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ABSTRACT
As more and more edge devices connect to the cloud to use its
storage and compute capabilities, they bring in security and data
privacy concerns. Homomorphic Encryption (HE) is a promising
solution to maintain data privacy by enabling computations on the
encrypted user data in the cloud. While there has been a lot of work
on accelerating HE computation in the cloud, little attention has
been paid to optimize the en/decryption on the edge. Therefore, in
this paper, we present RACE, a custom-designed area- and energy-
efficient SoC for en/decryption of data for HE. Owing to similar
operations in en/decryption, RACE unifies the en/decryption datap-
ath to save area. RACE efficiently exploits techniques like memory
reuse and data reordering to utilize minimal amount of on-chip
memory. We evaluate RACE using a complete RTL design contain-
ing a RISC-V processor and our unified accelerator. Our analysis
shows that, for the end-to-end en/decryption, using RACE leads to,
on average, 48× to 39729× (for a wide range of security parameters)
more energy-efficient solution than purely using a processor.
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1 INTRODUCTION
Over the last decade, Homomorphic Encryption (HE) has emerged
as one of the key techniques to perform privacy-preserving com-
putations. Edge devices (having energy and area constraints) can
therefore leverage cloud services to compute on private user data
using HE. Figure 1 shows an example of HE-based computing where
a user captures a picture/video using an edge device, pre-processes
it, encrypts it, and then sends it to the cloud for further processing.
The cloud operates on the encrypted data and sends the encrypted
result back to the user, and only the user can decrypt the result.

Several recent works have focused on accelerating the HE oper-
ations on the cloud through algorithmic optimizations for CPU [4,
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Figure 1: Steps to transfer encrypted video frames to the cloud.
10], GPU [1, 9], and custom hardware accelerators [7, 16, 17, 21].
All these works make an implicit assumption that the edge-side
operations, including encryption and decryption (en/decryption),
encoding and decoding (en/decoding), and error sampling are triv-
ial and do not need to be accelerated. However, these edge-side
operations are not trivial, and have high compute and memory
requirements. SEAL-Embedded is the first HE library targeted for
embedded devices, which employs several computational and al-
gorithmic optimizations to achieve memory efficient en/decoding
and en/decryption on edge devices [14]. They target Cheon, Kim,
Kim and Song (CKKS) [6] HE scheme as it operates on floating-
point data. However, the memory efficient implementation of the
library has performance bottlenecks (e.g., inefficient modular arith-
metic implementation) and is still not practical. For example, if
we were to encrypt video captured by a QQVGA camera operat-
ing at a low resolution of 120 × 160 pixels using memory-efficient
SEAL-Embedded library (running at 1 GHz on a RISC-V core like
BlackParrot (BP) [15] for polynomial degree of N = 4096 and three
30-bit primes), we cannot encrypt even one frame per second (more
details in Section 5). Typically surveillance cameras and mobile
platforms (forming the ‘Internet of Video Things’) have an average
frame rate of 15 and 30 frames per second [22]. One could use a
more powerful processor, but then the power consumption would
be higher which would not be sustainable in a typical edge device.

Thekey bottleneck of the edge-side operations is the en/de-
cryption operation,where in themain bottleneck is theNum-
ber Theoretic Transform (NTT) operation. Several prior works
have accelerated the NTT operation in the context of Post Quantum
Cryptography (PQC) [2, 5, 11, 13, 23]. However, the parameters used
by these works are much smaller (polynomial degree N <= 210 and
coefficient bit width logQ <= 24) than the required parameters for
a practical HE application (N > 212 and logQ > 109). None of these
NTT accelerators focus on designing an area and energy-efficient
solution for en/decryption to support HE-based computing. Su et
al., proposed an FPGA [19] accelerator for en/decryption target-
ing Brakerski-Gentry-Vaikuntanathan (BGV) HE scheme [8], but it
supports small security parameters (N = 27). Similarly, Yoon et al.,
also proposed an ASIC based en/decryption accelerator [24], but it
is also evaluated only for small security parameters (N = 24).

