Methodologies for Accelerated Open-Source Hardware Verification and
Optimization

Farzam Gilani

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2025

Reading Committee:

Michael Taylor, Chair
Mark Oskin
Richard Shi

Mehran Mesbahi

Program Authorized to Offer Degree:

Department of Electrical and Computer Engineering

©Copyright 2025
Farzam Gilani

University of Washington

Abstract

Methodologies for Accelerated Open-Source Hardware Verification and Optimization

Farzam Gilani

Chair of the Supervisory Committee:
Michael Taylor

Department of Electrical and Computer Engineering

The rise in development of open-source hardware and the demand for energy-efficient, high-
performance computing have led to increasingly complex processor and accelerator designs.
While open-source tools streamline the design process, verification remains challenging and
costly, as it requires extensive testing to avoid costly post-silicon faults. Conventional formal
verification methods are limited by scalability, slow software simulators are slow, and FPGA
prototyping offer limited design visibility. To address these challenges, Condominium is intro-
duced to couple the speed of FPGA emulation with the transparency of RTL simulation. By
enabling non-intrusive emulation and cycle-accurate data collection, Condominium provides
real-time instruction-level bug localization and fine-grained performance profiling, enabling
agile system evaluation methods for hardware engineers. Additionally, Condominium facili-
tates the precise emulation of peripherals and system calls, bypassing the need for extensive

RTL development. Furthermore, this dissertation introduces a novel high-fidelity hardware

coverage metric for elevating the efficacy of modern coverage-guided hardware fuzzers. By
providing an accurate representation of design exploration By incorporating the relative la-
tency information of the cascaded coverpoints into the metric, this high-fidelity metric aims to
provide an accurate representation of design exploration to coverage-guided fuzzers. Through
specially designed coverage engines integrated into Condominium, this work enables FPGA
acceleration of high-fidelity coverage, addressing the scalability and acceleration issues of
previously proposed coverage-guided fuzzers. By providing an environment for accelerated
and cycle-accurate hardware emulation and the fine-grained verification methodologies it
enables, this dissertation aims to provide a framework that addresses common challenges in
hardware verification and analysis and significantly reduces engineering time spent on design

functional verification and performance optimization.

Contents

Contents i
[List of Figures| iii
[List_of Tables iv
1__Introduction| 1
2 Background| 4
[2.1 Challenges in Verification and Optimization of Hardware Designs| 4
2.1.1 Hardware Simulation| 4

2.1.2 Hardware Functional Verificationl 5

[2.1.53 Hardware Performance Optimization| 6

2.2 BlackParrotl 7
2.2.1 DBlackParrot Architecturef. 0oL 7

[2.2.2 BlackParrot’s Bring-up Evolution| 10
3__Condominjuml 12
[3.1 Acknowledgment| 12
3.2 Motivationl. 12
B.3 Condominium Architecture. oo oo 15
[3.3.1 Zyng-based Architecture]o 16

[3.3.2 Cycle-Accurate Emulation Layer|. 17

[3.3.3 Heterogeneous Prototyping Cluster| 20

[3.4 Condominium Usage] 22
3.4.1 Accelerated Functional Verificationl 23

[3.4.2 Cycle-Accurate Performance Profiling 25

[3.4.3 Case Study: Catch-up ALU| 30

[3.4.4 System-Call Abstraction| 32

8.5 Related Workl 33
B.5.1 Gate-Level Accelerated mulationl. 33

[3.5.3 Decomposed FPGA emulation| . . .

[3.5.4 FPGA-Accelerated Pertormance Analysisf.

[4 High-Fidelity Coverage|
(4.1 Acknowledgment|
4.2 Motivation|.
(4.3 Background
[4.3.1 Coverage Guided Fuzzingl
[4.3.2 Contemporary Coverage Metrics|. .
4.4 High-Fidelity Coveragel
[4.4.1 Latency-Aligned Group-Coverage| .

[4.4.2 Automated Coverage Instrumentationl.

4.5 Accelerated Coverage Collection|

4.5.1 CAM-based Group Coverage Engine

(CCE)| . . oo

[4.5.2 Condominium Integration|

[4.6.1 FPGA Implementation
[4.6.2 Case Study: BlackParrot Pipeline| .

[4.6.3 Case Study: BlackParrot PC-Generator|.

[4.6.4 Fuzzing Experiment,

[4.7.1 FPGA Acceleration of Coverage| . .

[4.7.2 Coverage Metrics enabling Verification|

[4.7.3 Coverage-guided Fuzzing|
[4.7.4 Fuzzing Hardware like Software| . .
[4.7.5 Black-box Fuzzing|
[4.7.6 Targeted Coverage Verification| . .
[4.7.7 Bug Injection and Fuzzer Evaluation|

4.8 Discussion and Future Workl

[4.8.1 Evaluation ot Latency-Aligned Cover

agel ...

[4.8.2 One-to-One Coverage Mapping| . .
[4.8.3 Progressive Coverage|

[4.8.5 Extending to other Cores and HDLs|

b Conclusion|

(Bibliography|

[A Source-Code Repositories|

1

34
35

36
36
36
40
40
42
44
44
46
49
49
51
52
52
55
57
29
61
63
64
64
65
65
65
66
66
66
67
67
67
68

69

72

85

1ii

List of Figures

2.1 BlackParrot SoC Tilesl o 8
(3.1 Condominium Shell Interfacel o o000 17
3.2 Condominium AXI Abstractionl oL oL 18
[3.3 Condominium Clock-Gating| 20
[3.4 Condominium Prototyping Cluster| 22
3.0 Parallel ISA Cosimulation| 0 o 24
3.6 Oracle Performance Profiler 00000 26
[3.7 Oracle Cycle-Attribution| 26
[3.8 Condominium Performance Profiling Slowdown| 27
[3.9 Condominium Pertormance Profiling Stall Breakdown| 28
[3.10 Condominium Performance Profiling Attribution Error| 30
[3.11 Catch-up ALU Case Study|. 31
[4.1 Coverage-guided Hardware Fuzzing Loop| 40
(4.2 Coverage Latency Alignment bExample] 45
(4.3 CAM-based Group Coverage Engine] 50
(4.4 CCE Condominium Integration| 51
4.5 BlackParrot Covergroup Breakdown|. 53
4.6 CCE Utilization Comparison|. 54
(4.7 CCE Depth vs Slowdown ITradeoft{. 55
4.8 BlackParrot Pipeline Case Study| o7
4.9 BlackParrot FLD Bug Manitestationl 58
[4.10 BlackParrot PC-Generator Case Study| 59

4.11 Coverage-guided Fuzzing Experiment| 62

iv

List of Tables

[3.1 Scale-Down Cost of Ownership| 14
(3.2 POSIX System-Call Categorization| 33
3.5 Condominium Related Worklo oo oo 34
4.1 High-Fidelity Coverage through Latency Alignment| 46
4.2 BlackParrot Coverage Instrumentation Time|{ 49
(4.3 High-Fidelity Coverage Related Work| 63

List of Algorithms

(1 Coverage Instrumentation Algorithm| 48
[2 sliding-Window EXP3 Multi-Armed Banditf 61

Acknowledgments

The PhD program is a journey of constant learning and facing challenges and I am grateful
for experiencing it at Bespoke Silicon group alongside a group of excellent engineers and re-
searchers. First and foremost, I owe my sincerest thanks to my advisor, Prof. Michael Taylor,
whose mentorship, insightful feedback, and positive enthusiasm fueled my work throughout
this journey. Many of the projects I participated in during the program seemed insurmount-
able, but Michael’s guiding insights always proved valuable. 1 want to also thank Prof.
Mark Oskin and Prof. Ajay Joshi whose collaboration on the BlackParrot project provided
a unique learning experience during the first years of my PhD.

I was also fortunate to work alongside and learn from many talented students at University
of Washington. I want to thank Scott Davidson, Paul Gao, Huwan Peng, Tommy Jung,
Mark Wyse, and Yuan-Mao Chueh for their insights and the great learning opportunity they
provided me during our collaboration on BlackParrot and other projects. I want to specially
thank Daniel Petrisko and Anoop Mysore Nataraja for their indispensable collaboration on
the work on Condominium and High-Fidelity Coverage, which would have been not possible
without their critical contributions.

[started my PhD journey with as an international student migrant and I want to acknowledge
the support I received from friends that made facing the challenges of this transition possible.
[want to thank Farzam Ebrahimnejad, Keivan Alizadeh, Artin Tajdini, and Diego Pena-
Colaiocco for their support and friendship. I would also like to remember my late friend Ali
Saffari whose fond memory will always stay with me.

I want to thank my parents, grandparents, and my brother Parham, and recognize their
unconditional love and support throughout my life. They dedicated all they had so I can
reach my goals and overcome life challenges, and I would not be here without their limitless
support and sacrifice. While we have been separated for many years as I moved for my
studies, they kept on supporting me from abroad. I look forward to finally reunite with
them in the near future as I finish this chapter in my life.

In the end, I want to express my gratitude to my spouse, Mojdeh Kashani. I was extremely
lucky to meet and marry someone who stood by my side and supported me during all of life’s
ups and downs. Mojdeh, thank you for always being there for me and having faith in me
during times of hardship and uncertainty. I know building a life together during graduate
studies has been challenging, but you always proved to be a pillar of unconditional love,
encouragement, and stability in our lives. I had the privilege of receiving critical support
from you and your family during the final years of my PhD journey which I will always
appreciate. Mojdeh, thank you for believing in me, I would have never reached where I am
today without you, and for this, I love you and thank you from the bottom of heart.

Chapter 1

Introduction

The emergence of open-source hardware, alongside the growing need for more energy-efficient
and high-performance computers, has resulted in an explosion of increasingly complex proces-
sor and accelerator designs. As open-source tools and hardware libraries [131} |142] continue
to streamline the design process to cater to more agile chip-design practices, verification of
complex designs has remained a costly and time-consuming exercise [50]. Extensive verifi-
cation is specially important in hardware development because as opposed to the software
domain, post-release patches are not possible and post-silicon faults can be very expensive to
find and resolve. While formal verification methods can be helpful, they’re not scalable and
a big portion of verification effort is spent on dynamic testing. However, the slow nature of
software RTL simulators and the black-box nature of FPGA prototyping complicates design
verification in the intermediate stages of design development. This problem is compounded
by, in many domains, lack of well established software for custom designs which forces hard-
ware designers to also design software in parallel which can be prone to bugs, extending the
verification issue to another domain. Furthermore, as opposed to software development, lack
of plug-and-play IDE environments with easy-to-use interfaces and bug localization further
complicates hardware evaluation. In this dissertation, we inspect the challenges facing com-
mon techniques in design analysis and propose methodologies for bypassing the limitations
on underlying experimental environment and streamline the overall development process.

Condominium is designed to address these challenges in hardware verification and optimiza-
tion by providing an environment that joins the accelerated emulation speed of FPGAs with
the design transparency of software RTL simulation. Condominium is implemented in a
Zynq environment where design is emulated on a programmable logic and controlled by the
Zynq processing system that handles tasks like DUT initialization, configuration, and col-
lection of cycle-accurate microarchitectural information from DUT which can be used for
debugging, performance profiling, and other experiments. Condominium aims to achieves
the latter goal in a way that’s non-intrusive to the DUT emulation to enable reproducibil-
ity and migration between FPGA and simulators by employing a clock-gating mechanism

CHAPTER 1. INTRODUCTION 2

that can pause DUT emulation when backpressure is needed for processing streamed mi-
croarchitectural data. Condominium enables us to significantly accelerate the process of
improving hardware designs, in this case BlackParrot, and establish efficient mechanisms for
ensuring functionality and performance of BlackParrot throughout its development cycle.
To ensure ISA compatibility, perform accelerated functional verification, and automate bug
localization, we leverage Condominium to gather run-time instruction execution information
and perform ISA cosimulation by cross-comparison of the execution stream with an ISA
model hosted in the host. To enable accelerated and detailed performance analysis of design
over complex and long-running real-life benchmarks, we leverage Condominium to gather
cycle-accurate instruction and stall source cycle attribution of processor during benchmark
execution. This information enables us to identify exactly how many cycles each instruction
is contributing to overall execution and provide stall type categorization for each cycle. Fi-
nally, we use Condominium to emulate the timing and functionality of various peripherals
and system-calls that can be employed in conjunction with the DUT without the need to
explicitly implement them in RTL.

While relying on established benchmarks for testing helps designers moderately explore the
design space triggered by those benchmarks, they are not extensive and heavily rely on
programming patterns choices employed by software programmers. To further evaluate the
design, researchers have opted for various shades of random testing. Coverage-guided Fuzzing
is a method that aims to steer a random test generator during an iterative process to maxi-
mize the overall achieved design coverage, and by proxy, maximize the newly explored design
states. However, as algorithms for coverage-guided fuzzing mature and become better at ex-
ploring the design space, they cannot fully flourish their verification potential due to poorly
designed coverage metrics that guide these fuzzers. Contemporary coverage metrics often
do not provide a representative feedback on the degree of design exploration and are also
difficult to prototype for FPGA accelerated fuzzing. In this dissertation, we introduce a
high-fidelity coverage metric that aims to provide an accurate feedback for modern fuzzers.
By incorporating relative RTL latency information into covergroups, high-fidelity coverage
disambiguates previous metrics by establish a deterministic mapping from coverage values
to activated RTL datapaths. Furthermore, by introducing specialized coverage engines,
that integrate into the Condominium infrastructure, this work enables FPGA acceleration
of group-coverage guided fuzzing. Finally, we inspect the efficacy of proposed high-fidelity
coverage by evaluating slowdown-utilization tradeoffs on FPGAs, presenting case studies
on bugs uniquely identified by the metric, and performing comparative fuzzing experiments
using other metrics.

