
..

THE KREMLIN ORACLE FOR
SEQUENTIAL CODE PARALLELIZATION

..

THE KREMLIN OPEN-SOURCE TOOL HELPS PROGRAMMERS BY AUTOMATICALLY IDENTI-

FYING REGIONS IN SEQUENTIAL PROGRAMS THAT MERIT PARALLELIZATION. KREMLIN

COMBINES A NOVEL DYNAMIC PROGRAM ANALYSIS, HIERARCHICAL CRITICAL-PATH

ANALYSIS, WITH MULTICORE PROCESSOR MODELS TO EVALUATE THOUSANDS OF

POTENTIAL PARALLELIZATION STRATEGIES AND ESTIMATE THEIR PERFORMANCE OUTCOMES.

......Parallelization of existing sequen-
tial software is a complex task that typically
requires intensive manual effort to achieve op-
timal performance. Researchers have sought
to build parallelizing compilers that would
completely automate the parallelization pro-
cess.1-3 These compilers typically struggle to
exploit available parallelism because of the dif-
ficulty of proving parallel transforms’ correct-
ness and profitability. This difficulty is
demonstrated in a comparison we performed
between the output of Intel C++ Compiler
(icc), a state-of-the-art, commercial paralleliz-
ing compiler, and manual parallelization
efforts on the Rodinia benchmark suite.4

The icc compiler could parallelize only 17 per-
cent of the regions that were manually paral-
lelized and none that were not. Similarly
lackluster results have been shown with the
NAS Parallel Benchmarks (NPB) benchmark
suite.5 The limited performance is a result of
the key limitations of static program analysis:
many dependencies can’t be resolved stati-
cally, so the parallelizing compiler must be
conservative to ensure correctness. (For
more information on other approaches to
parallelization, see our ‘‘Related Work in
Parallelization’’ sidebar.)

Driven by the immediate need of pro-
gramming emergent multicore chips,

engineers have adopted a more manual
approach that leverages tools such as
OpenMP, OpenCL, and Cilk6 to specify
which program regions should run in parallel
and to manage parallel execution across mul-
tiple cores. In the future, we must strive for
tools that will address the remaining parts
of the parallelization process. First, we need
tools that identify which program regions
are most promising for parallelization. Sec-
ond, we need tools that suggest the transfor-
mations necessary to parallelize these regions.
The University of California, San Diego,
Kremlin project focuses on creating tools
that achieve these goals. In this article, we re-
port our recent success in meeting the first
goal, as implemented in the UC San Diego
Kremlin open-source programming tool.

By extending prior work on critical-path
analysis (CPA)7 to incorporate real-world
constraints, we’ve enabled the Kremlin
tool to implement a practical oracle that
predicts outcomes for sequential-code paral-
lelization. The tool takes in an unmodified
serial program and a few representative
inputs, and outputs an ordered list of the
regions that are likely to be the most pro-
ductive for the user to parallelize. Addition-
ally, Kremlin outputs an upper bound on
the expected speedup, informing the user

[3B2-9] mmi2012040042.3d 1/8/012 12:49 Page 42

Saturnino Garcia

Donghwan Jeon

Christopher Louie

Michael Bedford

Taylor

University of California,

San Diego

..

42 Published by the IEEE Computer Society 0272-1732/12/$31.00 �c 2012 IEEE

as to whether speedups will be too small to
merit the effort.

Our results show that Kremlin can accu-
rately predict the parallel speedup of a wide
range of benchmarks. Moreover, it is effec-
tive at identifying the regions that should be
parallelized, even when doing so requires
complex transformations. Compared to
codes parallelized by third-party experts,
codes parallelized using Kremlin have on aver-
age 1.57� fewer user-parallelized regions and,

in about 18 percent of the cases, implemented
a more effective parallelization strategy than
was employed by the experts, resulting in sig-
nificant improvements in performance. We
are preparing a public open-source release of
the Kremlin tool later this year.

Introducing Kremlin
Kremlin guides a programmer through

parallelization by presenting a list of program
regions that should be parallelized. This list

[3B2-9] mmi2012040042.3d 1/8/012 12:49 Page 43

...

Related Work in Parallelization

Parallelism profiling techniques can be classified into critical-path anal-

ysis (CPA)1,2 and dependence testing.3,4 CPA quantifies the total amount of

parallelism in the program. However, it doesn’t localize parallelism to a spe-

cific region, limiting its practical use. Dependence testing aims at checking

the dependencies between different regions in a program, but it doesn’t

quantify the amount of parallelism available in each region, and it is highly

sensitive to superficial program structure. In contrast, Kremlin’s novel hier-

archical critical-path analysis (HCPA) quantifies the amount of parallelism in

each part of the program, providing a more holistic picture, and works well

even if extensive program transformation is required to unlock parallelism.

Several parallel-performance estimation tools share the motivation of

Kremlin’s speedup estimation—notably, Cilkview,5 Parallel Prophet,6 and

Intel Parallel Advisor’s Suitability Tool (http://software.intel.com/en-us/

articles/intel-parallel-advisor). However, these tools differ from Kremlin

in that they require either already parallelized code or user annotation

for parallelization. Kremlin is especially useful in the early stage of paral-

lelization, then these tools can be used for finer performance tuning.