In this work, we present RACE: a custom-designed area-
and energy-efficientRISC-V System-on-Chip (SoC) for en/de-
cryption of the data on the edge. Encryption and decryption per-
form similar operations (polynomial addition and multiplication),
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and so we propose a unified accelerator, where the encryption
and decryption operations share the datapath. To reduce SRAM
area in RACE we architect it such that it requires memory that
is large enough to only store two polynomials. This memory is
reused over time to store inputs, outputs, and intermediate values.
We propose a novel data reordering scheme for NTT so that RACE
only needs single port (1RW) SRAM banks, which further reduces
area in contrast with prior works [5, 11–13, 23] that need dual port
(1R1W) SRAM banks. We interface our accelerator with BP [15] to
design a complete SoC. We provide an end-to-end evaluation of
our SoC when performing the en/decryption operation using the
accelerator and the remaining operations on the BP processor. We
compare our SoC against a ‘BP only’ system where all operations
are performed on the BP processor. For both designs we leverage
the SEAL-Embedded library. The main contributions of our work
are: 1) We profile SEAL-Embedded based edge-side operations for
the CKKS scheme on BP, for different N and logQ pairs to identify
the performance bottlenecks; 2) Based on the profiling results, we
architect RACE, an area- and energy-efficient SoC to accelerate
the en/decryption operations. We use a shared data path for the
en/decryption operations, and memory reuse and data reorder tech-
niques; and 3) We interface the accelerator with BP, and evaluate
the performance and energy efficiency of RACE when perform-
ing end-to-end en/decryption operations. For the end-to-end en-
cryption and decryption operation, RACE decreases Energy
Delay Product (EDP) by 38.67-75701.92× and 57.93-3756.25×,
respectively, compared to the ‘BP only’ system.

2 PRELIMINARIES
CKKS Scheme - En/Decryption Operations: The CKKS HE
scheme can perform computations on encrypted real numbers. The
native plaintext data-type in CKKS scheme is a vector of length N /2
where each element is chosen from C, the field of complex num-
bers. The encoding operation takes as input this N /2-dimensional
vector and returns an integer polynomial m(X ). Encryption of the
polynomial m(X ) under the public key pk generates a ciphertext ct
by computing:

c0 = µ · pk0 +m + e0, (1)
c1 = µ · pk1 + e1 (2)

Here, µ is a uniformly sampled polynomial, and e0 and e1 are
two polynomials sampled from a discrete Gaussian noise sampler.
The coefficients in both the polynomials (c0, c1) are elements of
ZQ , where Q is typically on the order of thousands of bits to ac-
count for the noise growth. Therefore, to compute on such large
operands efficiently, the CKKS scheme supports the use of Residue
Number System (RNS) (also known as the Chinese Remainder The-
orem (CRT) representation). Using this approach, each number
is represented modulo Q =

∏ℓ
i=1 qi , where each qi is a prime

number. We can represent x ∈ ZQ as a length-ℓ vector of scalars
[x]B = (x1,x2, . . . ,xℓ), where xi ≡ x (mod qi ). We refer to each
xi as a limb of x . The ciphertext is decrypted to obtain the original
message back using:

m = c0 + c1 · s (mod qℓ) (3)

Here s is the secret key. Using RNS, both en/decryption can be
performed w.r.t. a smaller modulus qi instead of a large modulus Q .
Video Frame Encryption Example: Considering our example
of video frame encryption, using Quarter Quarter VGA (QQVGA)

frame resolution, the frame size is 120 × 160 pixels. If this frame is
in grey scale, the frame size will be 120 × 160 × 8 = 153, 600 bits
= 19.2 KB. With N = 4096 and logq = 30 bits, we can encode
N /2 × logq = 2048 × 30 = 61, 440 bits in a single ciphertext, which
implies that a single frame will be encoded and encrypted within 3
ciphertexts and will have a total size of 327 KB.

BlackParrot RISC-V Multicore: BP is an agile open-source
RISC-V multi-core processor for accelerator SoCs [15]. It imple-
ments the RISC-V RV 64G architecture and is designed as a scalable,
configurable heterogeneously tiled micro-architecture. BP provides
a robust and scalable end-to-end framework for accelerator inte-
gration, which simplifies interfacing both coherent and streaming
accelerators, and the offloading of parts of the user application
from the processor to the accelerator. This framework provides
hardware implementation of accelerator tiles in SystemVerilog and
helps accelerator designers and system architects to evaluate their
accelerator ideas and evaluate the end-to-end application time.

3 RELATEDWORK
One of the key works in the area of accelerating edge-side opera-
tions for HE is the Microsoft SEAL-embedded library [14], which
focuses on reducing the memory requirement for en/decoding and
en/decryption operations. It uses RNS partitioning, data type com-
pression, memory pooling and reuse to reduce the memory con-
sumption. However, this software-based implementation of HE
encryption is still slow and not efficient for real-time applications.
As mentioned earlier, for a video application with QQVGA resolu-
tion, SEAL-embedded fails to encrypt even one frame per second.