Portions of this work were partially supported by Air Force Research Laboratory (AFRL) and
Defense Advanced Research Projects Agency (DARPA) under agreement numbers FA8650-
18-2-7863 and FA8650-18-2-7856; NSF grants SaTC-1563767, SaTC-1565446. This work
intersects and leverages research and infrastructure created by the members of the Bespoke
Silicon Group, spanning across accelerators ([12, 20, 24, 31, 54, 63, 64, 65, 94, 109, 111} [112,

CHAPTER 1. INTRODUCTION

)
o

113, [114] [126, [127, [133, [162, [163] [171, [I83, [I85]), ML ([i61]), ASIC Clouds ([95, 96, [I
140}, [143, 151} 153}, [172]), open source hardware ([48| [142] [152]) RISC-V ([2, 42, 85,
101}, 107, [115, 120, [121] [124, [125| [160, [I84]), Network-on-Chips ([86, 97, [116, [147, [18
security ([6l [19] 134, 35}, 71}, [72]), benchmark suites ([21} (98| [155]), dark silicon ([26] |63 |66

\]

&l
k<l

2
| —

D

B

ot

w

—_

E

138, [139, [144] [162]), multicore ([38. [39. [67, (68, [69] 7. [L15. [137, 141} [145| [146, 147 [148), 1
150} [164]), compiler tools ([L} [15] 56, [57, |58, 81} [82, |83} 84} [182]) and FPGAs ([21] [76,

&
|

S
N e}

Chapter 2

Background

2.1 Challenges in Verification and Optimization of
Hardware Designs

The economic and engineering burdens imposed by modern computer-architecture projects
now routinely exceed those of comparable software endeavors. Whereas software can be
iterated, deployed, and patched at negligible marginal cost, hardware design demands large
up-front non-recurring engineering (NRE) investments, extended verification cycles, and
complex multidisciplinary coordination across RTL, physical, and manufacturing domains.
Because this economic cliff exists, hardware teams front-load verification far more aggres-
sively than software projects. Furthermore, unlike software, RTL describes thousands of
state elements toggling concurrently, creating an exponential state-space that forces cycle-
accurate simulators to run multiple orders of magnitude slower than real silicon, where even
a one second of program time can consume a full day of wall-clock time. The result is a
development process that is demonstrably more costly and time-consuming than software de-
velopment. In this section we describe current methods in simulation, functional verification,
and performance optimization of hardware projects and highlight the factors contributing to
their long iteration times and complexity.

2.1.1 Hardware Simulation

Cycle-accurate RTL simulation is the recurring element in hardware design process, and while
users rely on it for design, verification, and optimization, it routinely becomes the bottleneck
affecting the process. Running single-threaded RTL simulators, such as Verilator [131], can
yield and emulated clock speed of 1 KHz - 1000 KHz on modern x86 hosts [47]. On the other
hand, native software can be executed on the same host at multi-gigahertz speeds. The
multiple orders of magnitude slowdown from software to hardware simulation lends itself to
complex nature of simulating RTL designs on a non-native software environment. The main

CHAPTER 2. BACKGROUND d

source of this slowdown is due to the concurrent emulation of logical units on a sequential
host. For every simulated RTL cycle, thousands of flip-flops and combinatorial computational
units should be inspected and their output updated. To ensure the correct update order in
the netlist, for every cycle the netlist graph of the RTL needs to be traversed and RTL
units scheduled to be updated in the corresponding order. This has led to software RTL
simulators to spend a dominant fraction of the cycle simulation time just for scheduling and
ordering logic update events [23|. Furthermore, modern test-benches often include random
test generation, data monitoring, waveform dumping, and DPI calls on every cycle that cross
the HDL/C++ boundary and cost extra host execution cycles. While techniques like data
reuse have been used to increase the performance of software RTL simulators by skipping
inactive portions of hardware [110], the speedup is within one order of magnitude, and does
not offer a solution for simulating real-life programs.

FPGA prototyping can be used as an alternative to accelerate RTL emulation, clocking
designs at 10 MHz - 100 MHz for multiple orders of magnitude speedup over software RTL
simulation. Suddenly, benchmarks that take days to simulate on software can be tested
within minutes on FPGAs. This speedup, however, comes at the cost of full design visibility.
This tradeoff can cause a significant hurdle when hardware design moves from early stages
of reliance on software simulators to FPGA emulation. When designers move to FPGA
emulation, the full design visibility that is crucial to quick debugging and evaluation becomes
a challenge to be dealt with. Synthesized hardware probes [13] can be used to get a glimpse of
a set of design signals, however this needs pre-planning and usually offer a limited visibility
window as limited FPGA block-RAMs are used to store the data. The limited visibility
forces users to decide on what set of signals to choose for monitoring and when to monitor
them throughout emulation. The uncertainty cause by this limited visibility, in turn, may
cost many extra iterations of trial-and-error if users lack the prior knowledge of what they
are looking for, which is exacerbated by the long FPGA bitstream generation times, leading
to hours of re-synthesis for locating an issue. When migrating from slow, but transparent
software RTL simulators to fast, but hard to probe FPGA emulation, a framework must be
developed for using FPGAs for design verification and optimization that bridges this gap in
a way that designers can secure the acceleration without facing aforementioned challenges.

2.1.2 Hardware Functional Verification

As chips grow in both complexity and application variety, functional verification has grown
to be both a crucial and time-consuming part of the hardware development process. A
survey studying the state of ASIC design and verification industry in 2024 [50] highlights
staggering statistics on the impact of verification on ASIC project timelines. According to
this survey, while design engineering teams are supposed to be focused on developing new 1P,
they spend on average 49% of their time on functional verification. Additionally verification
engineering teams spend, on average, 47% of their time on just debugging as opposing
to developing new testing schemes and designing test-benches. Even with the significant

CHAPTER 2. BACKGROUND 6

man-hours invested into hardware verification, around 75% of ASIC projects report being
behind schedule while only 14% of projects achieve first time silicon success. The significance
of verification bottleneck, coupled with the multi-million dollar cost of re-manufacturing
faulty chips highlights the need to development of agile and accurate functional verification
techniques, specially in an open-source ecosystem, that can provide faster turnaround times
for hardware verification.

Conventional methods of hardware verification include formal verification, unit testing, I[ISA
compliance testing, benchmarking, and random constrained testing or fuzzing. Each of
these methods can be effective in different stages of hardware development. For example,
ISA compliance tests can ensure basic functional correctness in early stages, unit tests can
be employed throughout the process for maintain individual logical units, and fuzzing can
be used to catch unpredictable corner-case bugs as design matures and passes conventional
benchmarks. Many of the aforementioned challenges facing software and FPGA emulation
of the RTL also directly affect verification practices. As design verification moves away
from hand-crafted short tests, software simulation suffers from long program runtime which
is exacerbated when multiple re-runs are needed for discovering and resolving bugs. Due
to delayed manifestation of bugs, localizing bug trigger points can be difficult even with
the full transparency of software simulation. Moreover, the limited visibility window and
signal bandwidth of FPGA emulation means they cannot easily be used for verification if
user lacks prior knowledge on what signals to monitor and how to define a time point to
capture the signal visibility window for debugging. Multiple FPGA synthesis reruns caused
by misprediction of probed signals and trigger points for window capture in logic analyzers
can cost days of idle time for verification engineers. Methods like ISA cosimulation |88, |89,
102, |154] are therefore needed to localize bug trigger points billions of cycles into programs,
like Linux boot, saving verification engineers significant time in searching waveforms for
sources of errors. Furthermore, since finding and fixing bugs usually includes running tests
multiple times, methods like architectural checkpointing [16, [128] can be used to quickly
reload simulation state to a snapshot of the design before the bug trigger point to test po-
tential fixes. This checkpoint snapshot, in turn, can be used to move verification between
FPGA and software simulation to leverage the transparency and speed tradeoff between
the two environments. Finally, as engineers move towards fuzzing, verification challenges
are compounded due to limited FPGA utilization and bandwidth for coverage collection
and inaccurate coverage metrics misguiding the fuzzing algorithm and wasting testing itera-
tions. This is specifically important because for an iterative verification process, a lower loop
turnaround time and better guidance usually means higher design exploration and higher
chance of revealing design bugs and vulnerabilities.

2.1.3 Hardware Performance Optimization

Hardware performance analysis usually is performed in conjunction with functional verifica-
tion in later stages of development. Similarly, the same challenges with functional verification

CHAPTER 2. BACKGROUND 7

apply to performance optimization since both rely on extraction of microarchitectural in-
formation from RTL during benchmark execution. While custom designed tests alongside
conventional benchmarks such as CoreMark [55], SPEC [32, 73| 74], and Linux kernel [156]
can be used for stress testing different parts of hardware, simple metrics like instructions-per-
clock (IPC) do not provide any indicators on the RTL and program bottlenecks contributing
to overall performance. Modern processors provide built-in event-driven performance coun-
ters, usually for debugging purposes, that can be used for gaining better optimization insight
[104], however, these counters are hardened to count predetermined events do not provide
information on the extent that these events contribute to performance bottlenecks [166]. To
obtain a fine-grained data on sources of performance bottlenecks, engineers have proposed
sophisticated performance profilers that attribute each execution cycle to the corresponding
offending instruction and logical stall sources [61, 62]. However, the use of these performance
profilers has proven challenging in conjunction with FPGAs due the bandwidth required for
streaming and processing the per-cycle attribution information. Solutions like software in-
terrupt based performance sampling have been offered to mitigate the bandwidth issue, but
they are prone to misattribution sampling errors and also perturb the normal benchmark flow
during interrupt handling which can influence performance analysis. These challenges high-
light the need for developing performance profiling techniques that provide fine-grained and
cycle-accurate performance information without introducing sampling errors and perturbing
the benchmark’s execution flow.

2.2 BlackParrot

Much of the work in this dissertation was motivated by the need for development of agile
functional verification and performance analysis methods during development of the Black-
Parrot RISC-V processor. In this section, we briefly introduce BlackParrot and go though
the challenges that prompted the work on said methods.

2.2.1 BlackParrot Architecture

BlackParrot [115] is a RV64GC processor designed at Bespoke Silicon Group that aims to
become the default open-source Linux-capable RISC-V multicore used by the world. It’s
designed as a modular and highly configurable core with well defined and latency-insensitive
interfaces that enable users to easily modify various components to be tuned for their appli-
cation. Use cases range from a unicore serving as a host accelerator controller, to a multicore
capable of executing complex programs, like Linux, with great performance. BlackParrot also
provides more configurability by ensuring race-free programmable cache coherence through
distributed directory-based coherence engines [170] that enable users to implement various
coherence protocols, such as MESI, through micro-programming. BlackParrot is designed
as a scalable, heterogeneously tiled SoC composed of different tiles designed for compute,
L2 extension, and 10 and accelerator tiles interfacing with the SoC network (shown in

|ICHAPTER 2. BACKGROUND 8|

\>-. e R

off-chip off-chip

NS 1/0 1/0
Y /’
. 1\ J 7
///

Streaming - Coherent
Accelerator Core Coic

[1
(

Coherence
Router

v

DRAM
Router

Streaming Coherent

.
\.,
\,
\,
\, \
\, \
\,
\
\
ANERY
~~< \
S~y \
\
\
\
\
\
\
\
\
\
\ /
\ /
\ /
\ Vs
\ /
\
\ /
N - v /

Accelerator o= | Gz Accelerator 4
J U Y, ___,,;f
/ Coh I I I | P Coherence
& oherence P
h Router) 4 N\ Router
: 2 L2
Streaming . .
Accelerator / Extension Extension
Or I/O Tile Concentrator ,'l Networks N J N)\\
== Coherence I I) -
Pre g S — DRAM DRAM
{ DRAM [Controller] [Controller]
\ 4 J 110 =
NI | J v v
v

Figure 2.1: BlackParrot multi-core SoC comprise a mesh of heterogeneous tiles, allowing
flexible composition of cores, accelerators, 12 cache slices, I/O, and DRAM controllers. Core
tiles implement a processor, a cache coherence engine, and an L2 slice. Coherent accelerator
tiles implement an accelerator that has access to the cache coherent memory system. L2
extension tiles allow the amount of L2 cache to be changed. Streaming accelerator or 1/O
tiles allow flexible interfacing of a common memory system via a shared non Ll-cached
address space that is routed over the coherence network.

ure 2.1)). The BlackParrot core complex is functionally partitioned into three main sections,
Front End, Back End, and Memory End, each fulfilling their specific purpose and commu-
nicating with each other through well defined interfaces.

BlackParrot Front End

The Front End (FE) is responsible for speculatively fetching instructions from the mem-
ory and providing the execution pipelines with stream of speculative PC-instruction pairs.
To this end, FE consists of 2 major components: pc-generation and the instruction cache.
The PC generation module provides speculative PCs to the instruction cache. It contains a
Branch History Table (BHT), a Branch Target Buffer (BTB) and a Return Address Stack
(RAS). The BHT and BTB together provide the next PC prediction on branching instruc-
tions. When the 2-cycle instruction cache returns the fetched instruction, it is partially de-
coded to determine whether it is a conditional branch, function call, or function return. This

CHAPTER 2. BACKGROUND 9

information is used in conjunction with the branch buffers and RAS to determine whether to
use the currently predicted next PC or to override with a target calculated from the decoded
instruction. The instruction cache is a Virtually-Indexed Physically-Tagged (VIPT) cache
with two pipeline stages: Tag Lookup (TL) and Tag Verify (TV). There are 3 hardened
memories in the instruction cache, the data, tag and stat memories which are implemented
as single-port read-write synchronous RAMs to be amenable to most commercial SRAM
generators. In TL, the data memory and tag memory are accessed. In TV, the data from
these caches is selected based on the result of the tag comparison. A small stat mem con-
tains the line access and replacement information for each set and is updated in TV as well.
The instruction cache is non-stalling, requiring a replay on missed instructions. To enable
virtual address translation , an instruction Translation Lookaside Buffer (TLB) is included
as a small fully-associative buffer with a single-cycle access time. It is accessed in parallel
with instruction cache and provides it with the translation physical tag for comparison. Note
that the Front End does not independently modify the processor’s architectural state and
is logically controlled by the Back End through PC redirections caused by non-speculative
resolution of branch mispredictions or trap handling.

