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Abstract
After a software system is compromised, it can be difficult
to understand what vulnerabilities attackers exploited. Any
information residing on that machine cannot be trusted as
attackers may have tampered with it to cover their tracks.
Moreover, even after an exploit is known, it can be difficult
to determine whether it has been used to compromise a
given machine. Aviation has long-used black boxes to better
understand the causes of accidents, enabling improvements
that reduce the likelihood of future accidents.

Many attacks introduce abnormal control flows to com-
promise systems. In this paper, we present BLACKBOX, a
monitoring system for COTS software. Our techniques en-
able BLACKBOX to efficiently monitor unexpected and po-
tentially harmful control flow in COTS binaries. BLACKBOX
constructs dynamic profiles of an application’s typical con-
trol flows to filter the vast majority of expected control flow
behavior, leaving us with a manageable amount of data that
can be logged across the network to remote devices.

Modern applications make extensive use of dynamically
generated code, some of which varies greatly between exe-
cutions. We introduce support for code generators that can
detect security-sensitive behaviors while allowing BLACK-
BOX to avoid logging the majority of ordinary behaviors.

We have implemented BLACKBOX in DynamoRIO. We
evaluate the runtime overhead of BLACKBOX, and show that
it can effectively monitor recent versions of Microsoft Office
and Google Chrome. We show that in ROP, COOP, and state-
of-the-art JIT injection attacks, BLACKBOX logs the pivotal
actions by which the attacker takes control, and can also
blacklist those actions to prevent repeated exploits.

Categories and Subject Descriptors D.3.4 [Software Engi-
neering]: Processors—security, run-time environments

Keywords Program Monitoring, Control Flow Integrity,
Binary Rewriting, Dynamic Code Generation

1. Introduction
Determining how a system was compromised or whether a
given exploit was used against a system can be extremely
difficult. Information residing on the machine after it is com-
promised cannot be trusted as attackers may have tampered
with or even deleted logs to cover their tracks.

Many exploits leverage software bugs to implement ma-
licious behaviors by manipulating a program’s control flow.
Indeed, a wide range of control-flow integrity (CFI) tools [13,
23, 24, 28, 33, 36, 37] attempt to block such attacks by con-
straining program executions to the intended control flow.
Unfortunately, it is extremely difficult to exactly determine a
program’s intended control flow due to fundamental limita-
tions, and many attacks exploit inaccuracy in the knowledge
of a program’s intended control flow [7, 14, 18, 29, 32].

Rather than attempt to precisely determine a program’s
intended control flow, we instead focus on developing tech-
niques for (a) efficiently monitoring potential execution
anomalies on remote machines to enable later analysis of at-
tacks, (b) distilling and prioritizing logged events to facilitate
proactive health monitoring, and (c) blacklisting malicious
control flow to prevent known and potential exploits.

Table 1: Distinct modules employing code generators in pop-
ular Windows programs. Dynamic code is a growing trend.

Dynamic Routine Generators JIT Compilers
Word 8 1
PowerPoint 9 1
Excel 4 1
Outlook 4 1
Chrome 6 2
Adobe PDF 13 2

Dynamically generated code (DGC) poses a significant
challenge for monitoring the behavior of applications. Table 1
shows that many major Windows programs incorporate one
or more just-in-time (JIT) compilation engines to (a) support
internal components developed in scripting languages, or
(b) generate small routines that efficiently bind application
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Figure 1: The three phases of BLACKBOX program monitoring.

components at runtime. To avoid logging overwhelming
quantities of meaningless control flow events for DGC, it is
necessary to learn the behaviors of code generation engines.

1.1 Basic Approach
This paper presents a new tool for efficient black box moni-
toring of commercial off-the-shelf (COTS) binaries. The key
challenge is filtering expected program behaviors, pruning
the vast majority of uninteresting data to achieve reasonable
instrumentation and logging overheads. Our key insight is
that by combining a simple static analysis with online learn-
ing, we can extract a trusted profile of a program constituting
an underapproximation of its intended control flow. Our ap-
proach leverages information collected by monitoring the
executions of the binaries to learn (1) the normal targets of
indirect branches, (2) special cases that appear in real world
programs, and (3) the behavior of dynamic code generators.
1.2 Intended Uses
We next discuss some potential use cases for BLACKBOX:

• Post attack audits: It can be difficult to determine how a
machine was compromised. Organizations often have sev-
eral similarly configured servers and thus it can be impor-
tant to determine how a given machine was compromised
so that the remaining servers can be secured.

• Determining whether a given exploit occurred: After
an exploit is known, it can be important to determine which
machines have been compromised by that exploit. It may
not be sufficient to examine the machine, as the attacker
may have carefully hidden any evidence.

• Statistical analysis: If an organization has multiple simi-
larly configured machines, statistical analysis can provide
insights into attacks. For example, if a specific new behav-
ior appears simultaneously on a few machines, it may be
worth investigating whether they were all compromised.

• Exploit Immunization: A common security strategy is to
blacklist known exploits, but today’s anti-virus is labor in-
tensive, requiring (a) manual analysis of malicious binaries
and (b) development of signatures to uniquely match bina-
ries on disk. The resulting blacklist performs poorly at the
client site, and recent advances in malware development
(e.g., payload randomization) make evasion relatively easy.

Figure 1 depicts an overview of the BLACKBOX compo-
nents, beginning on the left with the Offline Profiling phase,
which generates the trusted profile. In the Online Monitoring
phase (at the end user’s site), BLACKBOX filters the major-
ity of benign program events, making it possible to log the
remaining events securely to remote servers. The Log Filter
simply elides any program event that is already known to
the trusted profile, with the exception of system calls—since
malicious program behavior relies on system calls to carry
out its destructive effects, BLACKBOX logs any system call
that may have been indirectly affected by untrusted program
events. The stack spy makes this decision based on program
events in the stack frames leading to each system call (Sec-
tion 4.1). To prevent the exploit of known vulnerabilities,
BLACKBOX provides a malware blacklist that can be con-
figured to block specific program events–such as the pivotal
branch of a known exploit–or systematically protect error-
prone code in the monitored program (Section 5). To further
improve usability of the BLACKBOX log, the final Offline
Processing phase leverages the trusted profile in a statistical
analysis that “sniffs out” the most suspicious log entries and
prioritizes the log accordingly (Section 4.3).