There are few works focusing on accelerating en/decryption
for HE [19, 24]. Su et al. [19] present an FPGA-based accelerator,
but it is for the BGV HE scheme as against the CKKS scheme that
we support. Although their accelerator can be extended to larger
polynomial degrees to support higher security levels, in its current
form it only supports small parameters (N = 128, logQ = 27),
which are impractical for HE computation. The authors have left the
support for larger parameters as part of the future work. Moreover,
the accelerator is mainly optimized for higher performance and
throughput, and not for area/energy efficiency. Yoon et al. [24]
present an ASIC-based en/decryption accelerator for HE operations.
The accelerator is again evaluated for small N = 16 only. It needs
large buffers to store the in/outputs and the pre-computed twiddle
factors, increasing the memory area.

In our work, we can perform en/decryption for any practical
security parameters. We share the datapath, adopt memory reuse
and data reordering strategies, and compute all the twiddle factors
on-the-fly to enable efficient en/decryption operations.

4 RACE: DESIGN AND FUNCTIONALITY
4.1 Dataflow for Encryption and Decryption
We use Equation (1) and (2) for encryption. Both the equations
perform polynomial addition and multiplication operations to com-
pute the ciphertext. While polynomial addition is straight-forward,
NTT is commonly used to speedup polynomial multiplication. We
split the operations on (pk0, µ,m + e0) to calculate c0 and opera-
tions on (pk1, µ, e1) to calculate c1 into two ‘half-encryption’ op-
erations. Thus, every encryption operation calls the accelerator
twice, once for c0 half-encryption and once for c1 half-encryption.
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Figure 2: System-level view of RACE, a RISC-V based SoC for accelerating encryption and decryption operation on the edge for
supporting homomorphic operations in the cloud.
The decryption operation follows Equation (3) and accepts inputs
in NTT format. At a high-level, the half-encryption and decryp-
tion operations perform the same underlying operations, just in
a different order. Hence, we share the datapath and control logic
between encryption and decryption to lower the accelerator area
(see Figure 3).

4.2 RACE System View
RACE SoC consists of a single-core configuration of BP and an
en/decryption accelerator. We interface the en/decryption acceler-
ator with BP as a streaming accelerator because it needs a large
amount of input and output data transfers (tens of KBs). We set up
a hardware DMA logic to transfer all the input data from the main
memory to the accelerator tile. The required input data includes
pk0, pk1, e0, e1 and µ. Once the accelerator completes en/decryption
operation, it interrupts the BP core to signal a operation completion.
Then, the DMA logic transfers the accelerator output data to the
main memory that can be read by BP for further processing.

4.3 Accelerator Microarchitecture
Figure 2 shows the detailed microarchitecture of our pipelined ac-
celerator. The accelerator consists of SRAM banks that store the
in/output and intermediate polynomials. The Butterfly Unit (BFU)
is pipelined and is designed to perform NTT, INTT, polynomial
addition and multiplication operations that are required by both
encryption and decryption operations (see Figure 3). The permu-
tation unit (PU) reorders (more details given later in this section)
the output generated by the BFU and writes it back into the SRAM
banks. The control unit (CU) generates activation signals for differ-
ent datapaths corresponding to the different operations.

4.3.1 BFU. A Butterfly operation (BF) is the building block of
NTT/INTT. An NTT/INTT operation consists of log2 N stages (N −

1 is the polynomial degree), and each stage contains N /2 BFs. Given
a polynomial a, a BF takes its two coefficients (ai ,aj ) as input and
computes (ai ,aj ) = (ai + ω · aj (mod q), ai − ω · aj (mod q))

NTT
MULT

ADD m

pk0/pk1

μ

(m+e0)/e1

NTT

NTT

INTT

c1

s

c0

c0/c1

μ

Encryption (half)
Decryption

Figure 3: Unified en/decryption dataflow, where encryption
and decryption share the datapath and the control logic.