Researchers continue to examine fully automatic parallelization of se-

rial programs.7,8 These approaches work well with specific forms of loop-

based parallelism that have traditionally been difficult to exploit on

multicore processors, but they lack Kremlin’s generality in locating ex-

ploitable parallelism. Although this article mainly discusses Kremlin’s

use in manual parallelization, Kremlin could be used in concert with auto-

matic methods to improve the quality of parallelization. Kremlin provides

strong evidence that a region will be profitable if it can be safely parallel-

ized. An automatic parallelizing compiler could use this information to limit

the scope of heavier-weight, but more precise, static analyses. Conversely,

Kremlin could analyze the compiler’s output and provide additional hints to

the user as to how to improve the quality of the parallelization.

Prior publications on Kremlin’s planning9 and prediction10 discuss more

detailed implementation issues and provide additional experimental results.

References

1. T.M. Austin and G.S. Sohi, ‘‘Dynamic Dependency Analysis

of Ordinary Programs,’’ Proc. 19th Ann. Int’l Symp. Computer

Architecture (ISCA 92), ACM, 1992, pp. 342-351.

2. M. Kumar, ‘‘Measuring Parallelism in Computation-Intensive

Scientific/Engineering Applications,’’ IEEE Trans. Computers,

Sept. 1988, pp. 1088-1098.

3. M. Kim, H. Kim, and C.-K. Luk, ‘‘Prospector: A Dynamic Data-

Dependence Profiler to Help Parallel Programming,’’ Proc.

USENIX Workshop Hot Topics in Parallelism (HotPar 10),

USENIX, 2010, http://static.usenix.org/events/hotpar10/

poster.html.

4. J.R. Larus, ‘‘Loop-Level Parallelism in Numeric and Symbolic

Programs,’’ IEEE Trans. Parallel and Distributed Systems,

July 1993, pp. 812-826.

5. Y. He, C.E. Leiserson, and W.M. Leiserson, ‘‘The Cilkview

Scalability Analyzer,’’ Proc. 22nd ACM Symp. Parallelism in

Algorithms and Architectures (SPAA 10), ACM, 2010,

pp. 145-156.

6. M. Kim et al., ‘‘Predicting Potential Speedup of Serial Code

via Lightweight Profiling and Emulations with Memory Per-

formance Model,’’ to be published in Proc. 26th IEEE Int’l

Parallel and Distributed Processing Symp. (IPDPS 12),

2012.

7. S. Campanoni et al., ‘‘HELIX: Automatic Parallelization of

Irregular Programs for Chip Multiprocessing,’’ Proc. 10th

Int’l Symp. Code Generation and Optimization (CGO 12),

ACM, 2012, pp. 84-93.

8. G. Ottoni et al., ‘‘Automatic Thread Extraction with

Decoupled Software Pipelining,’’ Proc. 38th Ann.

IEEE/ACM Int’l Symp. Microarchitecture, IEEE CS, 2005,

pp. 105-118.

9. S. Garcia et al., ‘‘Kremlin: Rethinking and Rebooting Gprof for

the Multicore Age,’’ Proc. 32nd ACM SIGPLAN Conf. Pro-

gramming Language Design and Implementation (PLDI 11),

ACM, 2011, pp. 458-469.

10. D. Jeon et al., ‘‘Kismet: Parallel Speedup Estimates for Serial

Programs,’’ Proc. ACM Int’l Conf. Object-Oriented Program-

ming Systems Languages and Applications (OOPSLA 11),

ACM, 2011, pp. 519-536.

..

JULY/AUGUST 2012 43

constitutes a plan that, when followed, will
minimize the number of regions that must
be parallelized in order to maximize parallel
performance.

A sample Kremlin session
Kremlin uses a simple usage model inspired

by the GNU profiler (gprof). Figure 1 dem-
onstrates the user’s interaction with Kremlin.
First, the programmer compiles a program
with kremlin-cc, a special drop-in re-
placement for the machine’s C or C++ com-
piler. kremlin-cc creates a compiled
program binary that is augmented with instru-
mentation code that performs parallelism
measurements during the program’s execution.

Users then run the instrumented binary as
they normally would. In addition to the nor-
mal program outputs, the instrumented bi-
nary creates a small log file that summarizes
the parallelism identified across the pro-
gram’s execution. To analyze this profile,
users will run the kremlin analysis tool
with target-specific constraints such as
the number of available cores and the target
parallel runtime (for example, Cilk++,
OpenMP, or OpenCL). Kremlin combines

these target-specific constraints with the par-
allelism profile and examines many candidate
parallel implementations of the program. As
output, it produces a postparallelization
speedup upper bound estimate and a detailed
parallelization plan. The plan consists of an
ordered list of regions that should bring the
highest speedup after parallelization. Each
entry in the plan provides important details
to the programmer, such as the fraction of
serial execution time spent in that region
(Coverage), the amount of parallelism found
solely in that region and not in its children
regions (Self-Parallelism),8 and the estimated
upper bound on the time reduction from
parallelizing that region (Time reduction).