BlackParrot Back End

The Back End (BE) is responsible for the non-speculative execution of RISC-V instructions.
It receives a speculative instruction stream from the FE and processes them in order. To
simplify physical design and reduce complexity for verification, the BE consists of a single
stall point and a single commit point in the execution pipelines. The BE consists of mul-
tiple sections managing instruction execution and architectural state. The calculator unit
hosts an array of non-stalling execution pipelines with varying latencies, each handling a
subset of RISC-V instruction types. These include a 1-cycle integer pipe for handling simple
ALU operations, a 1-cycle system pipe for handling CSR instructions, a 2/3-cycle memory
pipe for handling memory operations include SV39 page-table handling, a 2-cycle auxiliary
floating pipe for handling type conversions, a 4/5-cycle floating pipe for handling arithmetic
operations, and a dynamic-latency pipe for handling long floating-point division and root
operations. Furthermore, a hazard detector unit hosts logic for identifying data, structural,
and control hazards within pipeline instructions, and stalling the pipeline when a dependency
cannot be bypassed through data-forwarding. A director unit observers branch mispredic-
tion, traps, and other synchronization events and issues PC redirections to the FE to redirect
the instruction fetch. Finally, a scheduler unit is tasked with receiving PC-instruction pairs
from the FE, decoding them, reading register files, and dispatching them to execution pipes.

BlackParrot Memory End

The BlackParrot Memory End (ME) implements the Bedrock [170] protocol for providing
cache coherence between processor cores, coherent accelerators, and the memory system.
The Bedrock system consists of a coherence network, local cache engines (LCE), and cache

CHAPTER 2. BACKGROUND 10

coherence engines (CCE). The LCEs are cache controllers that manage coherence transac-
tions for a single instruction or data L1 cache. The LCE interfaces on one side with the
L1 cache and on the other side with the Bedrock coherence network. The LCE ensures
coherence for its corresponding cache by issuing requests on a cache miss and responding to
coherence update commands received from the network. The CCEs are coherence directories
responsible for maintain coherence for independent subsets of memory address space. The
CCE operate as programmable microcode engines executing both RISC-style general pur-
pose operations and more complex coherence-specialized operations aimed at accelerating
common cache coherence operations with most instructions executing in a single cycle. The
engine is consists of a fetch stage for instruction decoding, branch prediction, and preforming
redirections and an execute stage for handling all instruction execution and branch resolu-
tion. The CCE contains 8 64-bit general purpose registers, a miss status handling register to
track the status of the current outstanding request, and coherence network ports for sending
and receiving messages on the Bedrock network. The CCE also contains dedicated coherence
directory storage, speculative memory access tracking storage, and pending bit storage.

2.2.2 BlackParrot’s Bring-up Evolution

Maintaining a heterogeneous SoC such as BlackParrot with a high degree of configurability
needs a robust framework for continuous verification and performance analysis so designers
can quickly identify bugs and performance bottlenecks as the design matures throughout
its development process. These verification methods can be integrated into the project’s
continuous integration (CI) [49] routines to ensure continuous design correctness with ev-
ery major change in order to avoid back-tracking months into development when we face
a bug. The first tier of testing used for early verification of BlackParrot has been the us-
age of simple ISA compliance benchmarks using RTL simulation alongside unit testing the
various functional blocks of BlackParrot to ensure their functional correctness in isolation.
The latter is specially effective because of the use of latency-insensitive interfaces between
BlackParrot’s functional units enables independent verification of various functional units
without maintaining assumptions about handshake constraints with other units. However,
as BlackParrot matured, the need arose for better testing methods that can handle longer
and complex benchmarks and can deliver the performance and design transparency needed
for more extensive verification.

The Linux kernel serves as a stepping stone benchmark for functional verification and con-
tinuous maintenance of RISC-V cores as it utilizes almost every feature in the RV64G ISA.
However, moving from simple ISA compliance tests to Linux for the purposes of BlackParrot
verification turned out to be non-trivial and prompted a rethinking of our early verification
infrastructure. First, a mechanism was needed to reliably find program diversions from the
ISA specification. This was motivated by the fact that building a working Linux environ-
ment for an early-stage processor needed the exact cooperation of many building blocks,
including a custom firmware [167] to handle BlackParrot-specific bare-metal responses to

CHAPTER 2. BACKGROUND 11

kernel system-calls, so there was a need to reliably distinguish program crashes due to a
faulty kernel from bugs related to fault hardware as they should be dealt with completely
differently. Second, since the Linux kernel is a complex program involving long-running tasks
and context switches, an RTL bug could be triggered in a certain cycle but not manifest until
millions of cycles after, or maybe not at all. Finally, software debugger tools, like GDB [59],
hosted on the hardware are prone to the same bugs they are tasked to identify and there-
fore unreliable. In order to avoid wasting verification cycles on manually resolving above
challenges, we employed an ISA cosimulation method to simulate BlackParrot in lockstep
with a golden RISC-V reference model [88] to instantly identify RTL divergence from ac-
ceptable ISA behavior by cross-comparing instruction execution metadata with the reference
model. Furthermore, as an intermediate method to cut-down the total co-simulation time,
we leverage architectural state checkpointing [88] |102] in ISA simulators to break down
program execution into several segments and perform ISA cosimulation for each segment
independently and in parallel on different server threads.

While parallelizing software-based ISA cosimulation provided an opportunity to integrate
maintenance of long benchmarks into the BlackParrot CI pipeline, achieving an interactable
and real-time experience of Linux boot motivated the migration of this verification technique
to the FPGA domain. What followed was development of a Zyng-based FPGA infrastruc-
ture that enabled acceleration of BlackParrot emulation while maintaining the ability to
extract cycle-accurate execution data streams from the RTL without perturbing the design.
Similarly, as the need for performance analysis and optimization of BlackParrot promoted
the use of industry-standard benchmarks such as SPEC [32, 73|, |74], and more fined-grained
performance profilers were leveraged to provide us with a cycle-accurate breakdown of Black-
Parrot’s performance bottlenecks, we employed the same Zyng-based FPGA infrastructure
to perform the duty. Moreover, the same infrastructure proved to be useful in cycle-accurate
timing modeling of BlackParrot peripheral, like DRAM, and Linux system-calls executed by
proxy on an x86 host controller. In[chapter 3| we introduce this FPGA emulation infrastruc-
ture and how it aids users in agile design analysis. Finally, we explored using coverage-guided
hardware fuzzing for better random verification and catching corner-case bugs potentially
missed by conventional benchmarks. As we made improvements to the current approaches
and developed a high-fidelity coverage metric for better guidance of fuzzing loop, we em-
ployed the same FPGA infrastructure to enable high-throughput streaming of coverage data
which was needed but overlooked in previously introduce fuzzing methodologies. In
[ter 4] we introduce this high-fidelity coverage metric and how it can be effectively employed
for better hardware fuzzing.

12

Chapter 3

Condominium

3.1 Acknowledgment

Research in computer architecture is an intensive collaborative effort, and the work on Con-
dominium has relied very heavily on contributions from fellow BSG members: Dan Petrisko,
Anoop Mysore Nataraja, Zoe Taylor, and Prof. Michael Taylor. I would like to thank Prof.
Taylor and Zoe Taylor for the physical design and assembly of the Condominium cluster,
Dan Petrisko for the design of the PS-PL interfaces and the Scale-down conceptualization,
and Anoop Mysore Nataraja for the design of the clock-gating mechanism.

3.2 Motivation

The ever-increasing complexity of processors and the explosion of domain-specific accelera-
tors motivated by the end of Dennard Scaling [28] have amplified the importance and the cost
of fine-grained design analysis and verification. Hardware designers are faced with a diverse
plethora of processors and accelerators, each presenting unique verification challenges both
in terms of functional correctness and performance evaluation that, as opposed to software
design, need to be carefully analyzed and ironed out before tapeout. Early in the hardware
development process, architects can leverage the transparency of RTL waveform inspection
to identify hardware units contributing to performance bottlenecks and functional vulnera-
bilities and quickly offer and verify fixes. However, cycle-accurate software RTL simulations
are painfully slow, so as the design matures throughout its development process, the need for
longer testing with real-life benchmarks renders relying on RTL simulation for verification
unsustainable. Moreover, when analyzing target program performance on silicon, software
engineers use simple performance counters which are decided on and built-in early in the
hardware design. These performance counters are sampled and aggregated to be leveraged by
software performance tools, like perf [165], to gain performance insight for a target program.
On the other hand, when aiming to optimize a target hardware for conventional software

CHAPTER 3. CONDOMINIUM 13

benchmarks, hardware engineers need to gain cycle-accurate insights about various hardware
units contributing to performance bottlenecks. This requires design of sophisticated RTL
performance profilers that tightly couple with the design and replicate its events effecting
software execution pipelines. Using these RTL profilers, hardware engineers can model how
an instruction creates a bottleneck in a specific design unit and measure how many cycles it
costs the overall benchmark execution. Similarly, this needs an accelerated hardware emula-
tion approach that can maintain the ability to extract a high-throughput stream of profiler
data for performance analysis.

Traditionally, architects have approached this dichotomy by performing early prototyping in
FPGA. By doing so, RTL very similar to tapeout designs can be emulated with cycle accuracy
at 102-10%x [92] faster than simulation alone. For hardware designers to experience a smooth
migration of verification methodologies from software RTL simulation to FPGA emulation,
the underlying environment should provide a comparable level of cycle-accurate insight into
the design. Furthermore, for purposes of conducting realistic performance analysis, the
FPGA environment should be able to provide standardized guaranties on the behavior and
timing of various IO peripherals interacting with the design. This ensures that the many
tools and techniques developed for functional verification and performance evaluation in the
early stages of the hardware development process can be ported into the new environment
and continue to maintain the design quality with the same level of rigorous inspection.
However, prototyping large hardware systems can often be challenging due to the limited
available resources on conventional development boards. Large companies can Scale-Up
their prototyping systems using large commercial emulation platforms [33, 105, |134], but
these are usually unaffordable to academics and startups. Others have proposed Scale-Out
solutions that leverage cloud FPGA clusters [3, 8] to emulate large SoCs as a more affordable
option than scale-up solutions. However, his approach generally relies on regularity in the
design. Furthermore, cloud clusters usually limits engineers to using certain standardized
interface and memory systems such as PCle [130] that offer higher access latencies, multiple
microseconds, and further latency jitters due to network packets being transporter over
Ethernet controllers and host software packet routing [92]. This is specially important if the
design emulation relies on ensuring low-latency access to DRAM and other peripherals and
can cause further slowdowns in real emulation speed. Also, since cloud FPGAs use hourly
pricing [7], the scale-out solutions relying on them can become non-affordable for long-term
design maintenance and continuous integration.

To provide an environment that addresses the mentioned challenges, we propose Condo-
minium, a Scale-Down approach for architectural prototyping. Instead of unilaterally scal-
ing up a chip design from an FPGA prototype to a full tapeout, it is more economical for
academics to scale-down the design to prototype design subsystems for rigorous verifica-
tion and reserve the scale-out approach for full system prototyping during tapeout events.
Using local FPGA boards for scale-down prototyping of design subsystems can give deep
debugging insights into effects of incremental design modifications and accelerate the design

CHAPTER 3. CONDOMINIUM 14

Table 3.1: On a per-FPGA basis scale-down systems require a much smaller investment,
allowing teams to incrementally build up their verification infrastructure using heterogeneous
boards for a variety of target subsystems. The Ultra96v2 board cost breaks even after 4-
months of smallest AWS-F1 instance usage.

Strategy $/year/FPGAY Logic Unit Required I/O

Scale-Up! ~$6700 Full Design Native PCle
Scale-Out® ~$900 Tile PCle Tunnel
Scale-Down® ~$100 IP Block SSH /Serial

Y 2000 hours is equivalent to a year of 8-hour regressions.

1 $3.3294 per AWS fl1.16xlarge hour [7].

2 $0.4202 per AWS f1.2xlarge hour [7].

3 $300 per Avnet Ultra96v2 board [18], with a replacement rate of once
per three years. Cluster MTBF is 100+ years [178].

verification process in a more economical way that the state of-the-art alternatives. Because
iteration time is much faster than monolithic prototypes, small design teams can quickly
bootstrap new subsystems, run long simulations, ensure functional correctness, analyze per-
formance consequences, and quickly iterate on potential fixes. Previous FPGA emulation
platforms [33], |41}, |92} [134] are expensive, dependent on vendor IP, or cumbersome and prone
to lock-up since they require expensive PCle-capable accelerators and are built on top of
proprietary PCle IP and software layers such as Xilinxk XDMA [173|. Failure to interface
correctly to PCle can lockup not only the DUT but also the host server machine, requiring re-
mote restart capabilities. In contrast, by leveraging Zyng-based FPGAs [174], Condominium
can be employed using only an SSH-capable machine running Vivado and builds upon the
BaseJump STL [142] library to provide generic and open bridges to commonly available AXT
and UART interfaces. As opposed to using PCle tunnels for FPGA networking, hardened
AXI interfaces on Zynq systems provide direct and low-latency access to design peripher-
als, such as host DRAM, which can help with high-performance emulation of design that
often require low-latency guaranties for on-chip memory access. Furthermore, as opposed
to other emulation platforms that, for long-term design development, can easily exceed tens
of thousands of dollars, Condominium provides verification teams the ability to begin with
the minimal possible Total Cost of Ownership (TCO) and scale costs alongside the design
progress. breaks-down the cost comparison between the prototyping strategies
based on recent pricing data. By employing scale-down solutions, such as Condominium, for
SW/HW co-design and long-term regression testing and continuous integration, engineers
can lower TCO and benefit from higher flexibility and insight into the design, while reserving
scale-out for occasional bursts of full-system testing during tape-out events.

By carefully designing the platform interfaces, Condominium provides a flexible environ-
ment that can support interactions of emulation design with the outside world without
sacrificing emulation accuracy. To that end, great care must be taken to mimic the envi-

CHAPTER 3. CONDOMINIUM 15

ronment between the full design and the subsystem. First, gaining transparency into the
emulated subsystem requite run-time streaming of architectural data from RTL to the host
system. However, the limited streaming bandwidth can create backpressure that can in-
troduce non-determinism into RTL emulation, making behavior reproducibility impossible.
Condominium adheres to strict non-interference of internal design timings through strategic
clock-gating during unpredictable host back-pressure. This allows subsystems to execute
with the illusion that they are running in situ within the full system. This technique enables
the runtime streaming of cycle-accurate RTL data from DUT for the purposes of verification
without perturbing the emulation flow. Second, to achieve reproducible testing and realis-
tic performance analysis, accurate timing models should be enforced on IO interfaces with
simulated peripherals. Condominium leverages the same clock-gating mechanism to enforce
timing guaranties by interfacing with both in-silicon RTL timing models and software hosted
abstraction models. By enabling the software or RTL driven abstraction of other parts of the
system, including the timing and functional behavior of various peripherals, Condominium
can be easily used to fine-tune environmental emulation parameters for better design ver-
ification. In [section 3.3 we go though Condominium architecture and how it provides an

accelerated emulation system without losing cycle-accuracy guaranties.