(refer Algorithm 1 line 13 and 14). Here, ω is the twiddle factor. A
degree N − 1 polynomial requires N /2 twiddle factors, where each
twiddle factor needs log(q) bits. To reduce the memory overhead
for storing pre-computed twiddle factors, our accelerator computes
them on-the-fly within BFU. BFU is a fully-pipelined module with
the throughput of 1 BF per cycle. It contains a modular multiplier
where modular reduction operation is performed using a Barrett
reduction [3] unit. BFU also has an integer adder and subtractor unit
that performs modular reduction using conditional operator. The
latency of the pipelined modular multiplier can be tuned through
the number of pipeline stages. The multiplier lies on the critical
path in the accelerator, and we pipeline the multiplier to improve
the frequency of the accelerator. As power and area are the primary
design goals for embedded devices, all the above computations are
performed by sequentially leveraging the pipelined BFU.

4.3.2 SRAMArrays. Weuse the SRAM arrays to store the in/output
and intermediate polynomials. We propose two ideas: memory
reuse and memory reorder to minimize the SRAM size.
Memory reuse: For efficient en/decryption computation, all the
required polynomials (m, e0, e1, µ, pk0, pk1, c0, c1) should be stored
in the on-chip memory of the accelerator. However, a single poly-
nomial is usually large and requires large amount of memory. For
N = 214, log(q) = 30 we need 480 KB to store all the in/output
polynomials. In our memory reuse approach, we manage the en/de-
cryption operations such that at any point of time we need to store
at most two polynomials, which require 122 KB space. We divide
the on-chip SRAM memory into multiple banks. Each polynomial
is stored across multiple banks and those banks together form a
group. We have two bank groups i.e., BG0 and BG1 for the two
polynomials. These bank groups are used for storing the in/output
and intermediate polynomials during en/decryption operation. Fig-
ure 4 (a) and (b) show how the two bank groups are shared among
the various polynomials during encryption and decryption opera-
tion, respectively. For example, we perform an in-place NTT/INTT
operation that reads the data for polynomial µ from BG0, operates
on it, and writes the results back BG0. While computing NTT on
the polynomial µ, we load the next input polynomial pk1 into BG1
in parallel. We perform memory reuse during the modular addition
and multiplication operations as well. Both of these operations read
inputs from bank groups BG0 and BG1 and write the results back
to BG1 only. So we can reuse BG0 for the next operation once the
modular addition or multiplication operations are finished. Thus,
through memory reuse approach, we can perform en/decryption
efficiently using a small memory that stores only two polynomials.
Memory reorder: A naïve implementation of the NTT algorithm
requires 2 read and 2 write port (2R2W) memory bank of size N to
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Algorithm 1: NTT_swap4
Input: Polynomial a(x ) ∈ Zq [x ] in bit-reversed order
Output: NTT (a(x )) in normal order

1 m = 2;
2 for (staдe = 0; staдe < (logN − 1); staдe+ = 1) do
3 ω = 1; ωm = ω2logN−1−staдe

n ; upd_cnt = 1;
4 for (j = 0; j < m ∗ 2; j+ = 4) do
5 for (k = 0;k < N ;k+ =m ∗ 4) do
6 i0=[]; i1=[];
7 for (l = 0; l < 4; l+ = 1) do
8 switch l do
9 case 0 do idx = j + k ;

10 case 1 do idx = j + k + 2 ;
11 case 2 do idx = j + k +m ∗ 2 ;
12 case 3 do idx = j + k +m ∗ 2 + 2 ;
13 a[idx ] = a[idx ] + a[idx + 1] ∗ ω (mod q);
14 a[idx + 1] = a[idx ] − a[idx + 1] ∗ ω (mod q);
15 i0.append(idx ); i1.append(idx + 1);
16 if upd_cnt == N /(2staдe+1) then
17 ω = ω ∗ ωm (mod q); upd_cnt = 1;
18 else upd_cnt+ = 1 ;

19

(a[i0[0]], a[i1[0]], a[i0[1]], a[i1[1]],
a[i0[2]], a[i1[2]], a[i0[3]], a[i1[3]]) =
(a[i0[0]], a[i0[1]], a[i0[2]], a[i0[3]],
a[i1[0]], a[i1[1]], a[i1[2]], a[i1[3]])

20 m = (m == N /4) ? 2 : (m ∗ 2);
21 for (i = 0; i < N ; i+ = 1) do

/* Bit manipulation */

22 phy_addr = {i[logN −3 : 2], i[logN −1 : logN −2], i[1 : 0]}
;

23 a_out [i] = a[phy_addr ];
24 return a_out ;