Typically, a user is initially the most inter-
ested in the estimated speedup. If the estimated
speedup is too low, the user might simply skip
parallelization and save precious development
time. If Kremlin reports that the expected
speedup doesn’t scale with the number of
cores, the user can target fewer cores or change
the core algorithm to make program perfor-
mance scale better after parallelization.

If the user decides to parallelize the code,
the user can examine the detailed parallelization

[3B2-9] mmi2012040042.3d 3/8/012 17:37 Page 44

Figure 1. Interacting with Kremlin. Only three steps are required to get results from

Kremlin: first, compile the program with kremlin-cc; second, execute the program with

its normal inputs; and third, run the parallelism planner (kremlin) with desired planning

options. The planner lets users specify system-specific constraints (such as OpenMP on

a four-core processor); it orders regions according to decreasing expected parallelization

benefit, letting software engineers prioritize the most important regions. Each entry in the

plan lists the coverage (percentage of serial execution time spent in that region), self-

parallelism (the amount of parallelism in a region and not in its children regions), and the

estimated upper bound on time reduction (as a percentage of serial execution).

$> make CC=kremlin-cc

$> ./srad 100 0.5 502 458 image.pgm

$> kremlin srad –model=openmp –num cores=4

Cores 1 2 4* 8 16 32 64

Speedup (est.) 1 2 4 8 15.89 31.58 62.35

File (lines) Coverage (%) Self-Parallelism Time reduction (%)

1 srad.c (262-296) 70.25 458.0 52.67

2 srad.c (306-325) 24.25 458.0 18.17

3 srad.c (247-251) 5.29 502.0 3.95

4 srad.c (226-227) 0.09 229916.0 0.07

5 srad.c (342-343) 0.04 229916.0 0.03

..

..

44 IEEE MICRO

...

PARALLELIZING SEQUENTIAL CODE

plan, an ordered list of code regions that
must be parallelized to achieve the estimated
speedup. For each code region, the plan
specifies the region’s location, the expected
benefit after parallelization, the parallelism
type, and the approximate number of cores
to be allocated. This list lets the programmer
focus solely on the parts of the program that
will be profitable when parallelized.

How the Kremlin oracle works
At the core of the Kremlin system is a

heavyweight analysis of a sequential program’s
execution that is used to create predictions
about the structure of a hypothetical, opti-
mized parallel implementation of the program.
These predictions incorporate both optimism
and pessimism to create results that are surpris-
ingly accurate. The pessimism comes from
fundamental limitations imposed by the pro-
gram’s dynamic dependencies, as well as fun-
damental target machine constraints such as
synchronization costs and core counts. The
optimism comes from the assumption that,
subject to these constraints, the programmer
will discover a way to manage other perfor-
mance issues such as cache locality. We use
the term practical oracle to describe this pro-
cess, because Kremlin is a real-life implementa-
tion of a seemingly omniscient tool that can
predict complex outcomes.

At the heart of Kremlin is an extension of
CPA, which quantifies a program’s average
parallelism.7 Historically, practitioners found
limited utility in CPA because it tends to be

too optimistic to make accurate predictions.
(See the ‘‘Critical-Path Analysis’’ sidebar for
more discussion.)

Kremlin extends CPA to capture the impact
of key parallelization constraints such as the
number of available cores on the target, the
exploitability of parallelism, and parallelization
overhead. This extension comes in two parts.
First, Kremlin greatly improves CPA’s resolu-
tion by introducing a new hierarchical dynamic
program analysis called hierarchical critical-path
analysis (HCPA). Second, Kremlin employs a
parallelization planner that compares the
benefits of potential parallel implementations
using real-world system constraints.

System architecture. Figure 2 illustrates
Kremlin’s system architecture. Like CPA,
HCPA profiles a program’s parallelism from
its dynamic execution with a sample input.
This runtime information lets HCPA capture
input-dependent parallelism characteristics
and frees Kremlin from relying on conserva-
tive static pointer analysis to disambiguate
memory dependencies. Unlike CPA, which
measures the whole program’s parallelism,
HCPA measures the localized parallelism of
each region (typically, functions and loops)
by modeling the program execution as a hier-
archical region tree. Kremlin uses a new met-
ric called self-parallelism to separate a region’s
parallelism from its children’s parallelism.

After HCPA profiles parallelism, the par-
allelization planner finds the parallelization
plan with the largest speedup. Because the

[3B2-9] mmi2012040042.3d 1/8/012 12:49 Page 45

Serial
source
code

Parallelization
planner

Kremlin

Sample
input

Parallelization
constraints

Parallelization
plan

Parallelism
profile

Hierarchical
critical-path

analysis

Find the best
parallelization
for the target
machine

Measure
parallelism

Figure 2. Kremlin’s structure. Kremlin consists of two main components: hierarchical

critical-path analysis (HCPA) and a parallelization planner.

..