By providing an accelerated emulation environment with cycle-accurate insight and con-
trol over the DUT and its surrounding abstracted system, Condominium has proven to be
an extremely powerful tool for agile functional verification and performance optimization of
BlackParrot throughout its development. A deep dissection of the subsystem can allow an ar-
chitect to design experiments to identify subsystem bottlenecks and quickly iterate on poten-
tial changes without requiring major microarchitectural changes in the emulation system. In
this context Condominium has been used on BlackParrot for instruction-granularity verifica-
tion through ISA co-simulation, cycle-accurate and time-proportional performance profiling,
and accelerated high-fidelity coverage collection for entablement of coverage-guided random
verification. Condominium’s non-invasive, instrumented measurements and host software
abstraction layers were motivated and written for use in BlackParrot, but they are generally
applicable to a wide range of hardware projects. In we will go through these
use-cases and highlight how Condominium helps architects build and maintain high-quality
hardware through facilitating techniques for accurate and agile evaluation.

3.3 Condominium Architecture

In this section, we describe the Condominium architecture and how it addresses these chal-
lenges cost-effectively and with lower maintenance than previous solutions. The Condo-
minium architecture was designed with the following goals in mind:

o Enable an FPGA-accelerated emulation framework for agile DUT analysis with tight
emulation configuration and control mechanism.

CHAPTER 3. CONDOMINIUM 16

« Provide flexible interfaces for precise interfacing between emulated subsystem logic and
the abstracted subsystem peripherals.

e Provide cycle-accuracy guaranties to enable reproducibility between RTL simulator
and FPGA domains.

o Build an FPGA cluster based on Condominium with remote use capability and robust-
ness against system freezes.

3.3.1 Zyng-based Architecture

Zynq FPGA boards couple hardened ARM cores (PS) with a programmable fabric (PL).
Common peripherals such as USB, Ethernet, and DRAM are connected to the PS, while
the PS communicates with the PL via hardened AXI [10] interfaces. The PS master ports
are general-purpose (GP) AXI ports and cover a small address space. PS client ports are
larger and higher performance (HP), allowing the PL to directly access dedicated DDR
controllers ports for the PS DRAM, bypassing the ARM L2 cache coherence system and
providing DRAM access without PS Linux stack interference. Condominium leverages the
Zynq architecture to decompose prototyped system into these functional domains by mapping
the subsystem DUT to the PL fabric, while leveraging the PS software for memory access,
modeling abstracted peripherals, and emulation configuration. Bitstream generation can be
done on any machine with a compatible Vivado version to the particular IP. From there,
users can login to the PS over a standard Ethernet or UART connection, copy over the
compiled bitstream and using the PYNQ API [175], program the overlay and DUT on the
PL. Condominium provides an overlay (shown in that includes the PL-Shell, the
main interface between the host emulation and the DUT user logic. The PL-shell provides
a parameterizable array of input/output Control and Status Registers (CSRs), as well as an
array of semi-blocking FIFOs (SB-FIFO). An SB-FIFO exposes blocking ready/valid [142]
interfaces to the PL side to support latency-insensitive interfaces, while the PS interacts with
a non-blocking credit/valid polling interface to prevent system lockup. While non-blocking
interfaces require multiple transactions for each read and write, they generally have little
overall performance impact as the PS outpaces the PL during large system prototyping.

Condominium aims to provide reproducible emulation with identical host controller code on
both FPGA and software RTL simulator targets. This is motivated by the need to migrate
and reproduce identified DUT issues triggered by regression runs back and forth between
thee two targets to profit from their respective speed-transparency tradeoff. The common
C++ host code is used for controlling the emulation flow by interfacing with PL-shell CSRs
and FIFOs for tasks such as DUT and peripheral configuration, loading test programs, and
processing streamed DUT microarchitectural data for verification. To interface with the PL-
shell, as shown in , target-specific APIs are used to initiate AXI read and write
requests to various MMIO locations in PL-shell. When using the Zynq PS as the emulation
target, these APIs perform MMIO read and writes that are translated to AXI transaction
over hardened AXI interfaces by the Zynq PS. When using software RTL simulators, such

CHAPTER 3. CONDOMINIUM 17

GATED CLK DUT CLK PS CLK

Y

PL-Shell Overlay

<—— FIFO 0

'
I~

CNT 0 |
'

—

1

FIFO 1
PL CNT 1 |—» AXI | GPO

; Roxs
Logic N\ Mosro et
S

CSR 2

— oo

DUT

PS

T T
! Asynchronous !
1 FIFOs 1
1 1
—— T 5
— | |+

1
1

CSR
Synchronizers

l

|<_
—
i
fe—:

(a) Condominium sub-components interface with the PL- (b) As DUT logic may be buggy during de-
Shell through a parameterizable set of NB-FIFOs and sign, it is essential to not hang GPO0, which could
CSRs. The PL-Shell logic is run asynchronously to the lead to PS lockup. In Condominium, the PL-
DUT, allowing for decoupled co-emulation. Clock gating Shell prevents lockup regardless of DUT state,
logic ensures accurate co-emulation by maintaining inter- by lifting generic DUT interfaces to a set of non-
nal timings of the DUT. blocking FIFO and read/write CSRs.

Figure 3.1: The Condominium system provides system architects with full co-emulation
capabilities through simple C4++ MMIO interfaces identically accessible from simulation or
on deployed systems. Users parameterize the PL-Shell to for control or execution monitoring,
while the PS runs necessary software functional models.

as Verilator, as the emulation target, these APIs leverage DPI-C interfaces [78] with the
simulated Verilog to issue AXI transactions directly at the PL-shell ports. Also, since many
simulators do not allow for native multi-threading, to handle parallel AXI transactions and
design simulation, we use C++ coroutines [79] to service each transaction and to avoid
deadlock in the system.

3.3.2 Cycle-Accurate Emulation Layer

When prototyping ASICs, the DUT clock is often limited by poor mapping of standard
cells to FPGA primitives [169], limiting the overall emulation performance. While some
efficiency may be regained by explicit manual remapping of problematic primitives, this du-

CHAPTER 3. CONDOMINIUM

RTL Co-Simulation

DPI GPIO (Verilog)
DPI GPIO (Verilog)
DPI GPIO (Verilog)
DPI GPIO (Verilog)
DPI GPIO (Verilog)
DPI GPIO (Verilog

DPI GPIO (Verilog

DPI GPIO (Verilog

DPI GPIO (Verilo

DPI GPIO (Verilog)

Coroutines
Simulator PS Peripheral
req start
P 2
By has req?
tick
req cont. o
s
/ !
2O
tick 9
wait
req end has req?
tick
Q
S
/ seg\e
20
tick ¥
-
5
2]
=
@,

18

// Initialize DPI GPIO C

void init () {
gp0_arvalid =
gp0_awvalid =

new gpio_ dpi();
new gpio dpi();

dram_ ptr = malloc (PL_DRAM SIZE);

// Do DPI read

int axi_read(int addr) {
gp0_arvalid = 1;
do { yield(): } while(!gp0_arready);
gp0_arvalid = 0;
int val = gp0_rdata;
do { yield(); } while(!gp0_rvalid);
return val;

}
// Do DPI write
void axi_write(int addr, int data) {
gp0_awvalid = 1; gp0 wvalid = 1;
do {
awdone = gp0_awready ;
ep0_awvalid = lawdone;
wdone = gp0_wready ;
gp0_wvalid = !wdone;
yield ();
} while ('awdone || !wdone);
gp0_bready = 1;
do { yield(); } while(!gp0_bvalid);

// Do ARM PS read
int axi_read(int addr) {
return «((int x)gp0_ ptr+addr);

}

// Do ARM PS write

void axi_write(int addr, int data) {
#*((int *)gp0_ptr+addr) = data;

#include <plshell .hpp>

// Demonstrate common interfacing

// with loopback DUT through PL—Shell
void ps_main()
{

// Initialize PL—Shell
plshell _t xpl = new plshell t();

// Write Ozbeef to CSR A
pl—write (SHELL CSR_A, Oxbeef);
// Read back that Ozbeef

int vall = pl—read (SHELL CSR A);

// Wait for space in FIFO X

while (!pl—>read (SHELL FIFO X CNT));

// Write Ozcafe to FIFO X
pl—write (SHELL FIFO X, Oxcafe);

// Wait for response in FIFO Y

while (!pl—>read (SHELL_FIFO_Y_CNT));

// Read Ozcafe from FIFO Y

int val2 = pl—read (SHELL FIFO_Y);

Synthesized Co-Emulation

// Initilize PS MMIO
void init () {
gp0_ ptr = mmap(GPO PADDR);

dram_ ptr = cma_ alloc (PLﬁDRAMiSIZE):

Figure 3.2: Condominium enables designs to run identical C++ code on the PS of a Zynq

ARM core, over a UART bridge, or in vendor-agnostic simulation. Instead of relying on

Verilog tasks to interact with the DUT, Condominium exposes pins on the PL-Shell through
a DPI-C interface. The result is fine-grained control over DUT execution, enabling software

flow-control and thorough verification. As multi-threading is disallowed by many commercial

simulators, C++ co-routines are used to co-simulate the DUT with blocking transactions
such as AXI requests, providing parallelism and deadlock avoidance.

CHAPTER 3. CONDOMINIUM 19

plicates design efforts and forces dependencies between FPGA and ASIC teams. To alleviate
performance bottlenecks, as shown in [Figure 3.1} we decouple the DUT and emulation logic
clock domains with asynchronous FIFOs and CSR synchronizers bridging the PL. emulation
fabric and DUT domains. This decoupling allows the PS to interface with an independently
PL emulation fabric clocked, usually at a higher frequency, to run ahead of the prototyped
design and prevent it from constraining the emulation layer.

When extracting cycle-accurate data from DUT or enforcing virtualized peripheral timing
models, the PS may need to process information while also handling context switching, net-
work bridging, or other asynchronous processing while DUT is going though new execution
cycles and generating new emulation metadata. If an asynchronous FIFO fills up and the
PS is not ready to accept a new packet from the PL, either the FIFO must backpressure the
DUT, such that cycle-accuracy is lost, or the packet is dropped. Most systems using latency-
insensitive I/O constructs use ready/valid handshakes to backpressure the DUT operation
when buffers are full. However, doing so perturbs the system and eliminates cycle-accuracy,
making the emulation non-reproducible due to the unpredictable nature of emulation sys-
tem’s data processing bandwidth and the resulting backpressure on the DUT.

Another approach to avoid degradation is to run a Real-Time Operating System (RTOS) on
the PS. However hard real-time guarantees are difficult to meet, restricting maximum per-
formance; and proofs would need to be rewritten for each DUT interface, slowing iteration
time. During performance profiling, for example, the information bandwidth needed varies
dramatically based on the specific performance aspect being monitored, so these real-time
guarantees will need to be re-tuned for each different experiment as well as for running in
simulation modes that have dramatically different wall-clock timing characteristics. In addi-
tion, compiling arbitrary programs is much more difficult on a specialized RTOS compared
to a full POSIX operating system.

Condominium leverages the PS-DUT asynchrony to implement cycle-accurate emulation by
gating the DUT clock upon interfering backpressure. Once gated, the asynchronous FIFOs
are drained and execution can safely resume. This approach masks non-determinism in the
PS, which may be running a full Petalinux [176] operating system. Clock-gating in the
PL-shell means that both PS software and DUT logic can be completely unaware of the
other side of the interface, operating in an ideal environment. This ensures gathering and
processing of fine-grained, cycle-accurate DUT data in PS can enable various techniques
ranging from instruction-level cycle attribution for performance bottleneck analysis to ISA
cosimulation for agile bug localization. Also, clearly defined boundaries between PS and DUT
domains simplify necessary timing constraints during synthesis and standardized, validated
asynchronous primitives for clock domain crossing shield users from the unwanted issues of
multi-clock systems.

Furthermore, modeling exact IO timing is an essential functionality in a scale-down system.

CHAPTER 3. CONDOMINIUM 20

GATED CLK | DUT CLK | AXI CLK
: |
|
T
PL e
' -
: i : PL-Shell i PS
read_addr | S '
g
read_valid } i
: L .
response | i AXI4
: register i 1 :: > PS
resp_data | d E [Memory
L do di i ' !
' | vo en 1
DUT id | I
U resp_valid | A P
1]
I
T
HE
n
o
latency o 1 AXI4-Lite DRAM
register . [>
]] model
T
response o @ [i
counter P
vo en
start '
/AN [S

Figure 3.3: Condominium leverages the clock-gating to enforce exact timing behavior for
abstracted peripherals. In the case of modeling DRAM access latency, a Condominium
pauses DUT emulation on a memory request, PS receives the request and programs a PL
register with the desired latency which resumes the emulation. If the response packet from
the ARM memory arrives early, its withheld and release to DUT at the desired latency. If
the response is late, emulation is paused until packet is received from the ARM memory.

In Condominium, hardware model timers exist in the DUT clock domain, but timing in-
formation is stored in the PS program where it is exchanged via a simple handshake. For
instance, to prototype a system with cutting-edge HBM DRAM, the DUT may emit a DRAM
request which causes DUT execution to stop. As show in the PS receives the
request, calculates the predicted timing of the specific HBM model, and programs the ex-
pected timing through PL-shell CSRs. The DUT clock then resumes waiting for the DRAM
request to return by executing any other parallel tasks. If the DRAM request returns before
the hardware model timer finishes, it will be held until the correct cycle and then released to
the DUT. If the hardware model timer expires before the DRAM request returns, the DUT
will return to a gated state. This event-driven co-emulation maintains cycle-accuracy while
ensuring there are minimal wasted cycles. Alternatively, for peripherals with simpler timing
model, designers can opt to implement the model on the PL in RTL by incorporating it into
the existing clock-gating state machine.