Figure 4:Memory reuse during (a) encryption and (b) decryp-
tion operations. “Read/Operate/Write” means the bank group
is being accessed during the operations. “Occupied”means the
bank group stores intermediate results.
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Figure 5: NTT_swap4 with N = 32. The red colored numbers
denote the order of BF operations. The consecutive four BFs (2
rows) being reordered are denoted with the same color.

achieve two reads and two writes per BF. 2R2W banks are almost 2×
larger than 1 read and 1 write port (1R1W) bank. Therefore, just by
replacing a single 2R2W bank of sizeN with two 1R1W banks of size
N /2 (as long as there are no bank conflicts), we can save half of the
memory area. However, the distance between the two inputs of a BF,
(j − i), varies across NTT stages. NTT operation iterates through all
values from 1 to N /2, so there are bank conflicts in certain stages,
making this replacement impossible. Existing works reduce the
required memory ports from 2R2W to 1R1W by customizing the
NTT algorithm. For example, to use 1R1W memory banks for an
NTT, Roy et al. [18] proposed a memory-efficient NTT algorithm.
We call their approach as NTT_swap2 algorithm. This algorithm
avoids bank conflicts (two 1R1W banks) by reordering the output
of the two consecutive BF operations. This ensures the input pair
needed by BF operation in the next stage resides in different banks.

While the use of 1R1W memory bank saves half the memory
area, it is still not efficient. We propose to replace the two 1R1W
banks of size N /2 with four 1 read/write port (1RW) banks of size
N /4 to reduce memory area even further. A 1RW bank is 2× smaller
than a 1R1W bank. However, this results in newer bank conflicts
that cannot be resolved by the existing NTT_swap2 algorithm. If
the same bank receives both read and write requests at the same
time, we need to have a write buffer that stores the write requests
and waits until there are no incoming reads to opportunistically
write back the results. The size of the write buffer depends on the
number of cycles where the bank is continuously read and written.
If there are N /4 continuous read and write accesses to the same
bank in one particular stage, then the write buffer needs to be the
same size as the banks (N /4) to store all the write requests that
are overlapping with the read requests to the same bank. To avoid
the overhead of this large write buffers, we propose a new NTT
algorithm called NTT_swap4 (refer Algorithm 1).

On top of NTT_swap2 i.e., reordering the outputs of two BF oper-
ations, NTT_swap4 further reorders the output of four consecutive
BFs (Figure 5). This is to make sure that not only the two inputs
of all BF operations are stored in different banks (NTT_swap2),
but also the inputs of consecutive BFs are stored in different banks
(NTT_swap4). In this case, the same bank is not continuously ac-
cessed and the write buffer can write back the results immedi-
ately in the next cycle. Hence, the write buffer can be as small
as one element wide (logq), saving further area. Figure 5 shows
an example of NTT_swap4 scheme for N = 32. The numbers (in
red) before each pair of cells denote the order of BF operations.
For example, in stage 0, the first four BFs access the following
pairs: (a0,a1), (a2,a3), (a4,a5), (a6,a7). However, stage 1 expects
elements in the order of (a0,a2), (a4,a6), (a1,a3), (a5,a7). So we re-
order the outputs of stage 0 to the order expected by stage 1 to
make sure that the consecutive BFs in stage 1 do not access the
same banks for reads and writes (refer Algorithm 1 line 19). We use
a PU to perform this reordering.

4.3.3 Permutation Unit. The PU consists of a reordering logic and
a small register array to store 8 pairs of BF outputs. Reordering
logic starts by writing the two outputs of a BF operation along
with their addresses sequentially to the register array in each cycle.
After there are eight elements in the register array i.e., four pair of
BFU outputs, the reordering logic will first send out the elements
stored in even registers and then the elements in odd registers (see
memory reorder example in Section 4.3.2). This reordering logic
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works for both NTT and INTT operations. Based on themode signal,
the PU will be active only during the NTT/INTT computations.

4.3.4 Control Unit. The CU consists of two components – the
computation controller and the I/O controller. The computation
controller is an FSM that determines the BFU and PU mode signals
depending upon the current operation (NTT/INTT, modular addi-
tion and multiplications). It also generates the read/write addresses
and enable signals for SRAM accesses. During NTT/INTT oper-
ation, the computation controller is also responsible for stalling
the BFU pipeline and configuring it to compute the twiddle factors
on-the-fly. The I/O controller selects the required set of BFU opera-
tions depending on the encryption or decryption request received
by the accelerator. In addition, it also sets up the DMA unit for the
in/output data transfer to/from SRAM arrays.