JULY/AUGUST 2012 45

achievable speedup greatly depends on target-
specific parallelization constraints, the plan-
ner accepts key parallelization constraints
(such as the OpenMP platform and an
eight-core processor) and incorporates them
in its planning. The planner explores many
ways to parallelize the program, evaluates
them, and picks the one with the highest
speedup. Because Kremlin’s hierarchical re-
gion model is expressive enough to represent
a parallelization strategy, the planner also
employs it: a parallelization plan consists of

<region, allocated core count> tuples.
A plan considers a region parallelized if it
assigns more than one core to the region.

Kremlin’s strengths. One of Kremlin’s great-
est strengths is its ability to find parallelism
in many forms: task-based parallelism, pipe-
line parallelism, skewed parallelism, data
parallelism, and many forms of loop-
based parallelism (including DOALL and
DOACROSS) are recognized, even if the
code isn’t currently structured to express it.

[3B2-9] mmi2012040042.3d 1/8/012 12:49 Page 46

...

Critical-Path Analysis

Critical-path analysis (CPA) is a dynamic program analysis that com-

putes the longest dependency chain through the dynamic execution of a

serial program.1 CPA is typically used to approximate the upper bound on

parallel speedup without parallelizing the code. Figure A shows an exam-

ple of CPA. First, CPA builds a dependence graph, wherein each node

represents a dynamic instruction with latency, and each edge represents

a register-, control-, or memory- dependence between instructions. Once

CPA builds the dependence graph, it finds the length of the longest

path—the critical path length (cp)— through this graph. This length rep-

resents a program’s ideal parallel execution time. Finally, CPA calculates

the program’s total parallelism by computing the ratio between serial-

execution time (work) and critical path length. Total parallelism quanti-

fies the ideal speedup of the program when parallelized for a machine

with infinite resources and zero communication and synchronization delay.

CPA has seen limited utility outside of research projects because it

tends to be wildly optimistic: typical parallelism numbers far exceed

the number of available cores and are often uncorrelated with actual

speedups attained. Two main factors lead to a large gap between

CPA-based estimation and measured speedup. First, CPA assumes a

data-flow execution model that doesn’t map well to von Neumann

machines and imperative programming languages. Second, CPA naively

assumes an ideal execution environment in which any parallelism is ex-

ploitable, unlimited cores are available, and no parallelization overhead

exists—factors that severely limit the speedup on real systems.

Reference

1. M. Kim et al., ‘‘Predicting Potential Speedup of Serial Code

via Lightweight Profiling and Emulations with Memory Per-

formance Model,’’ to be published in Proc. 26th IEEE Int’l

Parallel and Distributed Processing Symp. (IPDPS 12),

2012.

Figure A. Example of critical-path analysis. CPA calculates the ideal parallel

speedup without parallelizing the code by constructing the dependence graph

from dynamic instructions.

1

4

work = 8

cp = 6

1

la $2, $ADDR

load $3, $2(0)

addi $4, $2, #4

store $4, $2(4)

store $3, $2(8)
1 1

Total parallelism =
work
cp

node: dynamic instructon with latency

edge: dependence between instructions

work: serial execution time,

 total sum of node weights

critical path length (cp):

 minimum parallel execution time

Dynamic instructions Dependence graph

..

46 IEEE MICRO

...

PARALLELIZING SEQUENTIAL CODE

Figure 3 shows an example of Kremlin’s
power in detecting parallelism, even when
this parallelism is masked in the current im-
plementation. The code in Figure 3a presents
two challenges to the parallelizing compiler.
First, the 2D array has been implemented
as an array of pointers to arrays. Second,
the dependence structure between updates
of values in the arrays creates cross-iteration
dependencies in both loops. Parallelizing
this code requires two key analyses. First,
the compiler must recognize that a loop
transformation technique called loop skewing
can be applied, which restructures the loop so
that execution traverses the array ‘‘diagonally’’
(as shown by the dotted lines in Figure 3b).
Second, the compiler must prove, possibly
using shape analysis, that none of the
pointers in the first level of the array point
to the same array in the second level (that
is, there is no aliasing).

Some research compilers have imple-
mented shape-analysis passes that could po-
tentially decipher that the data structure is
equivalent to a 2D array. Similarly, some re-
search compilers can automatically infer loop
skewing of static arrays. More generally,
unlocking the parallelism latent in sequence
programs could require that an arbitrary
number of difficult analyses and transforma-
tions be composed. Because of complexity
and runtime issues, modern compilers can’t
compose all these tasks simultaneously into
one coherent analysis and transformation
framework.

However, using runtime information,
HCPA can easily identify and quantify the
parallelism that’s latent in the nested loop
structure, alerting Kremlin and the user to
the possibility that restructuring the code
would result in large speedups. The user
can work to iteratively transform the code
sufficiently so that the compiler or runtime
system can take it the rest of the way. In con-
trast, weaker dynamic-dependence testing-
based frameworks would typically report no
available parallelism because they can’t see
past the existing structure of the nested loops.