1.3 Contributions
This paper makes the following contributions:

• Monitoring Infrastructure. It presents BLACKBOX, a
virtualization system that during a training phase monitors
executions to learn a trusted profile for a program, greatly
reducing the amount of data that must be logged.

• JIT Code. It presents an inferred permission system that
lifts the control flow variations of dynamically generated
code to a level of abstraction that is consistent across
executions while retaining its security-sensitive behaviors.

• Support for Non-standard Control Flow. It presents
techniques for discovering and trusting non-standard con-
trol flows that are common in modern Windows programs.

• Preventative Monitoring. It presents techniques for pri-
oritizing logged events to facilitate proactive analysis of
system health and early vulnerability detection.

• Control Flow Blacklist. It presents a control flow blacklist
that reliably and efficiently blocks known exploits.



2. Monitoring
BLACKBOX uses binary rewriting to efficiently monitor a
client program’s control flow. Under binary rewriting, the
operating system loads the program modules into memory in
the normal way, but the code is no longer executed directly
from those mapped images. Instead, BLACKBOX copies
program instructions into a code cache as the execution
encounters them, and execution occurs over the copy. Since
BLACKBOX has exclusive control over the contents of the
code cache, the observation of a control-flow branch when
it is initially linked within the code cache remains valid for
the duration of the execution in the majority of cases. This
makes it possible for BLACKBOX to observe every branch
while achieving near-native performance (see Figure 5).

The naive approach to black-box monitoring would re-
motely log every control flow branch taken by each executing
thread. But the bandwidth consumption would be enormous,
and analysis of such massive logs would be a daunting task.
To make the logging approach usable, BLACKBOX employs
several techniques to filter out as many program actions as
can be pre-determined to be safe. To illustrate this approach,
Table 3 in Section 6.1 shows samples of log sizes as each
noise reduction technique is applied.

The first noise reduction technique leverages the insight
that most exploits rely on some deviation from the normal
control flow of the target program—at least one branch occurs
that would never be taken outside the influence of the exploit.
Instead of logging every branch taken, BLACKBOX only
logs each distinct branch once during an execution of the
monitored program—at the time that branch is linked within
the code cache. This approach retains evidence of every
distinct program action while astronomically reducing the
number of log entries.

2.1 Trusted Profile
The remainder of this section discusses further noise reduc-
tion techniques for the BLACKBOX log. These techniques
all make use of a trusted profile, which is a file on disk con-
tained detailed information about the normal, safe behavior
of the monitored program. The key idea is that such ordinary
execution behavior need never appear in the remote logs.

The trusted profile relies on the fact that the targets of
direct branches can be determined offline. For each program
module, a static analysis determines the single correct target
of each direct branch and adds it to the module’s trusted pro-
file. At runtime, BLACKBOX consults the profile to determine
locally whether a given direct branch is normal, and only logs
deviations to the remote server.

The set of branches is represented in the trusted profile as
a control flow graph (CFG) in which a node represents one
basic block of instructions, and an edge represents a transfer
of control from one basic block to another, such as a call or
jmp. A basic block is defined as a sequence of instructions
having one entry and one exit. To uniquely identify each basic
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Figure 2: BLACKBOX trusted profile training.

block, BLACKBOX labels it with the offset from the start of its
containing module. Each edge is labeled with a type, which
(for statically compiled code) is one of (a) direct branch, (b)
indirect branch, or (c) incorrect return (see Section 2.4). A
program action is just the execution of a basic block or an
edge between them.

2.2 Expanding Trust With Training
To reduce the noise of normal indirect branches in the log,
BLACKBOX must learn these branch targets by observation,
since indirect branch targets cannot be determined statically
without access to source code. For example, the set of
functions that may be correctly reached from a call to a C++
instance method can only be determined from a combined
analysis of the source code of the program and all its modules.
To avoid dependencies on program source code, BLACKBOX
employs a training phase in which the program is executed in
a trusted environment, and any indirect branch taken by the
program is written to a trusted trace. An offline tool merges
each trusted trace into the CFG to extend coverage of the
trusted profile (as shown in Figure 2).

2.3 Trusting Self-Instrumentation
The trusted profile must again be expanded for a special case
that commonly arises on the Windows platform: programs
often make small changes to their own statically compiled
code at runtime. The typical example is system call hooks,
in which the program wraps or even replaces a system call
by writing a 5-byte jmp instruction at the start of the system
call trampoline. BLACKBOX must account for two different
versions of the same basic block, since these hooks are
installed by the program as it starts up. When BLACKBOX
observes a hook during the training phase, it expands the
unique identifier for the hooked basic block to include the
hash code of the basic block instructions, along with a
chronological version number.

2.4 Filtering Normal Returns
The most common type of indirect branch—the return—can
be systematically filtered from the log in most cases, based
on the intuition that if the call was trusted (or has already
been logged), the return to the call site must also be trusted
(or need not be logged). In a hardware ret instruction, a



vulnerable stack entry is consulted to find the location in
the calling function to which it should return. To evaluate
the correctness (i.e., safety) of call/return pairs, BLACKBOX
instruments each call site with a push to a shadow stack, and
links all returns to an in-cache assembly routine that pops
from the shadow stack and verifies the destination.

Some programs make regular use of incorrect returns, for
example by deliberately pushing an arbitrary address into
the stack slot reserved for the return address and issuing a
bogus ret instruction. This often occurs in thread pooling
mechanisms such as Windows fibers. While these program
actions are abnormal in the sense of canonical stack usage,
BLACKBOX must regard them as normal because they con-
stitute trusted program behavior. When an incorrect return
occurs during the training phase, BLACKBOX writes it to the
trusted trace just like any other indirect branch, and handles
an incorrect return similarly during monitoring.