5 EVALUATION
5.1 Methodology
For our analysis, we run all the edge-side operations from the SEAL-
Embedded library on the ‘BP only’ system and RACE in bare-metal
mode. In the ‘BP only’ system, we perform all operations on the BP
processor. In RACE, we perform the en/decryption operation using
the accelerator and the remaining operations on the BP processor.
We modified SEAL-Embedded library to execute en/decryption
operations on the accelerator in RACE. For both ‘BP only’ and
RACE, we use BP SoC with a single core configuration (32 KB
each of Icache and Dcache) running at 1 GHz. Both ‘BP only’ and
RACE are implemented in SystemVerilog and simulated using VCS.
The hardware implementation is cycle-accurate and captures the
nuances of data movement between all parts of the systems. For
power, performance and area evaluation, we use GlobalFoundries
12 nm technology. We synthesize the logic components in both ‘BP
only’ and RACE using Synopsys Design Compiler, and use memory
compiler for designing the SRAM arrays.

5.2 Results
Performance: Figure 6 (a) shows the initial setup, encoding, error
sampling, DMA, and encryption latency (in clock cycles) for the
‘BP only’ system and RACE for different security parameters (N ,
logQ). Note that the Y-axis uses a log scale. Similarly, Figure 6 (b)
shows the latency breakdown for the initial setup, decode, decrypt
and DMA operations. For the ‘BP only’ system, the en/decryp-
tion operations take the longest time because they need multiple
polynomial multiplications, where the runtime is dominated by
NTT/INTT operations. RACE reduces the NTT/INTT execution
time by 78.4× for the smallest N (1024) and 121.8× for the largest N
(16384). As a result, the encryption time decreases by 62.56-515.45×
(80.63-669.56× w/o considering the DMA overhead) and the de-
cryption time decreases by 126.51-160.9× (158.14-201.12× again
w/o considering the DMA overhead), which in turn decreases the
end-to-end latency by 7.5-312.1× and 9.3-69.5×, respectively. The
end-to-end performance improvement is lower than that of en/de-
cryption alone because all the initial setup, encoding/decoding and
error sampling operations take non-trivial amount of time and are
performed in the software.

In Figure 6 (a) and (b), we observe that we get a higher perfor-
mance improvement for the larger N values. This is because for

(1024, 27)

(2048, 30)

(4096, 90)

(8192, 180)

(16384, 390)
Security Parameter (N,logQ)

106

107

108

109

1010

1011

Cy
cle

 N
um

be
r

(a)

init
encode

error_sampling
dma

encrypt

(1024, 27)

(2048, 30)

(4096, 90)

(8192, 180)

(16384, 390)
Security Parameter (N,logQ)

105

106

107

108

109

1010
(b)

init
decode

dma
decrypt

Figure 6: Latency breakdown of the end-to-end (a) encryption,
and (b) decryption for ‘BP only’ (left) and RACE (right).

larger N values we need to perform more BF operations within
an NTT and INTT, and we accelerate these very BF operations
using hardware. Moreover, as logQ increases, the number of 30-bit
co-primes that we need also increases, which in turn increases the
number of times we need to call the encryption and decryption
operations (once per co-prime). It is worth noting that for RACE
we need to perform DMA operations, but due to the high compu-
tational requirements of the en/decryption operations, the DMA
overhead is negligible (< 20%).
Power/Energy: The total power consumption for an end-to-end
en/decryption in the ‘BP only’ system is 27.19 mW, out of which
the SRAM power consumption is 41.49% = 11.4 mW and the digital
logic consumes the rest of the power. Overall, the power consump-
tion of RACE is about 25-28% (for a range of security parameters)
higher than the ‘BP only’ system for both end-to-end encryption
and decryption procedures. The increase in the power consump-
tion is due to 41.92-43.55% power increase in the digital logic and
3.36 − 7.81% power increase in the SRAM.