HCPA
CPA is a well-studied technique for quan-

tifying the amount of parallelism in a pro-
gram. It has, however, had limited utility

in software engineering tools because of
two main factors. First, the parallelism it
reports is not indicative of the potential
parallel speedup. Second, it calculates only
a single parallelism number for the whole
program, providing little actionable informa-
tion for parallelization. To counter the limi-
tations of CPA, we introduce HCPA, which
allows realistic modeling of parallel program
execution, aiding in the creation of a paralle-
lization planner.

CPA versus HCPA
CPA assumes data-flow style execution

that is hard to map onto conventional archi-
tectures, a problem illustrated in Figure 4a.

[3B2-9] mmi2012040042.3d 1/8/012 12:49 Page 47

Figure 3. Uncovering masked parallelism: loop with unexpressed

parallelism (a); iteration dependency graph (b). Kremlin’s underlying use of

critical-path analysis (CPA) lets it uncover parallelism even when masked

by a serial implementation. The code in (a) shows a nested loop operating

on a 2D array with cross-iteration dependencies over both loops, making it

appear serial. The iteration dependence graph in (b) shows that iterations

can be grouped into independent sets, allowing parallel execution if loop

skewing and interchange are used. Techniques relying on dependence

testing would overlook this parallelism. Furthermore, the 2D array in (a)

is represented as an array of pointers to arrays, thwarting a parallelizing

compiler’s attempt to statically analyze this section of code.

void calc_array(int** a)

{

for(i = 1; i < N; ++i)

for(j = 1; j < N; ++j)

a[i][j] = a[i-1][j] + a[i][j-1];

}

(a)

(b)

… … … …

…

…

…

…

i

j

1

1

2

2

3

3

N – 1

N – 1

..

JULY/AUGUST 2012 47

Each node represents a dynamic instruction,
and its color shows where the instruction
came from among three functions. CPA
assumes any instruction can be executed as
soon as all of its dependencies are resolved.
As Figure 4a shows, instructions from
middle()and inner()are already sched-
uled when outer()invokes middle().

HCPA localizes parallelism to a specific
region by independently applying CPA to
each region. Figure 4b shows the result
when HCPA applies CPA to each region
and reports each region’s total parallelism.
However, CPA measures parallelism derived
from both a region and its children; the total
parallelism of middle()includes the paral-
lelism from inner(), making it unclear
how much parallelism middle() contains.

HCPA localizes parallelism to specific
regions using self-parallelism. Figure 4c
shows each region’s self-parallelism. Because
self-parallelism eliminates the parallelism
originating from child regions, it’s now
clear that the outer() and middle()
functions don’t contain parallelism. By local-
izing parallelism to a region, HCPA allows
realistic speedup estimation and paralleliza-
tion planning in the parallelization planner.

Computing a region’s self-parallelism
HCPA computes self-parallelism from

each region’s CPA results. A region’s self-
parallelism is conceptually the region’s total
parallelism divided by its children’s total par-
allelism. Kremlin uses the following equation

to compute self-parallelism of a region R
(SP(R)) from the results of CPA:

SPðRÞ¼

workðRÞ
cpðRÞ R is a leaf

Pn
k¼1

cpðchild ðR ,kÞÞ

cpðRÞ R is a nonleaf

8>>>>><
>>>>>:

A leaf region’s self-parallelism is the same
as its total parallelism because there are no
children that can affect its total parallelism.
Kremlin can calculate a nonleaf region’s
self-parallelism by comparing its critical-
path length against the sum of its children’s
critical-path lengths. Intuitively, the sum of
the children’s critical-path lengths represents
the region’s serial execution time when all
descendant regions are fully parallelized.

Parallelization planner
Kremlin’s second phase is parallelization

planning. This phase finds the parallelization
plan with the highest speedup and provides
it to the user. A plan consists of <region,
allocated core count> tuples, sorted by each
region’s potential speedup after parallelization.

Although self-parallelism and the serial
execution time (work) provide the basis for
estimating parallel performance, many other
constraints significantly impact performance.
For example, the target platform might
support only a specific form of parallelism
(for example, data parallelism in GPUs),
the number of available cores can limit the

[3B2-9] mmi2012040042.3d 1/8/012 12:49 Page 48

void outer() {
….
middle();

}

void middle() {
….
inner();

}

void inner() {
….
doall loop
reduction

}

Time

Invoke middle Invoke inner

Outer Middle Inner

TP(outer)
= ~5.0X

(a) (c)

TP(inner)
= ~7.0X

TP(middle)
= ~6.0X

TP(outer)
= ~5.0X

(b)

SP(inner)
= ~7.0X

SP(middle)
= ~1.0X

SP(outer)
= ~1.0X

Figure 4. HCPA. CPA calculates total parallelism assuming an unrealistic data-flow style execution. Instructions from

all three functions are smeared to their earliest point at which their inputs are available (a). Recursively applying CPA

localizes parallelism. However, a child region’s parallelism is counted toward its parent’s parallelism, blurring the origin

of parallelism (b). Self-parallelism captures a region’s parallelism excluding its children’s, further localizing parallelism to

a region (c).

..

48 IEEE MICRO

...