3. Dynamically-Generated Code
The techniques discussed so far are sufficient for BLACKBOX
to efficiently monitor statically compiled Windows programs.
But with today’s complex development platforms, even a
simple program like Windows Notepad leverages the Mi-
crosoft Managed Runtime to dynamically generate a few
basic blocks in heap-allocated memory. Many low-level se-
curity tools give carte blanche to DGC, leaving the program
vulnerable to arbitrary injection attacks. BLACKBOX cannot
apply its trusted profile techniques for statically compiled
code to DGC because it lacks context information:
• it does not belong to any module on disk,
• the set of possible entry points are only known from the

set of observed entry points
• it never has symbols associated with its functions,
• it may use abnormal calling conventions, or omit the

call/return convention entirely,
• it may be modified during execution, e.g. the Mozilla Ion

JIT frequently toggles opcodes between lea and mov
• it may be rewritten many times in the same memory loca-

tion (possibly by code that was dynamically generated),
• a dynamic basic block may rewrite itself as it executes.

To effectively monitor dynamically generated code,
BLACKBOX infers a permission model for the program’s
DGC and writes a concise abstract representation of those
permissions to the trusted profile. This approach avoids the
difficulty of evaluating the DGC itself, and instead trusts
any DGC that (a) is produced by the application’s trusted
code generators, and (b) interacts with the operating sys-
tem using the application’s trusted API for DGC (similar
to RockJIT [28], but also applicable to an application’s ad
hoc code generators). When the program’s DGC does not
comply with the permission model, BLACKBOX only logs
the untrusted DGC program actions to the remote server.
These few deviations are relatively easy for the log analyst

to understand, yet provide sufficient information to diagnose
exploits, and can even be used to blacklist them.

3.1 Permission Model
Dynamic code generators in today’s Windows programs
have three common characteristics that form the basis of
our permission model:
1. The memory in which the dynamic code resides is usually

allocated by the module that generates the code.
2. Permissions for DGC memory pages are usually managed

by a fixed set of call sites within the code generator.
3. There are typically fewer than 20 store instructions in the

code generator that write to DGC memory allocations after
they are granted executable permission.
While there may exist code generators that do not exhibit

these characteristics, it is sufficient for the purposes of
BLACKBOX that this set generally holds for the most popular
JIT engines, including Mozilla Ion, Chrome V8, Internet
Explorer’s Chakra, and the Microsoft Managed Runtime.

The BLACKBOX dynamic code permission model adds
three new edge labels to the CFG:

• gencode write between nodes X and Y indicates that an
instruction in node X (or in a callee of call site X) wrote
dynamic code Y, which was later executed.

• gencode chmod between nodes X and Y indicates that an
instruction in node X (or in a callee of call site X) changed
the executable permission on a memory region con-
taining dynamic code Y, which was later executed.

• gencode call indicates an entry point into dynamic code
from statically compiled code, or (similarly) an exit from
dynamic code into statically compiled code.
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write or page chmod occurs (solid arrows). The call
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its dependent libraries (upward dotted arrows).

Figure 3 illustrates the construction of the gencode write
and gencode chmod edges. These edge types are complemen-
tary, such that for any DGC basic block, BLACKBOX ob-



serves at least one gencode write or gencode chmod, but not
necessarily both. This guarantees visibility of DGC whether
it is written directly to an executable region, or written
to a buffer that is later made executable.

Since it is difficult for BLACKBOX to determine which
call on the stack made the semantic decision to write DGC
or chmod a DGC region, BLACKBOX simply creates an edge
from every call site on the stack. There is one special case for
a gencode chmod by a module that keeps its DGC private (i.e.,
no other module calls its DGC): BLACKBOX assumes the
semantic decision came from that module, and only creates a
gencode chmod from that module’s call site.

BLACKBOX observes these three gencode action types
during the training phase and writes the edges to the trusted
profile. This becomes the permission model for the program’s
dynamic code generators. As BLACKBOX monitors the pro-
gram at the client site, gencode actions that conform to these
permissions are considered safe, and logging is elided—but if
the program takes any other gencode actions, the correspond-
ing edges are logged to the remote server. Section 5.1 gives a
concrete example of both logging and blacklisting the pivotal
attack vectors of a state-of-the-art JIT injection attack.

3.2 Dynamic Singleton Node
Since BLACKBOX is unable to correlate low-level control
flow in dynamic code between executions of the program,
each contiguous subgraph of dynamic code is represented as
a dynamic singleton node. BLACKBOX establishes a trusted
vocabulary for each dynamic singleton: for every program
action taken within the dynamic code region, a self-edge
of that type is added to the dynamic singleton. This allows
BLACKBOX to take advantage of useful properties of popular
JIT engines such as Microsoft Chakra and Chrome V8,
which throughout our corpus of experiments never generate a
gencode chmod self-edge. Anytime an executing thread takes
a branch from one dynamic singleton to another, the two are
merged by combining all their edges.

3.3 Observing Dynamic Code Writes
Observing the gencode write is challenging because the
performance overhead of instrumenting all store instruc-
tions would be far too high. BLACKBOX takes an over-
approximating approach by leveraging the operating sys-
tem’s memory permissions to observe all writes to mem-
ory pages that have ever been set executable. BLACK-
BOX maintains a shadow page table with a set of potential
code pages, and adds any page to that set when it is first
set executable. Whenever the monitored program sets a
potential code page to writable, BLACKBOX artificially
makes it readonly, such that any write to the page causes
a fault that BLACKBOX intercepts and handles:

• Add a potential code write entry to the shadow page table
for the specific range of bytes written.

• Change the memory permission to writable and allow
the program to execute the write.

• Reset the memory permission to readonly so that future
rewrites of the region will also be detected.

If the program’s writes did contain code, BLACKBOX
relies on the fact that it does not appear in the code cache
yet: every time new code is cached from a dynamically
allocated page, BLACKBOX consults the shadow page table,
and if any pending code write entries are found associated
with those fresh basic blocks, then BLACKBOX creates the
corresponding gencode write edges—one from each call site
that was on the stack at the time of the write. While it is
possible for the program to write code and never execute it,
BLACKBOX can elide the corresponding gencode write edges
because code that is never executed can do no harm.

To mitigate the page fault overhead for store instructions
that frequently write code (typical of JIT engines), BLACK-
BOX can instrument the instruction with a hook to create
the gencode write edges. This approach greatly improves
performance on aggressive JavaScript benchmarks [20].