3.3.3 Heterogeneous Prototyping Cluster

Condominium was initially developed for FPGA prototyping of BlackParrot and also for
computer architecture students performing full-stack analysis and optimizations on it. The
initial vision was a cluster of heterogeneous FPGA development boards aimed at fulfilling

CHAPTER 3. CONDOMINIUM 21

the following goals:

« Provide a cheap, flexible platform for designing and analyzing microarchitectural mod-
ifications to the core.

» Avoid supporting all laptop to FPGA mappings by standardizing the host Zynq PS
system.

e Synchronize the software simulator and Zynq target environments to enable domain
migration and minimize FPGA debugging.

» Provide a platform robust to fatal RTL bugs by construction, prevent the host system
from hanging, and enabling remote reboot of the cluster.

The first iteration of Condominium was built on PYNQ-Z2 [15§], inexpensive educational
boards available at an academic discount. Z2 boards are out-of-box compatible with the
open-source Xilinx Pynq [175] SDK, providing a Python-based interface for bitstream pro-
gramming, peripheral management and PS configuration, among many other convenience
features. Because the Pynq software makes interaction with the Z2 boards so convenient,
students can buy and develop on their own device. Needing a more structured approach
to coherently integrate a large number of boards, we designed a scalable cluster of various
network-attached FPGAs all based on the Condominium environment. All prototyping and
emulation data is stored on a host system and shared with the boards through a network-
based distributed file-system. This ensures the occasionally large evaluation data files ex-
tracted by the PS for future analysis are not limited by the board memory and can easily be
accessed, aggregated, and processed by the host. For parallel development, team members
log into each board to independently program and run experiments. Bulk regression can
be run from standard job-scheduling software. The setup shown in [Figure 3.4[(b) is built
with commodity components: USB-Ethernet controllers, a network switch, and hand-cut
plexiglass shelves. Comprising 20 Ultra96v2 [18] boards, this cluster cost around $4500 and
supports multiple projects and CI pipelines for a modestly sized research group. Based
on [Table 3.1, we estimate that this cluster outperforms in TCO after less than a full year of
usage.

Maintaining a heterogeneous FPGA cluster is typically as simple as ensuring the central net-
work switch is remotely accessible. Moreover, the Petalinux configuration on Zynq boards
allows for watchdog timers [168] which forces a reset upon hanging the board. To enable
automatic watchdog reboot on PYNQ boards, many segments from the hardware to the
software stack need to be modified [46]. First, the Zynq PS needs to be configured to have
hardware watchdog timers ticking and be able to reset the system. Second, the PYNQ sys-
tem device tree must be modified to recognize the watchdog timer at the correct PS address.
Third, the linux kernel and boot-loader should be configured to enable software support for
the watchdog timer. Finally, a watchdog daemon should be created to periodically reset the
watchdog timer from user-sapce and prevent overflow. If everything is properly configured,
any temporary glitch with the board or a system freeze caused by inexperienced users has

CHAPTER 3. CONDOMINIUM

72 H 72 H 72 H 72 [Z2
\ \
U96 H U9 H U9 H U6 H U6
[[
H RP1L M VU47P
Network (UART)
Switch RPI
A warr [VUATP

(a) Condominium clusters connect to a standard net-
work switch to enable remote connections. While
homogeneous clusters of Pynq boards is the lowest
maintenance options, some labs may be restricted to
non-Zynq FPGAs and use small controllers such as
Raspberry Pi to bridge to a PS interface.

22

(b) A twenty-server Ultra96v2 cluster. Students can
time-share boards for parallel builds and serialized,
private experiments. By connecting the cluster to a
network switch, students are able to work fully re-
motely, important during events such as the COVID-
19 pandemic.

Figure 3.4: A heterogeneous cluster can be configured for a variety of Pareto frontiers
along cost, capacity and design parallelism. For design space exploration of heterogeneous
components, a fleet of small FPGAs may minimize build times, whereas for a suite of long-
running benchmarks, medium-sized FPGAs may be able to complete overnight regressions
on a full system.

a fail-safe backup and connections can generally be restored after board is automatically
rebooted by a watchdog overflow. For further robustness, a remote network-attached reset
switch (or Raspberry Pi [51]) removes the need to physically reset the system even upon
unlikely watchdog failures. A centralized job-scheduler can dynamically prevent interference
between users and regression jobs. As shown in [Figure 3.4|(a), Condominium easily sup-
ports heterogeneous boards as there are only two classes of network interface to maintain.
Standard Zynq boards connect directly via Ethernet while non-Zynq parts tunnel through
a network-attached UART-capable device such as a Raspberry Pi. In this way, clusters
can simultaneously service a wide range of IP blocks that each may leverage specific board
features. A diverse setup is ideal for a large continuous integration server as generic jobs
can be assigned to minimally-sized boards, reducing regression time and improving energy
efficiency.

3.4 Condominium Usage

As mentioned before, Condominium was initially developed for FPGA prototyping of Black-
Parrot. However, it soon became clear that the ability to perform accelerated emulation of a
design and while extracting cycle-accurate microarchitectural information without perturb-
ing the emulation flow and losing reproducibility opens more doors to develop methods for
agile hardware development. In this section we go through how Condominium has been used

CHAPTER 3. CONDOMINIUM 23

for enabling agile and accurate functional verification and performance analysis techniques.

3.4.1 Accelerated Functional Verification

One of the important ways Condominium has been leveraged is to accelerate methods de-
veloped for agile hardware functional verification. In this section we go explain how ISA
cosimulation can be used to significantly reduce debugging time as hardware designs mature
and migrate to longer testing regressions. We explain the limitations of the technique, how
it can be parallelized while still relying on software RTL simulators, and how Condominium
can be used to accelerate the process without losing debugging transparency.

ISA Cosimulation for Verification

To ensure the correctness of hardware functionality whether when adding new features during
development or experimenting as part of an academic project, the user needs to be able
to verify the correct execution of a benchmark during its runtime. They also need to be
able to identify silent benchmark fails and quickly localize the bugs to the instructions
that triggered them to effectively reproduce and fix the bug. Additionally the offending
instruction sequence can be added to added into the design’s verification regression suite
and integrated into the CI pipeline to avoid further resurfacing of the same issue. During
the initial stages of hardware design, since engineers rely on short and targeted unit tests,
potential bugs can usually be identified by browsing the RTL waveform. However, as the
benchmarks and the RTL mature, the previous verification methodology fails to keep up
with the increase in simulation times and complexity. When simulating benchmarks, such
as the Linux kernel, hidden bugs can manifest millions of cycles after they have originally
been triggered and to find their source using waveforms and simple execution tracing can
prove to be inefficient and time-consuming. This is compounded by the fact that, due to
the slow nature of RTL simulators, rerunning the benchmarks to verify a potential fix is also
time-consuming. Software debuggers, like GDB [59], can offer tools for bug-localization, but
will cause even more slowdown in simulation, may need special hardware support, and if
hosted on the DUT itself, can be prone to the same bugs that they are aiming to reveal,
making them unreliable for hardware verification.

To enable bug-localization for BlackParrot verification, we implemented a system of RTL
co-simulation where we utilize a RISC-V ISA golden model, Dromajo [88], for runtime verifi-
cation of the RISC-V executed instructions on BlackParrot. Integrated into the BlackParrot
Verilator test-bench, on every instruction commit or taken trap, a co-simulation module
passes the execution information through DPI-C interfaces to the C++ ISA model. The
ISA model executes the benchmark in lock-step with DUT and cross-compares execution in-
formation, such as PC, instruction, register writeback data, and RISC-V status CSRs, with
the DUT. By run-time cross-comparison of program execution data, we can immediately
catch hidden bugs on a possible RTL and ISA model divergence and inspect the waveform

CHAPTER 3. CONDOMINIUM 24

segment #0 segment #1 segment #2

l Dromajo >
Y Y

Checkpoint Checkpoint Checkpoint

Restore Restore

!

I RTL Sim
l Dromajo I I Dromajo

e}
A

deuay

=
o

J3SuT

Dromajo

Figure 3.5: By generating periodic checkpoints using an ISA model, RTL co-simulation can
be broken down into independent segments and parallelized after restoring the checkpoint
state in the simulator.

at the triggered clock cycle for further insights on how to reproduce and fix the issue. Fur-
thermore, the instruction sequences manifesting these bugs can be compiled and added to
the design’s verification suite to ensure such bugs do not resurface.

While ISA cosimulation largely automates the bug localization problem and significantly
reduces debugging cycles by eliminating the need to browse long waveforms for RTL faults,
it faces challenges and limitation that affect its efficacy as a functional verification method.
First, it is only as accurate as the granularity of RTL microarchitecture modeled in the
ISA simulator. This means it cannot certain issues such as RTL hangups and bugs that
corrupt a microarchitectural unit, like branch prediction, but does not manifest in the RISC-
V architectural state. Furthermore, timing race events between cores and accelerators are
usually not modeled in ISA models, meaning reference models, like Dromajo, should defer
to the DUT on the correct resolution for issues like atomic operation failures in a multicore.
Also, while ISA cosimulation cuts down on manual debugging time, it is still bounded to the
slow nature of software RTL simulators.

Accelerated ISA Cosimulation

To cut down the cosimulation time for longer benchmarks, the program execution can be
broken down into multiple segments for further parallelization. As shown in [Figure 3.5, we
use the ISA model simulator to run the benchmark and create periodic checkpoints of the
processor’s architectural state space. The state includes the contents of memory, register-
files, CSRs, and PC. Then, for each state checkpoint, an independent RTL co-simulation

CHAPTER 3. CONDOMINIUM 25

thread can be invoked by first loading in the architectural state into the processor by loading
in the memory image, booting into a generated initialization boot-rom that sets up registers
and CSRs, and returning to the checkpoint PC to resume cosimulation for the duration of
that segment. By eliminating the backward dependencies for the program segments, we can
run parallel independent cosimulation threads for each segment. This method reduces the
cosimulation time for longer benchmarks while still maintaining the transparency of RTL
simulation.

While parallelizing the ISA cosimulation can reduce benchmark verification by one order
of magnitude, it requires a compute-heavy server with a high multi-processing capability.
Since Condominium’s infrastructure can be used to extract fine-grained instruction commit
information, we can use it to accelerate ISA cosimulation. By hosting the reference model on
the PS, we can feed and extract the corresponding execution information to the SB-FIFOs
and perform cross-comparisons to catch program divergence in the DUT. The execution
information can be passed through asynchronous FIFOs that can gate DUT clock before
being streamed to PS by the PL-shell. This ensures cycle-accuracy is maintained and we can
reproduce a caught bug on RTL simulation for further debugging. Furthermore, once the
bug convergence point is identified, a prior checkpoint can be created by the ISA model to
facilitate the bug reproduction in RTL simulation. Condominium has been used to accelerate
Dromajo cosimulation of BlackParrot by an average of 33.8x on Ultra96v2 boards compared
to Verilator [108]. Using this feature, Condominium can be integrated into the CI as part
of the chip development cycle, and on a major change to the design, an FPGA cluster
can be used to quickly run a diverse and evolving set of regression benchmarks for design
verification.

3.4.2 Cycle-Accurate Performance Profiling

While Condominium accelerates design emulation, performance analysis and optimization at
a scale-down granularity additionally requires deep introspection. Processors rely on built-in
performance counters and metrics such as IPC to perform aggregated performance evaluation
of running a benchmark. However, these methods offer limited insight into the various
sources of inefficiencies in the hardware, and outside of analyzing the efficacy of solutions to
previously known bottlenecks through A-B testing, provide no intuitive way of attributing
elapsed clock cycles to their corresponding functional unit and program instruction.

Recent work on time-proportional performance profiling [61, 62] have proposed an RTL
golden reference profiler, Oracle, that by tightly coupling with the core pipeline, can attribute
every simulated clock cycle to the exact instruction that the processors is either committing or
is stalling the execution. To correctly identify the instruction that’s responsible for a delayed
cycle of execution, Oracle employs a dynamic attribution strategy that improves on static
methods such as last-committing-instruction (LCI) and next-committing-instruction (NCI).
This dynamic attribution strategy is based on the insight that the commit stage

CHAPTER 3. CONDOMINIUM 26

Every clock cycle

One or more
instructions in the
ROB?

Committing one or
more instructions?

Is the ROB empty
due to a flush?

Yes

| State 1: Computing | | State 2: Stalled | | State 3: Flushed | ‘ State 4: Drained |
Evenly distribute the cycle| | Attribute the cycle to the Attribute the cycle to the
across instruction(s). instruction that stalls. instruction that emptied the ROB.

Figure 3.6: Oracle profiler clock cycle attribution overview. Each cycle is attributed to an
instruction based on the state of the processors reorder buffer (ROB). On an empty ROB,
the cycle is attributed to the instruction that flushed the ROB or is waiting to be scheduled.
Otherwise, the cycle is attributed to the instruction being committed or stalling the pipeline.
Figure from TIP [62].

ROB state ROB state ROB state ROB state

Committing Committing Committing Squashed Committing
Cycle(s) ¥ + Cycle(s) ¥ Cycle(s) ¥ * ¥ + Cycle(s) V4
1 [[2 [13 1] 1 [Jload [13 | 14 | 1[It _[eranch] 13 [14] 1[I [12] | |
2 [(B [1 [15 16 | 2-41[load] 13 [14 [15] 2-5 | I | [] 2-41 | I I I]
3 [15 [16 [17 [18] 42 [Load | 13 [14 [15 | 6 [[15 [16 | I] 42 [[13 | 14 | |]
Profile 8 Profile 5 Profile Dispatched, not executed Profile Dispatched, not executed
Inst. Oracle NCI LCI - Inst. Oracle NCI LCI _ E Inst. Oracle NCI LCI 5 Inst. Oracle NCI LCI 5
I 0.5 1 1 &8 I1 1 1 41 4—?5% I 0.5 1 1 = I1 0.5 1 1 <5
2 0.5 0 0 €« 2 Load 405 41 1« "% Branch 4.5 0 5 « 2 2 0.5 0 41 €« 3L
13 0.5 1 1 = 3 0.5 0 0 £ 13 0 0 0 5 I3 41 41 0 «°7%
14 0.5 0 0« § 14 0 0 0 £ 14 0 0 0 E
15 0.5 1 1 ° 15 1 5 0« §
E}
6 05 0 0« 2 16 0 0 0 z
(a) Computing. (b) Stalled. (c) Flushed. (d) Drained.