PARALLELIZING SEQUENTIAL CODE

achievable speedup, and the overhead from
scheduling and synchronization might negate
the benefit of parallelization.

Estimating parallel-execution time
To find the best parallelization plan,

Kremlin must be able to evaluate different
plans. Kremlin uses a target-specific parallel-
execution time model to evaluate a given paral-
lelization plan’s performance. This model lever-
ages both the hierarchical region model and the
parallelism profiling data from Kremlin’s first
stage, working in a bottom-up fashion to esti-
mate the time for all regions of the program.
Kremlin starts by estimating the parallel-
execution time of leaves in the region hierar-
chy because their estimated times don’t depend
on any other regions. Next, Kremlin calcu-
lates the parent regions’ execution time on
the basis of their already-calculated children.

To estimate a region’s parallel-execution
time, Kremlin uses key parameters gathered
in the profiling phase and incorporates
target-dependent constraints. Kremlin uses
the following equation for calculating the
estimated parallel-execution time of a region
R (ET(R)):

ET ðRÞ ¼

Pn
k¼1

ET ðchild ðR ; kÞÞ

minðSPðRÞ;AðRÞÞ
þOðRÞ nonleaf

workðRÞ
minðSPðRÞ;AðRÞÞ
þOðRÞ leaf

8>>>>>>>>>><
>>>>>>>>>>:

For leaf regions, the serial-execution time
(work) is profiled in the profiling phase. After
parallelization, the speedup is limited by ei-
ther self-parallelism (SP(R)) or the allocated
core count (A(R)) specified in a paralleliza-
tion plan. The parallelization overhead
(O(R)) is also added to the execution time
to account for synchronization and schedul-
ing costs. The parallelization overhead term
favors coarse-grained parallelization over
fine-grained parallelization. The parallel-
execution time of a nonleaf region is similarly
calculated, but its serial-execution time is
propagated from its children’s parallel-execution
time (ET(child)). The estimated execution
time of the root region is the whole program’s
parallel-execution time. The target-dependent

time estimation model can be easily extended.
For example, we integrated a memory model
for the target platform to incorporate super-
linear speedups due to cache effects.9

Finding the best parallelization plan
Once a time estimation model is in place,

the next step is to use the estimation model
to traverse the search space of possible paral-
lel implementations for the program in an ef-
ficient manner, picking the best candidate.
The parallelization system’s constraints and
capabilities play a significant role in pruning
this space to parallelization plans that can
actually be implemented. See our earlier
work for more details.8,9

Evaluating Kremlin
Our evaluation consists of two main com-

ponents: evaluating the accuracy with which
Kremlin estimates parallel speedup, and
determining the efficiency with which Kremlin
selects which regions to parallelize.

Parallel-speedup estimation
We first evaluated Kremlin’s speedup esti-

mation on an increasing number of cores,
modeling conventional multicore processors.
In the evaluation, we compared Kremlin’s
predicted speedups against ‘‘real’’ speedup
for OpenMP implementations. We selected
programs from SpecInt2000 and NPB.10

The former benchmarks contain little paral-
lelism, whereas the latter tend to have higher
levels of parallelism. The real results were
gathered from measurements (ep, cg, bt) or
published results of hypothetical paralleliza-
tion systems (gzip, twolf, vpr).

Figure 5 shows that Kremlin provided
tight speedup upper bound estimates across
all benchmarks. For low-parallelism bench-
marks, these results match the general intu-
ition that those benchmarks lack sufficient
levels of parallelism to warrant intense paral-
lelization. We also targeted a different target
platform (the MIT Raw processor) to see
Kremlin’s flexibility in speedup prediction;
the results for this platform had a similar ac-
curacy level.9

Parallelization planning
Next we evaluated how well Kremlin’s

parallelism planner worked in conjunction

[3B2-9] mmi2012040042.3d 1/8/012 12:49 Page 49

..

JULY/AUGUST 2012 49

with the HCPA analysis. We examined three
key metrics:

� Did Kremlin suggest a reasonable number
of regions to parallelize compared to
third-party experts who had to manually
plan parallelization? Our results in
Figure 6 show that Kremlin greatly
reduced the number of regions that
needed to be parallelized. Overall, the
drop was 1.57�, but was more pro-
nounced on benchmarks that required
the most parallelized regions.

� Did the regions that Kremlin excluded
but that were parallelized by the third
party contain significant speedup opportu-
nities? Performance in about 20 percent
of cases was much better (1.8� and
1.4�) than the third-party version.
This resulted from parallelization
opportunities that Kremlin found but
that the third party didn’t implement.
Excluding these cases, the performance
came within an average of 4 percent
of the third-party performance. Taking

the time saved by Kremlin’s succinct
plan and applying it to serial optimiza-
tion could easily eliminate this gap.

� Did Kremlin order the regions well? In
other words, were regions with the highest
potential speedup recommended before less
profitable regions? Kremlin’s ordering
proved highly effective. Only 13.6 per-
cent of the benefit came from the last
50 percent of regions, with only 4.4 per-
cent of speedup from the final quartile.
These results indicate that Kremlin
does well at prioritizing the most im-
portant regions.

