mMlin: Rethinking and Rebooting gprof for
the Multicore Era

nino Garcia, Donghwan Jeon, Chris Louie, Michael B. Taylor

uter Science & Engineering Department
rsity of California, San Diego

Ivating a "gprof for parallelization”

v effective are programmers at picking the right parts of a
gram to parallelize?

Jser study* we performed at UC San Diego (UCSD IRB #100056)
irst and second year CS graduate students

Jsers parallelize their programs and submit to job queue for timing
2-core AMD machine, Cilk++, access to gprof

tudents were graded based on effectiveness of their parallel spee
tudents told serial optimization would not help their grade

*Niclaimar: NN Arad iate <t inantce .

r Study: Results

imined student’s activities to determine result of efforts

- User 143

I . User 249
B Fruitless Parallelization Effc
User 371

time

nificant fraction of fruitless effort because of three basic probl

.ow Parallelism: Region was not parallel enough

.ow Coverage: Region’s execution time was too small

gprof answers the question:

“What parts of this program should |
spend time optimizing?”

Kremlin answers the guestion:

“What parts of this program should |
spend time parallelizing?”

Mlin’s Usage Model

2. Profile with sample input

/tracking lolcats 2 3. Run analysis tool to creat:

remlin trackling —--personality=openmp

1le (lines)

mageBlur.c (49-58)
mageBlur.c (37-4D5)
ctInterpPatch.c (26-35)
alcSobel dX.c (59-68)
alcSobel dX.c (46-55)

Mlin’s Key Components

™

-

Parallelism Discovery
“Whats the potential parallel speedup of

each part of this program?”
(\

Parallelism Planning
“What regions must | parallelize to get
the maximum benefit on this system?”

\\ ‘ Parallelization ‘

eloping an Approach for

Parallelism

DISCOVE

sting Technique: 1980°s-era Critical Path Analysis (CPA)

inds critical path through the dynamic execution of a program

Nainly used in research studies to quantify limits of parallelism

critical path (cp)

parallelism =

work

critical path length

O instruction
N\ data or control dependence

work ~= # of instrs

fits of C

PA as a

SasiIs for a

Parallelism

DISC

ates program’s potential for parallelization under relatively
listic assumptions

)ser approximation to what human experts can achieve

r'sus pessimistic static analysis in automatic parallelizing compilers

It is predictive of parallelism after typical parallelization

formations

., Loop interchange, loop fission, locality enhancement

roving CPA with Hierarchical C

A is typically run on an entire program

OA (HC

ot helpful for identifying specific regions to parallelize

DA)

Joesn’t help evaluate execution time of a program if only a subset

he program is parallelized

rarchical CPA is a region-based analysis

elf-Parallelism (sp) identifies parallelism in specific regions

’rovides basis for estimating parallel speedup of individual regions

for (i=1..100) { |7
for (7=1..100) { :r:
(11 (3] = alilf[7-11\W3;
E[i”ﬂ = bliI\[J-11}t5; I8p=2 sp=1
) ~—~ 1.

sp=100

SA Step 1: Hierarchically Apply C

PA

al: Introduce localization through region-based analysis

:dow-memory based implementation

erforms CPA analysis on every program region

ingle pass: Concurrently analyzes multiple nested regions

j=1..100) |
]3] = al1] [3-1]1+3;
1 [J] = bli][J-11+45;

1..100) { (work, cp length) = (100000,5(
J

°A Step 2: Calculate Self-Parallelism

al: Eliminate effect of nested parallelism in parallelism calculat
yroximate self-parallelism using only HCPA output

Subtracts” nested parallelism from overall parallelism

.......... 4 ~ " :
P) = (100000,500) ...~ work(for_i) = 100 * work(for_j)
""" CP other CP other CP oth:

W(forj) W(forj) EEn

|

(1000,500)

% adjust work
- - contribt
W 100000 work’(for_i) = 100 * CP(for_j)| Parallel

pP= - = = 200 both inn

CP 500
W'’ 1 N0N0*500 | ()] N EEE W) B

PA Step 3: Compute Static

Region

Data

al: Convert dynamic region data to static region output

rge dynamic nodes associated with same static region

Vork: Sum of work across dynamic instances

elf-Parallelism: Weighted Average across dynamic instances

rork, sp) = (100000,100)

(1000,1)
merdge
om0 .

dynamic

(work, avg.