3.4 Standalone Dynamic Routines
BLACKBOX can be configured to log standalone dynamic
routines in more detail than the coarse API logging of the
dynamic singleton. We leverage two observations:

• For contiguous subgraphs of dynamic code having fewer
than 500 basic blocks, the number of distinct permutations
of these routines across program executions is relatively
low, making the total size of all observed permutations
small enough to fit in the trusted profile.

• Small contiguous subgraphs of dynamic code usually have
an owner, which is a statically compiled module that takes
exclusive responsibility for (a) writing its dynamic code,
and (b) setting executable permission on the memory
where its subgraph resides.

When standalone dynamic routine monitoring is enabled,
BLACKBOX writes the CFG for every standalone to the
trusted profile of its owning module. This approach adds
a small overhead because BLACKBOX must check the trusted
profile every time it copies new dynamic code into its code
cache. But for all the programs we have observed, including
frequent standalone generators like Microsoft Office, the
program never modifies its standalones, making the overhead
relatively insignificant.

Matching Standalone Dynamic Routines
Since dynamic code can be placed at any arbitrary memory
location, and there is no module boundary to define a reliable
relative address, BLACKBOX identifies each basic block in a
standalone dynamic routine by (a) the hashcode of its instruc-
tion bytes and (b) its edge relationship with neighboring CFG
nodes. When a new dynamic code entry point is observed,
BLACKBOX creates a candidate list of standalones populated
from the trusted profile. As new basic blocks are copied into
the code cache, each candidate is checked for a correspond-
ing node with the same hashcode and having the same edge



relationship. Candidates having no match are removed from
the list, and if the candidate list becomes empty, BLACKBOX
marks the standalone as suspicious and logs its current (and
any future) basic blocks to the remote server.

If at any point the standalone dynamic routine takes an
edge into existing dynamic code, BLACKBOX traverses the
set of newly connected nodes until:

• The total size exceeds the (configurable) upper bound of
500 basic blocks; the two are combined into a single JIT
region (creating a new one if necessary).

• All candidate routines are rejected; the new routines is
logged to the remote server as suspicious.

• The end of the connected region is reached; the new routine
remains a potential match for its candidate routines.

This approach is advantageous for identifying code injec-
tion attacks, because the total size is often smaller than 500
basic blocks, such that the entire injection will be logged to
the remote server. Even if it exceeds this size, the standalone
dynamic routine matching algorithm will progressively write
its first 500 basic blocks to the remote server as they are
executed. The only ways for the adversary to hide such an
injection are challenging in practice:

• Exactly match the instruction hash and edge relationships
of an existing standalone dynamic routine (for every basic
block), which exponentially reduces the attack options, or

• Enter the injection from existing JIT code, which effec-
tively requires another code injection in the JIT region.

4. Watchdog Mode
To further improve security on the monitored systems,
BLACKBOX can facilitate preventative monitoring with its
watchdog mode. The key difference between triage and
prevention is that triage leverages information about a spe-
cific exploit occurrence to narrow its search for the security
breach—for example, the paths of affected files—while pre-
vention searches the entire body of program behaviors for
potential vulnerabilities, suspicious trends among groups of
related users. To this end, watchdog mode provides two fea-
tures that prioritize the logs by estimated degree of suspicion:

• An online stack spy that separately logs any system call
that occurs in a suspicious stack context, and

• An offline sniffer dog that uses PowerLaw modeling to
identify log entries having a suspicious smell.

4.1 Stack Spy
The BLACKBOX stack spy leverages the insight that the
greatest risk to the security of a monitored program occurs
along the control flow paths to system calls. A typical ROP
attack takes control of the instruction pointer and drives
execution through shellcode that is completely foreign to
the victim program, with a goal of executing system calls
to access the file system and/or network. More sophisticated
attacks employ crafted input to cause a slight detour along

Table 2: Log entries per day while writing this research pa-
per under BLACKBOX. Stack spy highlights any question-
able filesystem syscalls (0x25 NtMapViewOfSection,
0x47 NtCreateSection, 0x52 ZwCreateFile).

Logged Program Action SciTE pdflatex
Indirect Branch 132 9
Suspicious Syscall 0x25 1 0
Suspicious Syscall 0x47 1 0
Suspicious Syscall 0x52 3 0

the program’s normal route to a system call, enabling the
attacker to modify the effect of that system call for malicious
advantage. In most such cases, BLACKBOX will observe at
least one untrusted branch along the control flow path to the
system call. To isolate this scenario, the stack spy separately
logs suspicious system calls that occur while any frame on
the call stack has been influenced by an untrusted branch.
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Figure 4: System calls occurring under stack suspicion
(gray) are logged even if the syscall site is trusted. Stack
spy raises suspicion in the stack frame where an untrusted
program action first occurs (b), and clears suspicion when
that stack frame returns (e). The syscalls in (c) and (d) can-
not be elided because stack suspicion is inherited by callees,
but the syscalls in (a) and (e) may be elided because suspi-
cion has not yet been raised (a), or has been cleared (e).

Stack spy implements this feature using a simple boolean
flag for each program thread, as illustrated by the function
boxes in Figure 4. The flag is initially false (white), and when
an untrusted branch occurs (step b), stack suspicion is raised
at the current stack level (i.e., esp in x86 platforms). Any
system call made under stack suspicion (gray) is logged to the
remote server along with the untrusted branch—even if the
system call itself is in the trusted profile (b, c and d). When
the thread eventually returns from the stack frame in which
the untrusted branch occurred (e), stack suspicion is cleared,
and future system calls on that thread can again be trusted.

4.2 Case Study: Authoring Tools
The author of this paper used the SciTE text editor and
MikTek pdflatex under watchdog mode while writing this
research paper and developing the gencode write and gencode
chmod features of BLACKBOX. The trusted profile for each



program was trained during the first half of the experiment,
and remote logs were accumulated during the second half, as
shown in Table 2. More than 100 untrusted indirect branches
are logged per day, which represents a significant workload
for preventative analysis. But the rate of suspicious system
calls is fewer than 5 per day, making it possible to efficiently
verify that the file system activity from these two programs is
not under the influence of malware.