Our evaluation indicates that Kremlin is
well suited as a parallelization oracle. Krem-
lin produces succinct parallelization plans
that help the user quickly reach high levels
of parallel performance.

GPU support: Early results
GPU-based computing, programmed by

CUDA or OpenCL, is rapidly becoming a
workhorse of scientific computing because

[3B2-9] mmi2012040042.3d 1/8/012 12:49 Page 50

Core count

1 2 4 8 16 32

P
ro

g
ra

m
 s

p
e

e
d

u
p

1

2

4

8

predicted

hpca08

micro10

Core count

1 2 4 8 16 32

P
ro

g
ra

m
 s

p
e

e
d

u
p

1

2

4

8

predicted

hpca08

cgo08

ppopp05

(a) (b) Core count

1 2 4 8 16 32

P
ro

g
ra

m
 s

p
e

e
d

u
p

1

2

4

8

predicted

hpca08

tpds09

ppopp05

(c)

Core count

1 2 4 8 16 32 64

P
ro

g
ra

m
 s

p
e

e
d

u
p

1

2

4

8

16

32

64

predicted

measured

Core count

1 2 4 8 16 32 64

P
ro

g
ra

m
 s

p
e

e
d

u
p

1

2

4

8

16

32

64

predicted

measured

Core count

1 2 4 8 16 32 64

P
ro

g
ra

m
 s

p
e

e
d

u
p

1

2

4

8

16

32

64

predicted

measured

(d) (e) (f)

Figure 5. Predicted and reported speedup in low-parallelism SpecInt2000 and high-parallelism NAS Parallel Benchmarks

(NPB): gzip (a), twolf (b), vpr (c), cg (d), ep (e), and bt (f). Kremlin automatically provides tight speedup upper bound esti-

mates for serial programs, helping programmers set realistic parallelization goals. SpecInt2000 speedup numbers are from

multiple sources that applied aggressive hardware and software techniques to extract parallelism from these benchmarks.9

NPB speedup numbers are measured on 32-core AMD systems, using a third-party OpenMP-parallelized version.11

..

50 IEEE MICRO

...

PARALLELIZING SEQUENTIAL CODE

of the high computational density that these
systems offer.

We recently prototyped support into
Kremlin for OpenCL-based GPUs. Table 1
shows our initial results on the Rodinia
benchmark suite, a set of applications
meant to test heterogeneous computing envi-
ronments. Kremlin’s recommendations ex-
actly matched those of the third-party

version on eight of the 12 (66 percent) ana-
lyzed benchmarks. In two cases (cfd and
srad), Kremlin found regions of low coverage
that had been turned into OpenCL, poten-
tially leading to wasted programming effort.
In another benchmark (nw), Kremlin identi-
fied a missed opportunity for exploiting
data-level parallelism on a high-coverage re-
gion. Follow-on research will parallelize this

[3B2-9] mmi2012040042.3d 1/8/012 12:49 Page 51

ammp art equake bt cg ep ft is lu mg sp mean

R
e
la

ti
v
e
 s

p
e
e
d

u
p

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1.95x
10.28x 3.96x 3.95x 25.89x

3.82x

5.1x

5.9x

2.75x

1.85x

6.84x

9.81x

(b)

Figure 6. Evaluation of parallelization based on the Kremlin oracle: plan size comparison (a); relative speedup of Kremlin

compared to third party with absolute speedup (b). The table shows that plans created by third-party experts for OpenMP

without the use of Kremlin are significantly larger (1.57� on average). The majority of regions in Kremlin plans are found in

the third-party plans. Even though Kremlin proposes fewer regions to the user, (b) demonstrates that the resulting performance

is very good, ranging from 12 percent slower to 85 percent faster. This is surprising, because in contrast to the third-party

versions, Kremlin doesn’t have the luxury of doing trial-and-error measurements of various intermediate parallelized versions.

Benchmark Manual Kremlin Overlap Reduction

ammp 6 3 2 2.00�
art 3 4 1 0.75�
equake 10 6 6 1.67�
bt 54 27 27 2.00�
cg 22 9 9 2.44�
ep 1 1 1 1.00�
ft 6 6 5 1.00�
is 1 1 0 1.00�
lu 28 11 11 2.55�
mg 10 8 7 1.25�
sp 70 58 47 1.21�
Overall 211 134 116 1.57�

(a)

..

JULY/AUGUST 2012 51

benchmark according to Kremlin’s recom-
mendations to establish whether they were
correct for regions that did not match.

K remlin strives to quantify the benefits of
parallelizing sequential code, and provides

a step-by-step list of regions for programmers to
focus their time on. At the heart of our approach
is the creation of a practical oracle that combines
HCPA and a planning algorithm to estimate
the outcome of a programmer’s parallelization
efforts. As we move forward with releasing
Kremlin as an open-source tool (http://kremlin.
ucsd.edu), we are perhaps a bit closer to the
dream of ‘‘easy’’ parallelization. M I CR O

Acknowledgments
This research was funded in part by the

US National Science Foundation (NSF)
under CAREER Award 0846152; by NSF
Awards 0725357, 0846152, and 1018850;
and by a gift from Advanced Micro Devices.