Table 1 shows the energy consumed in the end-to-end encryp-
tion and decryption procedures for different (N , logQ) values when
using ‘BP only’ and RACE. Overall, RACE consumes 5.07-242.5×
lower energy when running an end-to-end encryption procedure
and 6.2-54.02× lower energy when running an end-to-end decryp-
tion procedure as compared to the ‘BP only’ system. This is because
the performance of RACE is up to 312.1× and 69.5× higher for the
end-to-end encryption and decryption procedures, but its power
overhead is very small. As discussed earlier, RACE speedup is higher
for larger security parameters, but the power consumption increases
by only 3% for the largest N value compared to the smallest one.
Hence, as the security parameters (N , logQ) grow, the end-to-end
energy saving per en/decryption increases.
Energy Efficiency: We use EDP metric to compare the energy
efficiency of the ‘BP only’ system and RACE (see Table 1). Overall,
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Table 1: End-to-end performance, power, area and EDP comparison for the ‘BP only’ system and RACE.
‘BP only’ (en/decryption) RACE (en/decryption)(N , logQ) Latency (ms) Energy (mJ) EDP (mJ.ms) Area (µ2) Latency (ms) Energy (mJ) EDP (mJ.ms) Area (µ2)

(1024, 27) 65.57/13.8 1.78/0.06 116.91/5.18 135880.17 8.61/1.48 0.35/6.21 3.02/0.09 156901.15
(2048, 30) 143.26/30.09 3.90/0.10 558.10/24.62 135880.17 18.04/3.12 0.58/7.66 10.16/0.33 163856.05
(4096, 90) 871.48/182.16 23.70/0.26 20652.58/902.29 135880.17 42.94/7.6 1.47/19.03 63.17/1.98 175639.99
(8192, 130) 3716.09/774.22 101.05/0.65 375516.07/16299.99 135880.17 110.28/19.08 3.78/32.18 416.93/12.48 199668.39
16384, 390) 102665.07/3576.19 2791.76/1.79 2.86×108/347774.18 135880.17 328.94/51.44 11.51/54.02 3786.11/92.59 250913.93

RACE has 38.67-75701.92× lower EDP for an end-to-end encryp-
tion procedure and 57.93-3756.25× lower EDP for an end-to-end
decryption procedure as compared to the ‘BP only’ system.
Area: Overall, RACE area is 15% (smallest N ) to 84% (largest N )
larger than the ‘BP only’ system area. SRAMs occupy (75%) of the
area in the ‘BP only’ system, and there is 11%-100% increase in the
SRAM area in RACE as compared to the ‘BP only’ system. However,
note that we reduce the SRAM requirement from 480 KB to 120 KB
for the largest N value using techniques discussed in section 4.3.2.
Video Application Evaluation: For the video application dis-
cussed earlier, Figure 7 shows the maximum frames per second
(FPS) that both the ‘BP only’ system and RACE can sustain for dif-
ferent (N , logQ) values when performing an end-to-end encryption.
The encrypted frames are shipped to the cloud using a mid-band
5G network, which offers a balance of speed, capacity, and cover-
age [20]. As shown in Figure 7 (a), in the regions with maximum
bandwidth, mid-band 5G network can transfer up to 111 (QQVGA)
and 28 (QVGA) frames per second and in the regions with minimum
bandwidth, it can only transfer 12 (QQVGA) and 3 (QVGA) frames
per second. The ‘BP only’ system is capable of encrypting up to 3
QQVGA FPS for N values smaller than 2048 (refer Figure 7). How-
ever, as we increase N to 4096 or larger values, it cannot encrypt
even a single frame per second. On the other hand, for QQVGA
RACE encrypts ∼ 20 FPS for small values of N and 10 FPS for the
largest N value (16384). For QVGA resolution, the ‘BP only’ system
cannot encrypt even one FPS for the smallest N value (1024). How-
ever, RACE can encrypt 6 and 3 FPS for the smallest and largest
N values, respectively. While RACE can support higher FPS than
the ‘BP only’, there is still some headroom in both minimum 5G
bandwidth and maximum 5G bandwidth cases. Therefore, as part
of the future work, we plan to accelerate the en/decoding and the
error sampling operations to fully utilize the frame transfer rate
that can be sustained by the mid-band 5G network.

6 CONCLUSION
In this work, we present RACE, a RISC-V based SoC for en/decryp-
tion acceleration on the edge to support HE operations in the cloud.
RACE implements several optimizations that enable high perfor-
mance, and area- and energy-efficient end-to-end en/decryption
operations. Our analyses show that compared to the ‘BP only’ sys-
tem, RACE has higher performance and lower energy consumption.
As a result, overall RACE is more energy efficient than the ‘BP
only’ system, and has 38.67-75701.92× lower EDP when running an
end-to-end encryption procedure and 57.93-3756.25× lower EDP
when running an end-to-end decryption procedure.
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