
Kremlin: Rethinking and Rebooting gprof for!
 the Multicore Era

Saturnino Garcia, Donghwan Jeon, Chris Louie, Michael B. Taylor

Computer Science & Engineering Department

University of California, San Diego

Motivating a “gprof for parallelization”

• How effective are programmers at picking the right parts of a
program to parallelize?

‣ User study* we performed at UC San Diego (UCSD IRB #100056)

‣ First and second year CS graduate students

‣ Users parallelize their programs and submit to job queue for timing

‣  32-core AMD machine, Cilk++, access to gprof

‣ Students were graded based on effectiveness of their parallel speedup;
students told serial optimization would not help their grade

*Disclaimer: No graduate students were

User Study: Results

• Examined student’s activities to determine result of efforts

• Significant fraction of fruitless effort because of three basic problems

1. Low Parallelism: Region was not parallel enough

2. Low Coverage: Region’s execution time was too small

3. Poor Planning: Speedup negated by subsequent parallelization

User 143

User 249

User 371

time

Fruitless Parallelization Effort

gprof answers the question:

“What parts of this program should I

spend time optimizing?”

Kremlin answers the question:

“What parts of this program should I

spend time parallelizing?”

Kremlin’s Usage Model

$> make CC=kremlin-cc

$> ./tracking lolcats

$> kremlin tracking --personality=openmp

 File (lines) Self-P Cov (%)
1 imageBlur.c (49-58) 145.3 9.7
2 imageBlur.c (37-45) 145.3 8.7
3 getInterpPatch.c (26-35) 25.3 8.9
4 calcSobel_dX.c (59-68) 126.2 8.1
5 calcSobel_dX.c (46-55) 126.2 8.1

• Usage model inspired by gprof
 1. Compile instrumented binary

2. Profile with sample input

3. Run analysis tool to create plan

Kremlin’s Key Components

• Hierarchical Critical Path Analysis (HCPA)

‣ Quantifies self-parallelism in each program region

• Self-Parallelism

‣ Estimates ideal parallel speedup of a specific region

Serial
Src

Code

Parallelization

Parallelism Discovery

“What’s the potential parallel speedup of

each part of this program?”

• Planning Personalities

‣  Incorporates target specific constraints in parallelization

Parallelism Planning

“What regions must I parallelize to get

the maximum benefit on this system?”

Developing an Approach for Parallelism Discovery

• Existing Technique: 1980’s-era Critical Path Analysis (CPA)

‣ Finds critical path through the dynamic execution of a program

‣ Mainly used in research studies to quantify limits of parallelism

critical path (cp)

instruction

data or control dependence

parallelism =
 work

critical path length

work ~= # of instrs

Benefits of CPA as a Basis for a Parallelism Discovery

• Evaluates program’s potential for parallelization under relatively
optimistic assumptions

‣  Closer approximation to what human experts can achieve

‣  Versus pessimistic static analysis in automatic parallelizing compilers

• Result is predictive of parallelism after typical parallelization
transformations

‣  e.g., Loop interchange, loop fission, locality enhancement

Improving CPA with Hierarchical CPA (HCPA)

• CPA is typically run on an entire program

‣ Not helpful for identifying specific regions to parallelize

‣ Doesn’t help evaluate execution time of a program if only a subset of

the program is parallelized

• Hierarchical CPA is a region-based analysis

‣ Self-Parallelism (sp) identifies parallelism in specific regions

‣ Provides basis for estimating parallel speedup of individual regions

for(i=1..100) {
 for(j=1..100) {

a[i][j] = a[i][j-1]+3;
b[i][j] = b[i][j-1]+5;

 }
}

sp=2
 sp=1
 sp=100

HCPA Step 1: Hierarchically Apply CPA

• Goal: Introduce localization through region-based analysis

• Shadow-memory based implementation

‣ Performs CPA analysis on every program region

‣ Single pass: Concurrently analyzes multiple nested regions

for(i=1..100) {
 for(j=1..100) {

a[i][j] = a[i][j-1]+3;
b[i][j] = b[i][j-1]+5;

for(i)

(work, cp length) = (100000,500)

...

for(j)

(1000,500)

for(j)

(1000,500)

...