Figure 3.7: Example illustrating the Oracle, NCI, and LCI cycle-attribution on a 2-wide
out-of-order processor. Rather than attributing execution cycles staticly, by dynamically
identifying the offending instruction based on the state of processor pipeline, Oracle provides
realistic insight of performance bottlenecks within the program. Figure from TIP [62].

CHAPTER 3. CONDOMINIUM 27

40 | T T T T T T T T T T T T T T T T T T T 1
Si=1 D SI=10 B S|=100 C— SI=1000

30 -

25 N

15 | N

10 -

Slowdown vs No Sampling
N
o
T
|

Figure 3.8: Condominium can be leveraged to dynamically switch co-emulation speed for
sample rate. As sampling granularity decreases down to single step, there is a 32x slowdown.
Therefore, best practice is to identify regions-of-interest and change sampling frequency to
match importance.

of the processor pipeline can be in one of the four possible states in each cycle, and based on
that state a different instruction is attributed to the cycle. Static attribution strategies, as
shown in are biased towards current or previously committed instructions that
leads to over-representing and under-representing instruction performance impact based on
the current state of the processor pipeline. This cycle attribution is further broken down
and categorized into various stall reasons that can cause a delay in instruction execution. By
instrumenting the RTL with a time-proportional profiler, like Oracle, users can accurately
identify how many cycles the processor spends on each instruction and how those cycles
breakdown in terms of different sources of stalling in execution. While a golden profiler can
provides accurate (PC, stall) pairs for each cycle that can be aggregated into instruction cycle
stacks, traditional FPGA prototyping lacks the bandwidth, backpressure, and non-intrusion
guaranties to maintain the cycle-accuracy needed to store and process these pairs. In this
section, we explore how to leverage Condominium’s sampling infrastructure to characterize
BlackParrot through time-proportional performance profiling.

Condominium users can instantiate an Oracle-like performance profiler tightly coupled with

CHAPTER 3. CONDOMINIUM 28

1.2

1$ Miss I BR Mispredict C—— FMA-Use Others I
D$ Miss BR Taken E—3 Load-Use I

Normalized Stall Cycle Stack

Figure 3.9: Benchmark aggregated stall stacks for sampling intervals 1, 10, and 100. Due to
time-proportionality, stall stacks do not generally vary across sampling intervals. However,
a few benchmarks such as 454.calculix and 464.h264ref have variances as high as 6.2%.
Oracular sampling through Condominium is able to accurately identify these stall sources.

the core pipeline by pulling control wires from their corresponding execution pipe through
hierarchical references. This profiler annotates each cycle of execution with a PC and event
classification (stall type or commit), attributing at the commit stage to maintain time-
proportionality. Then Condominium can be used to extract this information with different
levels of granularity. If the user is simply interested in collecting aggregate data on the
breakdown of stall classification for the entire benchmark, counters can be instantiated for
each stall type and then connected to PL-Shell CSRs to be read on benchmark completion.
At this level of granularity, the user can obtain a cycle-accurate breakdown of how different
sources are contributing to the overall benchmark performance without any slowdown but
cannot attribute those cycles to specific instructions. This limits the capability of designers
to identify how specific instruction sequences can create performance bottlenecks in the core
and how to optimize for them.

Previous works like TEA and TIP have demonstrated the benefits of time propor-
tional instruction profiling, but concluded that the bandwidth overhead is impractical. To
circumvent this, they have resorted to a coarse-grained sampling strategy for FPGA pro-

CHAPTER 3. CONDOMINIUM 29

totyping that relies on software interrupts to sample attributed (PC, stall) pairs from the
profiler and extrapolate the results based on the sampling frequency(4kHz in [62] to match
Linux perf’s default frequency). This approach is prone to low-frequency sampling errors,
where it has a higher probability of detecting long latency stalls such as page table walks
and L1 cache misses, but can often miss ultra fine-grained stall sources such as irregular
dependency bubbles. Also, leveraging software interrupts as a method for sampling perfor-
mance information disturbs the natural behavior of the benchmark by diverting the normal
program flow to the sampling interrupt routine. The constant context switching between
the benchmark code and the sampling routine can break data and timing dependencies in
benchmark instructions and present a non-realistic view of the performance bottlenecks in
the benchmark.

To achieve fine-grained performance evaluation, users can leverage Condominium to stream
cycle-accurate (PC, stall) pairs from the core to perform instruction-level performance pro-
filing. To extract precise microarchitectural information from RTL, Condominium leverages
the same clock-gating mechanism used for ISA cosimulation. The DUT streams samples
to PS across asynchronous FIFOs at a configurable sample rate, if necessary clock-gating
identically to how Condominium manages emulation of interface timings. Critically, due
to the backpressure mechanism, tuning profiling granularity becomes a simple trade-off be-
tween slowdown and precision. illustrates that with Condominium, an Oracle-like
profiler incurs only moderate performance overhead and enables unprecedented insight for
performance debugging.

The PS post-processes the stall information asynchronous to the DUT. Based on this in-
formation and profiler runtimes, users may choose to manipulate the sampling rate to gain
further insights for design optimization. shows the emulation slowdown for per-
formance sampling of the core with error-free per-cycle sampling or with different sampling
frequencies that results from DUT clock gating. Note that due to other clock gating fac-
tors, such as maintaining a memory timing model, with increasing sampling interval, the
slowdown curve saturates to a different value based on the running benchmark. As shown
in [Figure 3.9] due to the time-proportional nature of the profiler, aggregated stall stacks for
the entire benchmark do not vary a lot across sampling rates, however, if users need insight
into the attribution of stall cycles to instructions for localizing performance bottlenecks, sam-
pling interval can greatly influence the correct attribution. As shown in [Figure 3.10, once
the attribution space has been expanded from a few stall bins by a factor of program size,
the cycle attribution error rate rapidly grows with sampling interval. This dichotomy sug-
gest a reasonable method for users using Condominium for performance evaluation: running
coarse-grained regressions to gain a sense of the breakdown of important stall categories, and
then running fine-grained analysis on interesting benchmarks to produce time-proportional
stall attributions to individual PCs for deeper performance analysis.

CHAPTER 3. CONDOMINIUM 30

commit BEEEE BR mispredict C— IRAW dep 3 IWAW dep C—1 D$ miss .
1$ miss — FMA dep = FRAW dep FDIV

Cycle Attribution Error

RIS
@ &0

"4
2

O X
(‘o(\

Figure 3.10: Stall cycle attribution errors for sampling intervals 10, 100, 1k, 10k, and 100k.
Once attribution space is expanded to pair each cycle to a stall category and a PC, sampling
errors have a noticeable impact on user’s ability to identify segments of benchmark that act
as performance bottlenecks.

3.4.3 Case Study: Catch-up ALU

In this section, we inspect how Condominium’s performance profiling capabilities have been
used to identify subtle performance bottlenecks in BlackParrot and measure the effect of
solutions to mitigate those bottlenecks. After integrating a time-proportional performance
profiler to the PL-Shell, [Figure 3.11f(a) shows the cycle-stack breakdown of stalls during
execution of CoreMark [55]. While CoreMark is a flawed benchmark for full-system char-
acterization, it is widely used as proof of microarchitectural optimization. Additionally, it
is an ideal demonstration of performance optimization frameworks since there is so little
low-hanging fruit remaining. Because BlackParrot is an in-order pipeline with large L1
caches, load-use stalls are a primary performance bottleneck, accounting for 18% of stalls in
CoreMark. Load-use stalls have two subtypes: load-arithmetic and load-control operations.
For number crunching applications, load-arithmetic stalls prevent optimal operation of tight
loops. For pointer chasing segments, load-control stalls add extra delays on every null check.

CHAPTER 3. CONDOMINIUM 31

o 38 EV&X-%E ' mispreaict —
o taken branch &=
40M % load-use
sl oth%r [e— s
IPC =—3
o %%w EX MEM WB
30M s 25305 1 os
@ %
%ZSM
° e 108 @
Z20M
7
15M 108
10M .
1 0.75 :
Bl] D$

0 : 0.7 L] : I L |
Baseline +Catchup ALU Baseline +Catchup ALU .

(a) After basic core optimization, remaining low la- (b) A second Catch-up ALU and set of bypass
tency stalls (1-5 cycles) are difficult to detect via multiplexers allows the Catch-up ALU to exe-
coarse-grained sampling. Tailored event counters can cute pipelined instructions. However, a depen-
identify problematic categories, but lose PC associa- dent non-integer instruction following a Catch-
tion during aggregation. Condominium allows PS soft- up operation will cause a bubble.

ware to monitor stalls at a per-PC, per-cycle granular-

ity.

Figure 3.11: Condominium is used for stall categorization during CoreMark run, and using
a Cath-up ALU to reduce the share of load-use stalls in the performance stack and improve
the overall performance.

To reduce load-use stalls, we add a Catch-up ALU which is a secondary ALU located serially
after the first ALU. Catch-up ALUs are a common way to improve performance in in-order
cores. Out-of-order execution is often able to tolerate L1 hit latencies, so extra resources
are better spent on more parallel ALUs for wider issue. For in-order cores, however, single
threaded performance is sensitive to head-of-line blocking and so Catch-up ALUs can provide
a substantial benefit. After justifying the idea in a high-level simulation model, we implement
an RTL version of the idea in Condominium to evaluate marginal performance gains.

The Catch-up ALU resides in EX2, parallel with the second stage of the data cache access.
When an integer or branch instruction has all dependencies met during issue, it is dispatched
as normal to the Early ALU. Alternatively, when those dependencies are anticipated to be
produced in EX2, the instruction is dispatched to the Catch-up ALU, which adds an addi-
tional cycle of latency, although fully-pipelined. In addition to arithmetic operations, the
Catch-up ALU also processes control flow instructions. Because RISC-V branch comparisons
are easily transformed from existing subtraction and comparison operations, this support is
cheap to add. However, this feature adds complexity to the handling of branch mispredic-
tions. The BlackParrot pipeline resolves branches early in EX1 to reduce the misprediction
penalty. In order for load-branch operations to take advantage of the Catch-up ALU, the
pipeline must suppress PC mismatches in EX1. Now, when the Catch-up ALU detects a PC
mismatch, the pipeline must be flushed in addition to redirecting the front-end. Therefore in

CHAPTER 3. CONDOMINIUM 32

BlackParrot, Catch-up ALU mispredictions are treated as synchronous exceptions, reusing
their mechanism for replaying and recovering state. [Figure 3.11|(b) illustrates Catch-up ALU
modifications to a sample five-stage pipeline.

As shown in [Figure 3.11](a), the Catch-up ALU reduces load-use stalls from 43% of stalls to
18% of stalls, resulting in an overall 4% performance increase. There are additional stalls
from dependencies on Catch-up ALU instructions, which now have an additional cycle of
latency. However, these extra stalls do not diminish the gains from optimizing the more
common load-use case. Interestingly, branch-related stalls increase by 1.04x, as deeper spec-
ulation past EX1 triggers additional mispredictions. A further optimization could restrict
speculation only to branches which are predicted strongly taken which would increase load-
branch stalls but should reduce Catch-up mispredictions. Leveraging cycle-accurate profiling
with Condominium allows architects to easily identify potential bottlenecks as well as confirm
both the positive and negative effects of their proposed improvements.

3.4.4 System-Call Abstraction

Due to the complexity of benchmarking experimental processor designs, architects use stan-
dardized benchmarks |27, |32, |55, [73} [74] to get a normalized performance insight into the
design. However, the scale of commercial benchmarks are incompatible with the slowdowns
of RTL simulators. Furthermore, conventional benchmarks also rely on a range of functions
from the C standard library for 1/O capability, file-system operations and memory man-
agement. While it is interesting to evaluate the performance of a full Linux distribution
running a benchmark in user-space, during deep microarchitectural optimization architects
often wish to observe bare-metal behavior. Yet, without operating system, it is impossible
to run all but the most simple hand-crafted programs. Instead of glibc [53], embedded sys-
tems typically rely on smaller stdlib implementations, but these lack necessary system call
compatibility.

To this end, software engineers have offered offloading solutions, such as RISCV-PK [52], that
rely on issuing proxy kernel calls to a host machine for offloading POSIX system-call execu-
tion and sharing the result through a shared-memory and MMIO interfacing. Condominium
supports this kind of proxy system-call benchmarking by hosting the underlying software
library on the PS and using the PL-shell and the PS memory for interfacing system-call data
back-and-forth between the program and PS. However, as shown in [Table 3.2} system-calls
can access many virtual and physical devices in a system, which makes it difficult to stan-
dardize their processing time when relying on running proxy-kernels on a completely different
x86 machine. As a result, benchmarks that rely on these system-calls, like file-system opera-
tions, can have their performance heavily skewed by the native execution of the system-calls
on the x86 processor which might behave completely differently from a RISC-V processor
under test. To address this challenge and further simplify bare-metal benchmarking, software
libraries like PanicRoom [25] aim to offer simple implementation of POSIX system-calls that

CHAPTER 3. CONDOMINIUM 33

Table 3.2: POSIX system-calls [118] can access a range of system devices depending on
their functionality and input arguments. By providing native bare-metal implementation
of system-calls and standardizing their downstream device access time, users can expect a
realistic performance behavior in bare-metal benchmarks.

syscall Function Memory Network Other IO
open/openat/close obtain/release file descriptor v X v
read/pread /write/pwrite read/write to file/device v v v
Iseek change file offset X X X
stat/fstat /lstat access file metadata v X v
brk /sbrk grow program heap X X X
nanosleep suspend thread X X X
getpid/getuid/clock_ gettime misc system information X X X
mmap/munmap map file/device to VM v X X
bind /connect initialize socket X v X
send /recv/writev/readv transmit/receive over socket X v X

break the reliance on proxy host offloading and create a standalone bare-metal benchmark
binary. PanicRoom implements this functionality by using ARM LittleFS [11], an open-
source, lightweight, DRAM-based file-system designed for embedded flash memories. But
running bare-metal benchmarks built upon PanicRoom, Condominium can easily rely on the
timing models for common peripherals, like DRAM, to get a more realistic processing time
for system-calls that access said peripherals. This approach guaranties that a RISC-V sys-
tem’s performance is solely determined by running RISC-V instructions that access common
endpoint 10s with controlled timing guaranties.