4.3 Sniffer Dog
In addition to spying out the most suspicious system calls,
watchdog mode provides an offline sniffer dog that sorts the
most suspicious smelling program actions to the top of the
log. Sniffer dog employs a principle of "typical irregularities"
to estimate the probability that an untrusted program action
is a safe variant of trusted behavior. The iterative process of
trusted profile training reveals how frequently new edges
are normally discovered in each region of the CFG. For
example, during profiling of Google Chrome, new indirect
branches (and branch targets) are routinely discovered within
chrome_child.dll—even during the final iterations—
since it is a very large module providing a diverse set of
features. In contrast, profiling of IISExpress on both static
HTML and WordPress (PHP) rarely encounters new edges
in the main module iisexpress.exe, since its role is
limited to server startup and simple routing of requests.

Listing 1: BLACKBOX log for typical usage of Adrenalin.
396 Suspicious indirec t play . exe(0xca1f0→0x22f90)
396 Suspicious indirec t play . exe(0xca1f0→0x22f30)
396 Suspicious indirec t play . exe(0xc2358→0x20870)
396 Suspicious indirec t play . exe(0xc2358→0x218c0)
396 Suspicious indirec t play . exe(0xc2307→0xa1b50)
127 Structural indi rec t adrenalinx . d l l (0x96400→0xe6770)
069 Structural indi rec t play . exe(0x22fa5)→Lib(0x4ad91c)
069 Structural indi rec t play . exe(0x22f45)→Lib(0x4ad91c)

Listing 2: BLACKBOX log of Adrenalin handling a format
variation not encountered during trusted profile training.

900 Suspicious syscal l #36 NtSetInformationFile
adrenalinx . d l l (0xf160a→0x97ac0) raised suspicion

900 Suspicious syscal l #36 NtSetInformationFile
adrenalinx . d l l (0xf160a→0x97ac0) raised suspicion

300 Structural indi rec t mp3dmod. d l l (0xe342)→Lib(0x4be75b)
300 Structural indi rec t Lib(0x2f3994)→addicted . ax(0x39280)
300 Structural indi rec t mp3dmod. d l l (0x5800→0x59ed)
300 Structural indi rec t mp3dmod. d l l (0xe37a)→Lib(0x4be75b)
295 Structural indi rec t Lib(0x9a7beb)→qasf . d l l (0x2a7e9)
295 Structural indi rec t qasf . d l l (0x2c86e)→Lib(0x13f853)
295 Structural indi rec t qasf . d l l (0x28a2f )→Lib(0x13f853)
. . . (many similar ent r ies )

To concisely capture these observations, BLACKBOX
records a history of new edge discovery between each possi-
ble pairing of modules (reflexive included), and summarizes
each with a PowerLaw model [2]. Sniffer dog consults these
models while sorting the log to determine which entries most
contradict the typical behavior of the program; log entries
conforming to the PowerLaw models are given lower priority,

while those exceeding the model’s prediction for new events
are given higher priority. Listing 1 shows a sorted log for
the Adrenalin Media Player in typical usage, Listing 2 shows
unusual program activity, and Listing 3 shows an ROP exploit
against Adrenalin that launches calc.exe.

Listing 3: BLACKBOX log of Adrenalin during an exploit.
999 Suspicious entry into D G C

adrenalinx . d l l (0x16f313)→Lib(0x3bfffb ) raised suspicion
999 Incorrect return adrenalinx . d l l (0x16f313)→Lib(0x3bfffb )
999 Untrusted module calc . exe−1db1446a00060001
999 Suspicious indirec t shlwapi . d l l (0x1c508)→Lib(0x192aa7)
999 Suspicious indirec t n td l l . d l l (0x3c04d)→Lib(0xe2e831)
999 Untrusted module gdiplus . dll−1db146c800060001
999 Suspicious indirec t kernel32 . d l l (0x13365)→Lib(0xdb3fc3)
998 D G C standalone owned by adrenalinx . d l l -300010001 (4 nodes)
900 Suspicious syscal l #25 ZwSetInformationProcess

n td l l . d l l (0x22373→0x224b0) raised suspicion
900 Suspicious syscal l #82 ZwCreateFile

n td l l . d l l (0x2239c→0x22468) raised suspicion
900 Suspicious syscal l #79 ZwResumeThread

kernelbase . d l l (0x14148)→Lib(0x6ee3a) raised suspicion
900 Suspicious syscal l #26 ZwCreateKey

user32 . d l l (0x16d88)→Lib(0xd5f105) raised suspicion
900 Suspicious syscal l #77 ZwProtectVirtualMemory

apphelp . d l l (0x13066)→Lib(0xd5f105) raised suspicion
900 Suspicious syscal l #165 ZwCreateThreadEx

kernelbase . d l l (0x13f6d)→Lib(0xa57647) raised suspicion
. . . ( flood of similar ent r ies )

As an offline tool, sniffer dog is also able to generalize
observations about log entries from groups of monitored sys-
tems. For example, if many users within a certain organiza-
tion or business unit encounter a particular untrusted program
action at a significantly higher rate than others, sniffer dog
may raise this anomaly as a security smell—it may indicate
a vulnerability or program error, or just that the group is
downloading a questionable third-party plugin. Standalone
third-party products can also interfere with system health,
if for example they install drivers or shared libraries. Early
discovery of these symptoms makes it possible to identify and
correct the issue before any inadvertent damage occurs on
monitored systems. In cases where it becomes necessary to
file a bug report with a software vendor, the detailed BLACK-
BOX logs will greatly simplify the debugging effort, leading
to faster and more accurate patches.

5. Malware Blacklist
A key complement to the preventative features of watchdog
mode is the ability to explicitly blacklist known exploits.
This functionality is traditionally provided by anti-virus,
which relies on large-scale manual labor by highly skilled
experts. First, malware diagnosis determines the symptoms
of an infected binary by executing it in an analysis sandbox.
Malware is often designed to probe for such a sandbox
and hide from the analysis. Once the effects of a virus are
understood, a binary signature is generated to uniquely match
infected files on disk. Randomized payloads dramatically
increase the workload of generating binary signatures, since
each variant of the same malware may require a completely



different signature. As malware development tools increase
in sophistication and efficiency, the cost of the traditional
anti-virus approach rises, even as its reliability is eroded.