(100000,1C

(100000,1

(100000 -

her Details on Discovery in Our Paper

mlin handles much more complex structures than just neste
loops: finds parallelism in arbitrary code including recursior

-parallelism metric is defined and discussed in detall in the
er

npression technique used to reduce size of HCPA output

ating a Parallelization Plan

al: Use HCPA output to select best regions for target syster
1ning personalities allow user to incorporate system constre
>oftware constraints: What types of parallelism can | specify?
lardware constraints: Synchronization overhead, etc.

’lanning algorithm can change based on constraints

DpenMP Planner

sed on OpenMP 2.0 specification
-ocused on loop-level parallelism
Jisallows nested parallelism because of overhead

’lanning algorithm based on dynamic programming

parallelized time reduction =W - (W

Region Work SP
A 100k 2
B 50k 2
C 50k 10
D 50k 10
- OE| _ =

luation

thodology:

}an Kremlin on serial versions; targeting OpenMP

’arallelized according to Kremlin’s plan

aathered performance results on 8 socket AMD 8380 Quad-core
>ompared against third-party parallelized versions (3rd Party)
ichmarks: NAS OpenMP and SpecOMP

1ave both serial and parallel versions

Vide range of parallel speedup (min: 1.85x, max: 25.89x) on 32 col

v much effort is saved using Kremlin?

of Regions Parallelized

uite Benchmark 3rd Party Kremlin Reduction
art 3 4 0.75x
>3cOMP ampp 0 3 2.00x
equake 10 @ 1.67X
ep 1 1 1.00x
IS 1 1 1.00x
@
3
9

Overall

v good Is Kremlin-guided performance?

mpared performance against expert, third-party version

Significantly better results

2 —_
on two benchmarks
8 - \\
6 - _ .
Required 65 fewer regions to get

4 - within 4% of performance on

2 others (1.87X improvement)

1] sspsssssspEEEEEEEEEEEEEEEEEEEEEEEEEEEE AAREEEEEEEEEE® b
.8 -
.6 -
.4 -
.2 -

s Kremlin pick the best regions first?

ermined what % of speedup comes from first {25,50,75,10(
ecommended regions

Fraction of Kremlin Plan Applied

First 256% |Second 25% | Third 25% | Last 25%
of regions of regions of regions regions

I\/Iarg.inal
i’fliﬂeteﬁ/ﬁp) 56.2% 30.2% 9.2% 4.4%

(avg)

1clusion

mlin helps a programmer determine:
What parts of this program should | spend time parallelizing

ee key techniques introduced by Kremlin

lierarchical CPA: How much total parallelism is in each region?
elf-Parallelism: How much parallelism is only in this region?
’lanning Personalities: What regions are best for my target system
npelling results

.D7x average reduction in number of regions parallelized

areatly improved performance on 2 of 11 benchmarks; very close «
thers

Parallelism for Three Common

/PE

ath
oP)

DOALL

C

D

DOACROSS

CP

D

C

CP

CP

N *CP

N*CP

P

CP

CP

(N/2) = CP

N *CP

N*CP _ 20
(N/2) * CP

oop lypes

Serial

cPlcr]...|

Mlin System Architecture

E ... PGrOlleIism E
—h KremLib Profile |
P - - I :
c O O A <p,w>
—5 5 > ko) + B: <p.w>
5 Q+ 8 + C: <p.w>
ource = > L »| Instrumented [eec >
:Ode E:_; 2 = 5 Binory w/ inputs _
|0 B 5 *
I = Z
> B éj%i 3| Kremlin
. Static Instrumentation Planner

region graph

Ordered
Parallelism
Plan

rpreting the Parallelism Metric

Y/

100.0 10000.0
aIIy Serlal nghly Parallel

K3 '.

‘ 0

R '
< A// vvquk IS Most\
.| on critical off ¢
path of:
éET == CP)/ (ET >.

* *

- *
