
Shared-Resource Management for Multi-Core Systems,” in ISCA, 2011.

[46] S. Srinath, O. Mutlu, H. Kim, and Y. Patt, “Feedback directed prefetch-
ing: Improving the performance and bandwidth-efficiency of hardware
prefetchers,” in HPCA, 2007.