The BLACKBOX monitoring system provides a low-cost
alternative to malware diagnosis that is immune to these
evasion tactics. Malware has nothing to gain by withholding
its payload because BLACKBOX monitors programs at the
end user’s site. And superficial randomization will not help
malware evade detailed, low-level observation.

BLACKBOX also provides a low-cost, reliable alterna-
tive to binary signature matching. Instead of attempting to
uniquely identify a malware instance by its representation
on disk, BLACKBOX can be configured with a control flow
blacklist that identifies an exploit at the specific point it com-
promises the monitored program. This approach is similarly
immune to superficial randomization because malware has
a very limited number of opportunities to exploit a given
program. A blacklist entry specifies:
1. The module-relative address of the basic block to protect,
2. The program action to prohibit, and
3. An alternative action to take, such as:

a. Stop with an error explaining the exploit, including
details about the form and source of the crafted input.

b. Redirect execution to a global error handler (may re-
quire collaboration with the program vendor).

5.1 Case Study: Blocking Code Injections
Recent advances in browser security make it much more
difficult for an attacker to gain control of compiled JavaScript.
For example, the Chakra JIT engine in Microsoft Internet
Explorer (IE) places all JavaScript data in non-executable
pages, and obfuscates any JavaScript constant larger than 2
bytes. While these techniques make it increasingly difficult to
exploit the browser via JavaScript, [4] demonstrates working
examples of a code injection that leverages return-oriented
programming (ROP) to compromise a recent version of IE.

BLACKBOX will log several untrusted program actions
during this attack, which takes the following sequence:
1. Coerce the victim’s browser into loading crafted JavaScript.
2. Wait for the browser to compile the ROP payload.
3. Pivot the stack pointer via xchg to the phony ROP stack.
4. Execute the ROP chain, which invokes VirtualProtect

on a page of memory containing injected shellcode.
5. Adjust the ROP chain to ret into the shellcode.

To train the trusted profile of the Chakra JIT engine, the
author of this paper used Microsoft Outlook for email during
a 4-week period. The profile contains no edges from the
Chakra dynamic singleton to system calls, and no self-edges
of type incorrect return or gencode chmod. Suppose he now
receives an email containing the crafted JavaScript:

• Steps 1 and 2 are transparent to BLACKBOX because they
constitute normal execution of the JIT.

• At steps 3 and 4, BLACKBOX will log an incorrect return
for each link in the ROP chain, because the dynamic
singleton has no self-edge of type incorrect return.

• At the end of step 4, BLACKBOX will additionally log the
system call to Virtual Protect because the dynamic
singleton has no edges to any system calls.

• In step 5, a branch is taken into a new dynamic code
region, causing it to be incorporated into the dynamic
singleton. Since that new region was set executable
by the dynamic singleton itself, BLACKBOX will log a
gencode chmod self-edge to the remote server.

The authors of this exploit claim that no existing secu-
rity technique is able to detect it, much less stop it from
taking full control of the browser. But the exploit can easily
be blocked by BLACKBOX. Each of the program actions
that are logged during this exploit are unique to malicious
behavior—Outlook would never take these actions outside
the influence of crafted input—so blacklisting these actions
will not cause any interruption in normal usage of Outlook.
While BLACKBOX does require an expert to identify the
pivotal attack actions, it is a relatively simple analysis.
5.1.1 Automated Blacklisting
The BLACKBOX sniffer dog may be able to automatically
detect potential exploits and blacklist them proactively. For
example, in our experience, any given ret instruction is
used exclusively for either normal or incorrect returns—
throughout our extensive corpus of execution logs, which
includes hundreds of usage hours for large Windows pro-
grams, no ret instruction is ever used for a normal return
at one time, and for an incorrect return at another time. This
observation makes it possible for sniffer dog to simply col-
lect all instances of normal returns throughout the monitored
programs and blacklist the incorrect return action at each
one. While it may still be possible for an adversary to com-
promise a ret instruction that lies outside the trusted profile
for a given program, it greatly reduces both the number of
exploit opportunities, and the number of end users who will
be affected by a successful exploit.

5.2 Case Study: Blocking COOP
Counterfeit Object-Oriented Programming [32] is designed
to thwart control-flow integrity (CFI) schemes: by injecting
the target program with bogus objects having crafted virtual
dispatch tables, this exploit deviously conforms to category-
based CFI policies that only constrain the protected program
to make method calls at method call sites. The BLACKBOX
trusted profile, however, does not contain phony branch
targets, so the hijacked calls in a COOP attack will be logged
to the remote server as they occur.

While it would be ideal to blacklist all indirect branch
targets not appearing in the trusted profile, this is not gener-
ally possible—our experiments show that in large Windows
programs, normal new branch targets do occasionally occur
for known indirect branches. But for a given COOP attack,



the BLACKBOX stack spy can isolate branches leading to the
system calls that comprise the payload, making it relatively
easy for the log analyst to blacklist the pivotal attack points.

6. End-to-End Results
To complement the case studies in Sections 4 and 5, we
present a quantitative evaluation of BLACKBOX1 in (a) real
world usage scenarios, (b) exploit detection, and (c) perfor-
mance benchmarks. We conduct the experiments in Windows
7 SP 1 running in VirtualBox 4.2.10 on an Ubuntu 13.04 host
using an Intel Xeon E3-1245 v3 CPU. The Windows Up-
date service and application updates are disabled to maintain
consistency throughout the experiments.

6.1 Filtering Log Noise
For BLACKBOX to be usable in real deployment scenarios, its
noise reduction techniques must be effective across a broad
range of popular programs, content types, runtime environ-
ments and user interface habits. In this set of experiments, we
trained the trusted profile of each program with a workload
that could be scripted to execute on a cluster of Windows
desktop machines. For programs offering a rich user inter-
face, we enumerated the input options (such as ribbon menu,
right-click menu, shortcut key, etc.) and exercised them in
combination until the discovery of new CFG elements in the
trusted profile converged to a nominal rate. We accounted for
the various domains of program flexibility in a similar way
(for example, file storage to local disk, LAN/WAN, cloud
storage, etc.), resulting in a trusted profile having dense code
coverage within the set of profiled features.