100

(10,5)

1

(10,5)
for(i): p =
 100000

500
 = 200
W

CP
 =
 ✗

HCPA Step 2: Calculate Self-Parallelism

• Goal: Eliminate effect of nested parallelism in parallelism calculation

• Approximate self-parallelism using only HCPA output

‣  “Subtracts” nested parallelism from overall parallelism

for(i)

(W, CP) = (100000,500)

for(j)

(1000,500)

for(j)

(1000,500)

...

work(for_i) = 100 * work(for_j)

500
 500

CP
 other

500
 500

CP
 other

500
 500

CP
 other

500

CP

500

CP

500

CP
...

work’(for_i) = 100 * CP(for_j)

adjust work

...
W(forj) W(forj) W(forj)

contributes to
parallelism in

both inner and

outer regions

for(i): p =
 100000

500
 = 200
W

CP
 =

for(i): self-p =
 100*500
= 100
W’
 =

✔

HCPA Step 3: Compute Static Region Data

• Goal: Convert dynamic region data to static region output

• Merge dynamic nodes associated with same static region

‣ Work: Sum of work across dynamic instances

‣ Self-Parallelism: Weighted Average across dynamic instances

for(i)

(work, sp) = (100000,100)

...

for(j)

(1000,1)

for(j)

(1000,1)

...

100

(10,2)

1

for(i)

for(j)

body

(work, avg. sp)

(100000,100)

(100000,1)

(100000,2)

merge

dynamic

regions

Further Details on Discovery in Our Paper

• Kremlin handles much more complex structures than just nested
for loops: finds parallelism in arbitrary code including recursion

• Self-parallelism metric is defined and discussed in detail in the
paper

• Compression technique used to reduce size of HCPA output

Creating a Parallelization Plan

• Goal: Use HCPA output to select best regions for target system

• Planning personalities allow user to incorporate system constraints

‣ Software constraints: What types of parallelism can I specify?

‣ Hardware constraints: Synchronization overhead, etc.

‣ Planning algorithm can change based on constraints

An OpenMP Planner

• Based on OpenMP 2.0 specification

‣ Focused on loop-level parallelism

‣ Disallows nested parallelism because of overhead

‣ Planning algorithm based on dynamic programming

A

C B

D E F

Region
 Work
 SP

A
 100k
 2

B
 50k
 2

C
 50k
 10

D
 50k
 10

E
 25k
 5

parallelized time reduction = W - (W/SP)
PTR = 50k

45k

20k
20k

25k

45k

✔

✔

Evaluation

• Methodology:

‣ Ran Kremlin on serial versions; targeting OpenMP

‣ Parallelized according to Kremlin’s plan

‣ Gathered performance results on 8 socket AMD 8380 Quad-core

‣ Compared against third-party parallelized versions (3rd Party)

• Benchmarks: NAS OpenMP and SpecOMP

‣ Have both serial and parallel versions

‣ Wide range of parallel speedup (min: 1.85x, max: 25.89x) on 32 cores

How much effort is saved using Kremlin?

of Regions Parallelized

Suite
 Benchmark
 3rd Party
 Kremlin
 Reduction

SpecOMP

art
 3
 4
 0.75x

ampp
 6
 3
 2.00x

equake
 10
 6
 1.67x

NPB

ep
 1
 1
 1.00x

is
 1
 1
 1.00x

ft
 6
 6
 1.00x

mg
 10
 8
 1.25x

cg
 22
 9
 2.44x

lu
 28
 11
 2.55x

bt
 54
 27
 2.00x

sp
 70
 58
 1.21x

Overall
 211
 134
 1.57x

1.89x average improvement

How good is Kremlin-guided performance?

Significantly better results

on two benchmarks

• Compared performance against expert, third-party version

Required 65 fewer regions to get
within 4% of performance on
others (1.87X improvement)

Does Kremlin pick the best regions first?

Fraction of Kremlin Plan Applied

First 25%

of regions

Second 25%

of regions

Third 25%

of regions

Last 25%

regions

Marginal
benefit (%

max speedup)
(avg)

56.2%
 30.2%
 9.2%
 4.4%

86.4% in first half + decreasing marginal benefit

• Determined what % of speedup comes from first {25,50,75,100}%
of recommended regions

Conclusion

• Kremlin helps a programmer determine:�

 “What parts of this program should I spend time parallelizing?”

• Three key techniques introduced by Kremlin

‣ Hierarchical CPA: How much total parallelism is in each region?

‣ Self-Parallelism: How much parallelism is only in this region?

‣ Planning Personalities: What regions are best for my target system?

• Compelling results

‣  1.57x average reduction in number of regions parallelized

‣ Greatly improved performance on 2 of 11 benchmarks; very close on�
others

Self-Parallelism for Three Common Loop Types

DOACROSS
DOALL

CP

Parallelism

Loop Type

Critical Path

Length (CP)

Work (ET’)
 N * CP

Serial

= N
N * CP

CP

…

CP

CP

CP

(N/2) * CP

N * CP

= 2.0
N * CP

(N/2) * CP

…

CP

CP

CP

N * CP

N * CP

= 1.0
N * CP

N * CP

CP
 CP
 CP
…

Kremlin System Architecture

Interpreting the Parallelism Metric

...

Totally Serial

...

Highly Parallel

All work is
on critical

path

(ET == CP)

Most work is
off critical

path

(ET >> CP)

Parallelism is a result of execution time

100.0
 10000.0