..
References

1. W. Blume et al., ‘‘Parallel Programming with

Polaris,’’ Computer, Aug. 2002, pp. 78-82.

2. M. Hall et al., ‘‘Maximizing Multiprocessor

Performance with the SUIF Compiler,’’

Computer, Aug. 1996, pp. 84-89.

3. W. Lee et al., ‘‘Space-Time Scheduling of

Instruction-Level Parallelism on a Raw

Machine,’’ Proc. 8th Int’l Conf. Architec-

tural Support for Programming Languages

and Operating Systems, ACM, 1998,

pp. 46-57.

4. S. Che et al., ‘‘Rodinia: A Benchmark Suite

for Heterogeneous Computing,’’ Proc.

IEEE Int’l Symp. Workload Characterization

(IISWC 09), IEEE CS, 2009, pp. 44-54.

5. G. Tournavitis et al., ‘‘Towards a Holistic

Approach to Auto-Parallelization: Integrating

Profile-Driven Parallelism Detection and

Machine-Learning Based Mapping,’’ Proc.

ACM SIGPLAN Conf. Programming

Language Design and Implementation

(PLDI 09), ACM, 2009, pp. 177-187.

6. M. Frigo, C.E. Leiserson, and K.H. Randall,

‘‘The Implementation of the Cilk-5 Multi-

threaded Language,’’ Proc. ACM SIGPLAN

Conf. Programming Language Design and

Implementation (PLDI 98), ACM, 1998,

pp. 212-223.

7. M. Kumar, ‘‘Measuring Parallelism in

Computation-Intensive Scientific/Engineering

Applications,’’ IEEE Trans. Computers,

Sept. 1988, pp. 1088-1098.

8. S. Garcia et al., ‘‘Kremlin: Rethinking and

Rebooting Gprof for the Multicore Age,’’

Proc. 32nd ACM SIGPLAN Conf. Program-

ming Language Design and Implementation

(PLDI 11), ACM, 2011, pp. 458-469.

9. D. Jeon et al., ‘‘Kismet: Parallel Speedup

Estimates for Serial Programs,’’ Proc.

ACM Int’l Conf. Object-Oriented Program-

ming Systems Languages and Applications

(OOPSLA 11), ACM, 2011, pp. 519-536.

10. D.H. Bailey et al., ‘‘The NAS Parallel

Benchmarks—Summary and Preliminary

Results,’’ Proc. 1991 ACM/IEEE Conf.

Supercomputing, ACM, 1991, pp. 158-165.

11. ‘‘NAS Parallel Benchmarks 2.3; OpenMP C’’;

www.hpcc.jp/Omni.

Saturnino Garcia is a visiting assistant
professor in the Department of Mathematics
and Computer Science at the University of
San Diego. His research interests include
program analysis, parallel software engineer-
ing, and computer science education. Garcia
has a PhD in computer science from the
University of California, San Diego.

Donghwan Jeon is a software engineer at
Google. He completed the work described in

[3B2-9] mmi2012040042.3d 1/8/012 12:49 Page 52

Table 1. Kremlin GPU results. Preliminary results show that

Kremlin is effective at selecting parallelization regions for code in

the OpenCL-based parallelization of the Rodinia benchmark suite.

Benchmark

OpenCL kernels

(Manual)

Kremlin

recommended Overlap (%)

backprop 2 2 100

bfs 2 2 100

cfd 4 3 75

heartwall 1 1 100

hotspot 2 2 100

kmeans 2 2 0

lavaMD 1 1 100

nn 1 1 100

nw 2 3 66

pathfinder 1 1 100

srad 5 3 60

streamcluster 1 1 100

Total 24 22 79

..

52 IEEE MICRO

...

PARALLELIZING SEQUENTIAL CODE

this article while pursuing graduate studies at
the University of California, San Diego. His
research interests include software engineer-
ing tools for parallelization, dynamic pro-
gram analysis, and parallel software systems.
Jeon has a PhD from the University of
California, San Diego.

Christopher Louie is a server and systems
engineer at Gazillion Entertainment. He
completed the work described in this article
while pursuing graduate studies at the
University of California, San Diego. His
research interests include tools for software
engineering and parallel systems. Louie has
an MS in computer science from the
University of California, San Diego.

Michael Bedford Taylor is a professor in
the Department of Computer Science and

Engineering at the University of Califor-
nia, San Diego, and he jointly leads the
Kremlin and GreenDroid projects. His
research interests include dark silicon,
multicore processor design, and software
tools for leveraging parallelism. Taylor has
a PhD in electrical engineering and
computer science from the Massachusetts
Institute of Technology.

Direct questions and comments about
this article to Michael Bedford Taylor, EBU
3B 3110 MC 0404, 9500 Gliman Dr., La
Jolla, CA 92093-0404; mbtaylor@ucsd.edu.

[3B2-9] mmi2012040042.3d 1/8/012 12:49 Page 53

..

JULY/AUGUST 2012 53

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 36
 36
 36
 36
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.002400
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