After deploying BLACKBOX with the trusted profile, we
manually used the program for a period of several hours
to several days, repeating a portion of the original training
material, along with additional input content that had been
deliberately withheld from profiling. Table 3 shows the noise
reduction of each successive BLACKBOX technique from left
to right. After the final learning phase ("Learning Indirects"),
the logs focus concisely on the security sensitive program
actions. Table 4 presents a similar result for the special cases
of incorrect return and the DGC edges.

6.2 Logging and Blacklisting Exploits
Three published exploits were executed against programs
monitored by BLACKBOX to verify that (a) each program
action induced by the exploit is logged to the remote server,
and (b) control flow stops at blacklisted program actions.
It was not possible to obtain working exploits for the more
popular Windows programs, due to bounties paid by vendors
to prevent distribution or replication of those attacks. The
following training procedure for the trusted profile was shared
with the previous experiment on noise reduction:

1 The BLACKBOX implementation is open source and can be found at
http://www.github.com/uci-plrg/blackbox.

Table 4: Average number of log entries before and after
the learning phase of the trusted profile for an hour of
normal program activity (lower is better).

incorrect return gencode chmod gencode write
Program Before After Before After Before After
Chrome 3,957 1 3,473 1 6,532 1
Adobe PDF 1408 0 6,119 0 437 0
Word 671 0 2,767 3 24 0
PowerPoint 767 2 6,718 5 46 0
Excel 782 0 1,806 1 23 0
Outlook 2,304 1 1,149 1 48 1
SciTE 2 2 6 0 2 0
pdflatex 0 0 0 0 0 0
Notepad++ 24 2 69 0 23 0
Adrenalin 4 1 378 1 21 1
mp3info 0 0 0 0 0 0

• OSVDB-ID 104062 · Notepad++ We trained BLACKBOX
to recognize Notepad++ and the vulnerable CCompletion
plugin during a one-day development project to build a
500-line graphical chess game. After deploying the trusted
profile, we continued development for two hours.

• OSVDB-ID 93465 · Adrenalin Player We trained BLACK-
BOX to recognize the Adrenalin multimedia player by
opening and modifying dozens of playlists, and playing
100 mp3 files. After deploying the trusted profile, we
continued similar usage of the player for two hours.

• CVE-2006-2465 · mp3info A script trained BLACKBOX
to recognize the mp3info utility by executing 7,000 random
commands on 300 mp3 files. After deploying the trusted
profile and adding 50 more mp3 files to the experiment’s
corpus, the script executed 500 similar commands.

Upon deploying the trusted profile in each experiment, we
also blacklisted the exploit at various attack points—the in-
correct return, an untrusted indirect branch, and a suspicious
system call—and configured the blacklist to pause with a
dismissable warning. The warning did not interrupt normal
usage of the programs, but promptly appeared when we ex-
ecuted the exploit. As expected, BLACKBOX logged the in-
correct return followed by a sequence of untrusted indirect
branches and suspicious system calls that forked the payload
(see Listing 3 in Section 4.3 for the Adrenalin log).

6.3 IIS
To demonstrate the effectiveness of BLACKBOX in server
applications, we trained the trusted profile of IIS Express 7.0
and PHP 5.4.28 on typical web content: a 2GB snapshot
of cbssports.com, the PHP unit test suite, and a default
install of WordPress. Before deploying this trusted profile,
we performed several WordPress upgrades: installing the
popular e-commerce plugin WooCommerce, activating the
anti-spam plugin Akismet, changing the theme, upgrading
the WordPress core, and importing posts into the blog and

http://www.github.com/uci-plrg/blackbox


Table 3: Average number of log entries during an hour of normal program activity. Each column shows the log size as each
of the BLACKBOX noise reduction techniques is progressively applied from left to right (lower is better).

Program All Branches Unique Branches Unique Indirects Forward Indirects Untrusted Indirects
(+ Cache Branches) (+ Analyze Directs) (+ Shadow Stack) (+ Learn Indirects)

Chrome 485,251,278,660 42,957,575 16,537,926 6,137,106 7
Adobe PDF 34,075,711,128 15,579,901 6,325,821 2,292,342 4
Word 603,491,452,236 14,589,337 2,590,444 580,655 24
PowerPoint 251,845,377,624 27,839,593 1,848,681 1,335,817 50
Excel 198,427,776,372 14,810,205 2,389,208 561,401 28
Outlook 547,678,615,056 24,121,810 2,375,352 615,708 4
SciTE 61,325,719,872 2,463,871 372,445 124,013 33
pdflatex 23,504,352,560 1,790,288 278,726 64,290 43
Notepad++ 129,695,545,404 8,400,249 1,732,147 589,155 24
Adrenalin 48,881,533,212 3,024,797 1,159,407 791,847 603
mp3info 2,080,031,200 94,804,000 18,713,600 4,339,200 3

products into the store. Then we ran a form-enabled crawler
on the upgraded WordPress site for 6 hours, sending a
minimum of 20,000 unique requests to the major areas of
the site: (1) store configuration and product editing, (2) blog
administration and post editing, (3) theme customization, (4)
public pages, and (5) upload forms. Despite having added
major functionality outside the scope of the trusted profile,
BLACKBOX only logs 39 indirect branches (Table 5).

Table 5: Total log entries during 6 hours of fuzz testing
WordPress on IIS (lower is better). The trusted profile
was trained on a default WordPress installation, but fuzz
testing was executed after two plugins were installed, the
theme was changed, and the WordPress core was updated.

Program Action PHP IIS
Indirect Branch 33 6
incorrect return 0 0
gencode chmod 0 0
gencode write 0 0

6.4 Performance
We measured the overhead of BLACKBOX on IIS with static
content and obtained normalized execution times of .98 rel-
ative to native performance (speedup due to BLACKBOX
profile-guided trace optimizations). It is non-trivial to mea-
sure the overhead of BLACKBOX on the full IIS/PHP stack
because execution-time overhead can be overshadowed by
time spent waiting and by unimpacted calls like OS and I/O.