3.5 Related Work

While Condominium shares similarities with many FPGA-accelerated prototyping platforms,
its Scale-Down focus and aggressive portability make it uniquely cost and effort effective. In
this section, we compare to existing projects which offer subsets of the features in Condo-
minium.

3.5.1 Gate-Level Accelerated Emulation

Teams desiring a out-of-the-box solution to RTL emulation employ commercial tools for
FPGA-accelerated design modeling, such as Cadence Palladium 33|, Synopsys Zebu [134]
and Mentor Veloce [105]. Unfortunately this convenience is costly, with obfuscated pric-
ing up to millions of dollars. In contrast Condominium is free and open-source, provided
cycle-accuracy guaranties and design transparency, and requires an initial investment up to
hundreds of dollars.

CHAPTER 3. CONDOMINIUM 34

Table 3.3: Compared to other FPGA emulation platforms, Condominium has minimal TCO for
the smallest designs. Aside from enabling the use of low-end FPGAs, the lack of a dedicated host
server reduces hardware cost and eliminates sysadmin overheads. Additionally, by eliminating
dependencies on vendor IP, Condominium is able to provide cycle-accurate co-simulation using
open-source tools at no licensing cost to the user.

Platform Cost Model Design Ratio © Host Cycle- Co- Vendor- Open-

Accurate Simulation ! Agnostic Source
Commercial 2 High-End Cluster 1:1 Proprietary v v
FireSim [92] Cloud Rental N:N AWS F1 v v
SMAPPIC |41) Cloud Rental N:1 AWS F1 v
FreezeTime [106] High-End Board 1=1 PCle Server v v
Condominium Low-End Board/ N=N None v v v v

Low-End Cluster

0 The ratio of FPGAs:Designs in a single system emulation. Commercial tools map large hierarchies into large
clusters. Firesim is able to emulate arbitrarily large systems using cloud auto-scaling. SMAPPIC is able to
split large designs across FPGAs. FreezeTime maps a single design to a single FPGA. Finally, Condominium
maps a number of designs to a fixed-sized local cluster.

! Co-simulation refers to the ability to reproduce the cycle-exact output of a system emulation on an RTL
simulator such as Verilator [131] (albeit at significant slowdown). This ability is essential in emulation-system
debugging.

2 We combine Synopsys Zebu [134], Cadence Palladium [33] and Mentor Veloce [105] with similar features and
limitations.

3.5.2 Emulating Large Systems with FPGAs
FireSim (92|, DIABLO [136] and SMAPPIC [41] focus on scaling out the emulation to

analyze large-scale designs such as datacenter-scale systems. They work by partitioning
the system design over multiple FPGAs and using Ethernet-based token-passing systems
to capture inter-node timing. Because they are based on AWS F1 [§ infrastructure, the
emulation model relies on proprietary vendor libraries for the hardened AWS shell as well
as PCle DMA interfaces. Furthermore, relying exclusively on PCle for token networking
means any sub-microsecond access latency should be modeled by pausing emulation. As
Condominium focuses on single-node systems, it allows for local execution with open-source
simulations, resulting in a much lower recurring cost. In contrast, a local version for a
comparable F1 FPGA setup, may cost tens of thousands of dollars. Condominium also
allows for flexible and low-latency peripheral access via AXI bus.

3.5.3 Decomposed FPGA emulation

Similar to a Scale-Down methodology, Protoflex [43] and FAST [40] accelerate performance
analysis using FPGAs. However, they focus on acceleration of large, slow, cycle-accurate
models, attempting to gain performance insights into systems too large to simulate in a
reasonable time frame. In contrast, Condominium allows for cycle-accurate emulation of
arbitrary RTL so that architects can easily validate and debug performance with the deep
introspection that RTL provides. Freeze Time [106] time-multiplexes the FPGA fabric so one

CHAPTER 3. CONDOMINIUM 35

board can time-share multiple RTL partitions. Similar to Condominium, FreezeTime lever-
ages BUFGCE FPGA primitives to stall emulated blocks while virtualized blocks process
cycle-accurate timing models. However, once multiple virtualized accelerators are accessed
in the same time slice, FreezeTime needs to iteratively load and store accelerator accelerator
state space into the memory, which greatly affects real emulation time on memory-bounded
systems. On the other hand, Condominium aims for greater flexibility and lower resource
overheads by standardizing C++ timing models in the PS and PL-shell interfaces and gaining
fine-grained insight into emulated subsystems.

3.5.4 FPGA-Accelerated Performance Analysis

While custom cycle-level simulators and silicon performance counters are state-of-art for com-
mercial performance validation, researchers have also proposed using accelerated sampling
for microarchitectural debugging. FirePerf [91] provides two categories of microarchitectural
analysis: commit tracing via TraceRV and out-of-band hardware profiling via AutoCounters.
Condominium supports not only commit tracing and out-of-band event counters via PL-Shell
CSRs but also time-proportional instruction profiling, allowing for cycle-attribution of perfor-
mance bottlenecks and instruction. Additionally, Condominium is written in standard Sys-
temVerilog rather than Chisel [22], making it more familiar to hardware designers. TEA [61]
and TIP [62] propose time-proportional event analysis by creating Per-Instruction Cycle
Stacks (PICS) to unify performance profiling and performance event analysis. While TEA
and TIP are able to accurately ascribe microarchitectural events on average, they rely on
statistical sampling by periodically interrupting the program that disrupts non-interference.
Because Condominium combines commit-stage cycle attribution with cycle-accurate perfor-
mance data streaming, it is able to accurately attribute cycles without any sampling errors,
as well as trade co-emulation speed for sampling accuracy.

36

Chapter 4

High-Fidelity Coverage

4.1 Acknowledgment

Research in computer architecture is an intensive collaborative effort, and the work on High-
Fidelity Coverage has relied very heavily on contributions from fellow BSG members: Anoop
Mysore Nataraja, Paul Gao, Dan Petrisko, and Prof. Michael Taylor. I would like to specially
thank Anoop Mysore Nataraja for the design of the coverage instrumentation algorithm and
collaboration on related work analysis, and Paul Gao for the help on the bring-up of the
ZC706 board which was used for coverage evaluations.

4.2 Motivation

The emergence of open-source hardware, alongside the growing need for more energy-efficient
and high-performance computers, has resulted in an explosion of increasingly complex proces-
sor and accelerator designs. As open-source tools and hardware libraries [131} |142] continue
to streamline the design process to cater to more agile chip-design practices, verification of
complex designs has remained a costly and time-consuming exercise. Unlike software de-
velopment, the hardware development process requires engineers to extensively verify their
design before manufacturing since mitigating bugs after tape-out would be impractical, if
not impossible [117]. Understandably, functional and performance validation consume a
significant portion of the hardware development cycle, as hardware engineers, on-average,
spend around 49% of their time on verification [50]. This, in addition to the growing com-
plexity of modern processors and accelerators, motivates the use of diverse and efficient
verification methodologies to ensure design correctness and reduce time-to-market. Among
popular verification solutions, formal verification allows for the testing of complex design
state space using formal methods and guarantees. However, formal methods have high com-
putational cost and limited scalability. Dynamic verification and fuzzing [129] do not rely
on formalization of the models; instead, they allow for a practical exploration of the design’s

CHAPTER 4. HIGH-FIDELITY COVERAGE 37

functional state space for faster verification with significantly lower computational and hu-
man effort. This, of course, comes at the cost of strong formal guarantees which lowers
confidence. In reality, due to the complex and modular nature of RTL design, developers
usually opt for a combination of directed unit-testing, ISA compliance testing, formal veri-
fication, and hardware fuzzing to verify the functionality of their design at various stages of
the chip development process.

Fuzz-testing, or Fuzzing, as a verification solution has evolved from constrained random
verification. Initially developed for software verification, a fuzzer aims to find unexpected
faults and vulnerabilities in software by triggering the various corner cases and behaviors it
can exert using randomly generated inputs to the program. Modern software fuzzers, such
as AFL [180], combine a brute-force program generator with a smart guidance algorithm
based on instrumenting the code. AFL, for example, uses a modified form of software edge
coverage to effortlessly pick up subtle, local-scale changes to the C++ program control
flow. This coverage then is used as an input feedback to the learning-based algorithm which
in turn guides the test generator towards selecting more interesting seeds for future test
generation. The ultimate goal of the guidance algorithm is to use the history of the relation
between generated tests and their corresponding program coverage to decisions on future
test generation, so in the long run, it achieve a higher chance of triggering hard to reach
states of the C++ program.

Inspired by prevalence of fuzzing in the software domain, hardware designers have attempted
to migrate the same methodology for hardware verification. Modern hardware fuzzers, sim-
ilar to their software counterparts, are usually composed as a verification loop including a
test generator, a simulator for the design under test (DUT), a golden ISA model for bug
discovery through differential cosimulation, and an RTL feedback, typically in form of cov-
erage, for guiding future test generation towards exploring new DUT states. The use of
coverage as a guiding feedback is called, based on the level of design transparency, Gray-box
or White-box fuzzing, while some hardware fuzzers, called Black-box fuzzers, have opted out
of guiding the fuzzer based on RTL feedback, and in turn have focused on improving the
test-generation itself. Recent advancements in hardware fuzzing have focused on improving
various aspects of the fuzzing loop. This includes the work on test generation and mutation
algorithms for generating high-quality and self-verifying input programs [34, 93, 132, |179].
Others apply promising machine-learning and decision-making algorithms [30, |37} |60} [123]
to guide the test generation aimed at maximizing design exploration in the long run. Other
focus on application specific verification aimed at verifying certain ISA functionalities or
security concerns |30, [35], 93].

The migration from the software to the RTL domain, however, faces challenges due to the
different natures of the two domains and how similar concepts can be interpreted differently
in them. To attempt a blind migration by overlooking inherent differences such as the se-
quential nature of software as opposed to the inherent concurrency of hardware elements in

CHAPTER 4. HIGH-FIDELITY COVERAGE 38

RTL design, may prevent hardware fuzzing to reach its true potential efficacy in hardware
verification. Notably, the choice of the coverage metric is a critical and under-evaluated
decision in the design of a fuzzer. Not only does the quality of the metric provides a clear
representation on how exhaustively the fuzzer has explored the design, but it also strongly
influences subsequent test generation in coverage-guided fuzzing. Analysis on contempo-
rary fuzzers [29] has shown that their proposed coverage metrics offer little improvement in
fuzzing efficacy due to their nonalignment with the goal of RTL exploration and bug de-
tection. Driven by the software inspired definition of coverage and prevalence of simulator
enabled coverage metrics, conventional fuzzers often receive coverage feedback that ignores
the inherent concurrency of RTL design, therefore steering the fuzzer away from the goal
of maximal RTL exploration. Also, many of these coverage metrics either rely on built-in
features of RTL simulators, or cannot be effectively synthesized on FPGA with acceptable
scalability, significantly slowing down the fuzzing loop. With the continuous emergence of
increasingly intelligent fuzzers that incorporate coverage as the sole source of RTL feedback
for input generation, choosing a high-fidelity coverage metric that accurately represents the
degree of DUT exploration can significantly impact the performance of fuzzing. Alterna-
tively, a low-quality coverage metric can quickly misguide an input generation algorithm by
providing inaccurate feedback on what type of inputs trigger a newly explored space in the
RTL.

In this work, we focus on two important aspects of the coverage metric: Fidelity and Fea-
stbility. Fidelity in a coverage metric means that it provides an accurate representation of
the degree of RTL exploration, one that directly corresponds to triggering faulty datapaths.
In a hardware unit, the output is driven by a tree of computational datapaths, with the
activated path selected through a combination of cascaded control signals operating in dif-
ferent pipeline stages. It is only through the careful coupling of these control signals with
their relative latencies that one can deterministically identify the activated datapath in the
current cycle. By designing a coverage metric that incorporates this information, fuzzers can
keep track of activated RTL datapaths, therefore providing an accurate metric for design
exploration that can lead to bug discovery.

Feasibility indicates that the coverage collection should not impede the use of FPGA accel-
eration for DUT emulation, leaving iterative fuzzing experiments bound to the slow perfor-
mance of software RTL simulators. Fuzzing is an iterative process where the design state
space is incrementally explored through many iterations. Software RTL simulators have the
advantage of full design visibility, but are impractically slow for exhaustive testing. FPGA
acceleration therefore is a crucial method for reducing the turnaround time for each iteration
and significantly improving the performance of the overall fuzzing methodology. This rises
an important consideration in RTL coverage instrumentation — the tradeoff between the
emulation performance and the complexity of the coverage metric. Processors are complex
RTL designs composed of various computation pipes, state machines, memory systems, and
controllers. A coverage metric that can adequately represent the influence of a test pro-

CHAPTER 4. HIGH-FIDELITY COVERAGE 39

gram on the DUT incurs a significant instrumentation overhead that can sometimes mirror
the complexity of the DUT itself. While a well-defined group coverage metric can provide
this needed complexity, the number of possible combinations grows exponentially with the
group width, so storing and processing covergroups can be an expensive exercise since the
storage overhead grows exponentially with the group size [100]. Moreover, FPGA emula-
tions of instrumented DUTs allow limited visibility due to resource and interface limitations.
By designing the coverage collection peripherals in a way that can be synthesized along-
side the DUT with minimal area and performance overhead, we can break the reliance on
software RTL simulators and enable massive speedups in hardware fuzzing. To enable high
performance coverage guided fuzzing for RTL designs, this work aims to provide:

o A latency-aligned group-coverage metric that is designed to serve as a high-fidelity
representation of RTL datapath activation within DUT for the purpose of guiding
modern fuzzers towards effective design exploration.