To more accurately understand the execution overhead,
we employ industry standard benchmarks that focus on com-
pute performance. We evaluated the performance of BLACK-
BOX relative to native execution on the SPEC CPU 2006
benchmark suite [21], which consists of a diverse set of
CPU bound applications across several application domains
and languages: 7 C++ programs, 12 C programs, 4 C/For-
tran programs, and 6 Fortran programs. Across the suite of
benchmarks we measured a geometric mean of 14.7% slow-
down; Figure 5 presents the individual overheads. Bench-

marks having mostly direct branches incur minimal (or zero)
overhead in BLACKBOX, while programs having a greater
proportion of indirect branches with multiple targets (typi-
cally C++ programs and script interpreters) incur the higher
overheads. Profile-guided optimizations for high-degree in-
direct branches show promising results, but we reserve the
formal evaluation for future work. While some of the larger
Windows programs in our experiments do have a high rate
of indirect branches, the majority are cross-module function
calls through the IAT that by construction have only one tar-
get, making it feasible for BLACKBOX to optimize them as
direct branches. Earlier work addresses the performance of
DynamoRIO on dynamically generated code [20].

7. Related Work
BLACKBOX logs security-sensitive control flow activity
in deployed systems, whereas TraceBack [5] focuses on
debugging support, and Schnauzer [6] profiles the control
flow frontier for potential security vulnerabilities.

BLACKBOX is distinguished from CFI techniques by its
dynamic approach to discovering the target program’s normal
control flow. The key advantages of BLACKBOX relative to
other approaches [35] are that it can handle the special cases
that arise in real world code, self-modifying code, dynamic
code generation, and can learn more precise control flow
information as it is not constrained by the limitations of static
analysis. It can monitor and blacklist events from attacks that
would slip past other CFI approaches.

7.1 Automated Whole-Program CFI Defenses
Automated CFI defense is an all-or-nothing proposition: it
can potentially block attacks while adding minimal runtime
and administrative overhead—but if it fails to block an attack,
the defense offers no other benefit. For example, Context-
Sensitive CFI [34] reports overhead under 10% (for certain
applications) and is capable of defeating advanced attacks
such as Control Flow Bending [8] (CFB) and Control Flow
Jujutsu [17], but it is not invincible to every instance of these
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Figure 5: Normalized BLACKBOX execution times for Spec CPU 2006, taking the geometric mean of 3 runs (lower is better).

attacks. Cryptographic CFI [26] has overhead under 20% (for
many programs) and can defeat CFB and Jujutsu by securing
forward and backward edges with a MAC, but cannot always
defeat COOP and fails to protect the kernel-managed return
address of the sysenter instruction that is targeted by
StackDefiler [11]. Coarse-grained CFI approaches such as
CCFIR [36] and binCFI [37] report overhead under 10% on
static benchmarks, but can be defeated by gadget synthesis
attacks [14, 18], along with these more advanced attacks.

We are not aware of any control flow attack that can evade
or disable the BLACKBOX monitor. While the blacklist of-
fers the most effective protection, it is not the only line of
defense—untrusted program actions will always be logged
to a secure server. This reliability comes at a cost of admin-
istrative overhead: training the trusted profile, configuring
the blacklist, and monitoring the BLACKBOX logs. Runtime
overhead is moderate for most programs (14.5% for SPEC
CPU 2006), though it can approach 2× for programs that
heavily rely on high-degree indirect branches.

7.2 Other CFI Techniques
The vtable protection tool SAFEDISPATCH[22] instruments
C++ object function tables with a dynamic check that ensures
only valid targets in the class hierarchy are called. Tice
et al. [33] developed a similar compiler-based approach
that protects only forward control flow edges. Control-Data
Isolation [3] rewrites both forward and backward edges with
exclusively direct branches, but requires recompilation of all
modules. These approaches have overhead under 10% and
can defeat COOP and some other advanced attacks, but do
not protect DGC and require source code to be available.

OpaqueCFI [27] uses randomization combined with sim-
ple range checks to implement CFI. It is largely orthogonal
to our work—it does not attempt to improve the precision
of CFI, nor does it seek to solve the problems associated
with implementing CFI for COTS modern Windows applica-
tions. Abadi et al. proposed an early approach to CFI [1] that
targeted Windows binaries. Their approach cannot handle
dynamic code or binaries that violate compiler conventions.

Several approaches target specific attacks [9, 10, 12, 29,
30], such as ROP, but may not be robust to new types of at-

tacks. Recent work has shown that many of these approaches
are vulnerable to modified versions of the attacks [7, 19].

Clearview [31] uses learning to patch software errors.
Clearview uses Daikon to learn constraints on variables, iden-
tifies violations of these invariants on erroneous executions,
and generates patches to restore the invariants. While BLACK-
BOX uses similar techniques to Clearview, a key difference
is that Clearview focuses on generating repairs (and relies on
external mechanisms to detect erroneous executions) while
BLACKBOX focuses on detecting attacks.

XFI is a static rewriter-based approach to CFI [15]. It
checks coarser grained constraints on control flow than
BLACKBOX, cannot handle hand-coded modules, and cannot
handle the dynamically generated code that appears in many
modern applications. MoCFI seeks to enforce CFI on smart-
phones [13]. It uses static analysis to extract the CFG and re-
quires statically unresolvable indirect jumps target a function
entrance. Program shepherding enforces various execution
policies such as code origins on program executions [23], but
enforces weaker properties than CFI systems.

RockJIT [28] integrates CFI support into a JIT, protecting
the code generation process and constraining the generated
code to its intended API. Our approach is comparable, yet
also compatible with off-the-shelf JIT engines.

Code Pointer Integrity places pointers to code in a separate
protected heap [24], though [16] can defeat this approach.

A collaborative approach [25] lowers the overhead of
CFI by distributing the checking workload across users of
an application until an attack is detected, at which point all
members of the application community check for the attack.

8. Conclusion
We presented BLACKBOX, a tool for monitoring control
flow based on previous observations of a program at runtime.
BLACKBOX handles dynamic code generation by inferring
a permission system on code generators. BLACKBOX can
diagnose and blacklist exploits. Our experience indicates that
BLACKBOX can effectively monitor real world applications
and is able to filter an execution’s control flow sufficiently to
capture novel behaviors that arise in attacks while keeping
the total volume of data manageable for remote logging.
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