» A synthesizable, low-overhead coverage collection engine that integrates into Condo-
minium and enables FPGA acceleration of coverage guided fuzzing by tracking newly
covered paths without losing cycle-accuracy.

o An automated instrumentation algorithm that can parse any given SystemVerilog de-
sign and extract latency information needed for generating the proposed high-fidelity
coverage.

In [section 4.3 we introduce the fundamental building blocks in a coverage-guided fuzzing
loop and provide an overview of conventional hardware coverage metrics and their efficacy for
guiding RTL fuzzer algorithms. Infsection 4.4] we introduce the high-fidelity hardware cover-
age metric that aims disambiguate the mapping between coverage values and activated RTL
datapaths within the design. We also propose an automated instrumentation algorithm for
extracting coverage latency information needed for generating the high-fidelity coverage from
SystemVerilog design descriptions. In[section 4.5, we intro specialized coverage engines, that
by integrating into Condominium, collect unique coverage combinations and transmit to a
host system for post-processing. These engines enable FPGA-acceleration of group-coverage
metrics by eliminating the exponential state explosion problem of wider covergroups. In
section 4.6, we evaluate the FPGA slowdown and utilization tradeoft of using high-fidelity
coverage engines, present BlackParrot case studies where coverage latency-alignment high-
lights buggy behavior, and compare the guidance efficacy of different coverage metrics when
guiding a simple coverage-guided fuzzer algorithm.

CHAPTER 4. HIGH-FIDELITY COVERAGE 40

:___________________: 0x20: sp <- dead
! Seeds | e e 0x24: ra <- £00d @
P [fo1o1] [t 100] Model N i
T 1001f..]o101 1
: 0011 1100]
i 1 [|
i l : : 0x20: sp <- dead ;
: 1 1 0x24: ra <- beef |
1 1 1
: Test] : !
: Generator ! : coverage :
! 1
[}
t || siii sp, to, 8 1 h DUT v :
{ add sp, sp, tl : ! :
: jal ra, 0x£f00d] :]
1
I ... 1 i :
1 1 1 1
T |]

Figure 4.1: Coverage-guided hardware fuzzing loop including a test generator, DUT emu-
lation environment instrumented with coverage engines. Collected coverage completes the
feedback loop for future test generation while, in parallel, a reference model is used for bug
discovery.

4.3 Background

4.3.1 Coverage Guided Fuzzing

Fuzzing is the practice of testing a design using automatically generated inputs to trigger and
reveal underlying bugs and vulnerabilities in a design under test. As shown in [Figure 4.1} in
the context of hardware design, fuzzing is a closed loop verification methodology for DUT
design space exploration with three main steps:

Test Generation: Input tests are automatically and randomly generated for the purpose of
exploring the design and revealing bugs and vulnerabilities. There are many different
flavors of test generators depending on the type of hardware under test, and the goal
that the fuzzer is operating towards, such as searching for generic RTL bugs, or more
application-specific purposes, such as revealing timing side-channels [30]. Tests can be
generated either from a carefully chosen pool of templates which can be mutated and
combined over time [37, 60, |179], or from the scratch by carefully arranging randomly
generated instructions in a program [132]. Optionally coverage feedback is used for ac-
cumulating information on the relation between previous test generation and mutation
choices and the resulting coverage, which in turn can be used to decide on interesting
test seeds and mutations to generate in the future iterations [37, |60} 123].

CHAPTER 4. HIGH-FIDELITY COVERAGE 41

Emulation and Coverage Collection: Input tests are then fed into the DUT for verifi-
cation and coverage collection. For the purposes of DUT emulation, either software
RTL simulators [131], 135], or FPGA environments [92] are used. Here, the DUT is
carefully instrumented to incorporate chosen coverage metrics along with the necessary
scaffolding and wrappers to methodically collect and compile coverage data, which will
be provided as a feedback to the test generator for future iterations. The coverage is
supposed to act as a proxy metric for evaluate the effectiveness of the input test in
exploring the DUT state space. While using FPGA prototyping for this step signifi-
cantly speeds up the fuzzing turnaround time, reliance on simulator-provided coverage
reports, and non-scalable and non-synthesizable coverage collection logic has tied many
fuzzers to software RTL simulation.

Verification: The main purpose of hardware fuzzing is to reveal bugs and vulnerabilities,
so in after or in parallel to the DUT emulation, the test execution should be checked
to ensure functional correctness. This can be done either by relying roughly on design
assertions or crashes to reveal fault execution, or by using a golden reference model
of the DUT to perform cross-reference co-simulation for run-time verification and bug
localization. Some fuzzers [132] also generate self-verifying programs where bugs or de-
viations can surface through runtime errors, however their reliability is limited because
the self-verifying mechanism built into the program itself is prone to RTL bugs and can
behave unpredictably. While the verification step has no effect on steering the fuzzing
experiment, it is vital for recording and reproducing the issues found throughout the
experiment.

The test generation step is largely DUT-agnostic since it relies on leveraging the ISA to
generate instructions that can increase the achieved coverage. There is an implicit assump-
tion here: that an increase in coverage metric correlates to an increase in the DUT state
space explored by the fuzzer. Since the test generator cannot directly observe activated RTL
datapaths, it relies on an coverage metric as a proxy for that and expects an increase in
coverage to represent a newly explored design space. So the RTL coverage serves as the
sole microarchitectural feedback guiding the fuzzer towards better design exploration. This
paradigm reflects a reinforcement-learning problem where an agent (test generator) chooses
actions based on its previous interactions with the environment it is embedded in (emulated
RTL) to maximize the cumulative reward (coverage metric). Researchers have attempted
to apply various reinforcement-learning solutions to test-generators to fit the exploration-
exploitation nature of hardware fuzzing 37, 60, |123]. While optimizing the test generation
can lead to a better utilization of the ISA and result in more diverse programs, leading to
a faster increase in coverage, it does not necessarily result in a better exploration of the
RTL. A poorly designed reward function can result in suboptimal agent performance and
prevent effective learning by misguiding the fuzzer from the goal of better RTL exploration.

CHAPTER 4. HIGH-FIDELITY COVERAGE 42

This reinforces the importance of defining a high-fidelity coverage metric that accurately
represents RTL exploration, as the sole DUT-dependent reward function in the loop.

4.3.2 Contemporary Coverage Metrics

In the context of hardware verification, there are a few popular coverage metric that vary in
their representation of design exploration, being generic or directed at certain functionality,
and their feasibility to implemented for FPGA prototyping in an scalable manner. These
metrics can be derived either directly from the hardware description language (HDL) for
different types of code coverage, or from the inferred logic for tracking various microarchi-
tectural functionalities, or from the ISA for ensuring the correct functionality of different
types of instructions supported by the ISA [75].

« HDL line coverage: The coverage over individual executable lines of the HDL. This
metric is not portable across languages for the same design and can over-represent com-
plex expressions. These metrics are typically implemented in software RTL simulators
and is not easily scalable for FPGA acceleration.

« Toggle coverage: The coverage over all individual nets within the design over the
two possible value transitions (0-1-0 and 1-0-1). A well implemented toggle coverage
metric would consider even intermediate nets from the netlist representation that are
not explicitly declared in the HDL. This is also typically implemented in software RTL
simulators and not immediately scalable for FPGA acceleration.

« FSM and interface coverage: Tracks the transitional states of various Finite-State-
Machines (FSM) or handshake interfaces within the design. This metric is useful for
tracking the high-level control state of the design for preliminary testing, but fails to
capture all microarchitectural transitions within the DUT. This is used alongside other
metrics since the coverage information from the metric is typically orthogonal to other
metrics.

o CSR coverage: Tracks the possible value transitions in the ISA CRSs implemented in
a processor. This metric can be used to ensure different execution modes are compliant
with the ISA requirements and can be integrated into the ISA compliance test suite.
While this is a good check for maintaining high-level compatibility between the DUT
and ISA, it does not capture microarchitectural states within the design.

» Verilog Assertions: Using a set of coverage primitives and formally-composed asser-
tions for expected behavior of signals and complex functional properties, a metric of
coverage can be defined to be the extent of coverage over the assertions. The advantage
is that higher-level functionalities can be covered with explicit specification. Typically,
however, stronger and higher-level functionalities require proportionally complex de-
sign insight. While assertions provide the guaranty the previously known issues do

CHAPTER 4. HIGH-FIDELITY COVERAGE 43

not resurface, they do not provide a metric for exploring previously unknown bugs
occurring in the RTL.

« MUX toggle coverage: The coverage over the toggle status of individual multiplexer
select signals. This metric is inspired by software branch coverage, where, due to the
sequential nature of software programs, only one branch is active at a time, and a nested
branch activation implicitly confirms the activation of parent branches, so this coverage
information would be useful for tracking various control flows of the software. However,
unlike software branch coverage, due to the parallel nature of hardware, this metric as
is would be incapable of accounting for the interaction of cascaded multiplexers within
a datapath. For example, while toggling the select signal of a certain MUX provides
information on which MUX input is connected to its output, the data might still be
lost and not used due to downstream MUZXes not selecting the said MUX output.

« MUX group coverage: This metric builds upon MUX toggle coverage by grouping
the identified select signals into covergroup vectors and tracking the resulting com-
bination values. By bundling individual coverpoints together in the covergroup, the
metric aims to provide an abstract low-level state of the RTL unit corresponding to
the single datapath trace that was active among all the possible datapath tree made
possible by the cascade of multiplexers. This bundling mechanism is not exclusive to
multiplexers and can be used to track the interaction of many different control signals
within a module.

While proposed group coverage metrics offer a more complete feedback that toggle coverage
on design exploration, it still fails to take into account the relative timing latencies that these
coverpoints operate in the RTL. By ignoring the relative latencies of the grouped MUX
control signals that operate in different pipeline stages, the resulting covergroup fails to
accurately map newly activated routes in the RTL datapath to a distinct combination value
in the coverage metric. In we propose a high-fidelity coverage metric that aims
to create a direct mapping from coverage value to activated RTL datapaths. Furthermore,
the exponential space complexity of group coverage makes it an expensive candidate for
FPGA acceleration [100]. To mitigate this scalability problem and enable group-coverage
for complex designs, mechanisms like hashing have been proposed to reduce the effective
widths of covergroups [77]. However, this approach can introduce inaccuracies in the coverage
feedback due to hashing collisions masking real progress in design exploration. In
we propose a CAM-based coverage engine aimed at enabling group coverage collection on
FPGA resorting to hashing or losing cycle-accuracy.

CHAPTER 4. HIGH-FIDELITY COVERAGE 44

4.4 High-Fidelity Coverage

This section introduces the proposed latency-aligned group coverage metric. We argue that
ignoring the relative latencies of control signals governing the datapath leads to misrepresen-
tation of design exploration and provides inaccurate feedback for coverage guided fuzzing. We
highlight the effect of latency alignment with an example design and showcase how unaligned
group-coverage can both under-represent and over-represent design exploration, whereas the
latency-aligned metric deterministically provides a reliable feedback for the same purpose.
Also, to facilitate the process of instrumenting the design, we introduce the instrumentation
algorithm for automatically inferring coverpoints and their relative latencies from the Sys-
temVerilog representation of the DUT for the purpose of composing high-fidelity covergroups
for instrumented fuzz testing.

4.4.1 Latency-Aligned Group-Coverage

The migration of fuzzing from the software domain to hardware, has carried over certain tech-
nical assumptions that do not hold true in this new environment. One of these assumptions
is the sequential nature of software, and specifically branches. Once a branch is resolved as
taken or not taken, one can imminently infer the result of its parent branches. Also, branches
are resolved in the order they are executed and the delay between their execution does not
influence the flow of the program. This delay is a factor of the non-branching instructions
executed in the between them, compiler configurations, and the CPU performance, and the
vast majority of well written programs are designed agnostic to these details. Non of these
assumptions hold true when dealing with hardware, and while MUXes, like branches, do
represent a decision tree in the design, their results are a factor of sequential interplay and
latency sensitive data. By proposing a latency-aligned group coverage metric, we aim to
resolve these unfounded assumptions and provide a coverage metric that faithfully repre-
sents the RTL environment. Therefore, to accurately represent the timing complexity and
the intertwined nature of control signals and sequential elements in hardware designs, we
present a latency-aligned group-coverage metric that builds on the previously used methods
and provides a coverage feedback that’s a more accurate representation of explored RTL.

Grouping cascaded coverpoints without recognizing their relative latencies results in produc-
ing an ambagious coverage metric that cannot provide reliable information about activated
RTL paths to the fuzzer. For example, consider a circuit, as shown in[Figure 4.2] with output
o and inputs 71, i2. Control signals c1, c2 govern the activation of the highlighted datapaths
through the 2 multiplexers and a register. To fully test this circuit, all 3 datapaths #1, #2
and #3 must be exercised to reveal potential bugs that can manifest due to wrongfully de-
signed logical units along those paths. For the latency-agnostic covergroup {c1, c2}, only 2
of the 4 possible combinations directly map to a specific activated datapath, while the other
2 combinations do not offer any reliable information on which datapath is activated in the
current cycle. For achieving a deterministic direct mapping from covergroup values to acti-

CHAPTER 4. HIGH-FIDELITY COVERAGE 45

- T e — -
—_—

- — >

_ o

—_ | -

A —_—>
— >

cl c2 o Path c1 c2r [¢) Path
0 0 ? ? . 0 0 o_r #1

align

0 1 ? ? e 0 1 i2_r #2
1 0 i1 #3 1 0 i #3
1 1 i1 #3 1 1 i1 #3

Figure 4.2: A simple data-path controlled by two MUXes and a pipeline register. The
latency-agnostic covergroup table(left) shows an unclear correlation from covergroup value
to activated RTL path. The latency-aligned covergroup table(right) however shows a direct
mapping from covergroup value to the activated RTL path.

vated paths, the relative latencies of the control conditions to the output must be considered.
As a result, coverpoint ¢2 must be delayed by one cycle. By defining the latency-aligned
covergroup to be {cl, c2_r}, every possible coverage combination value maps to a specific
activated datapath. The difference between the two metrics becomes more apparent when
the circuit is subjected to the control streams depicted in [Table 4.1l The latency-agnostic
metric is both prone to false-positives, showing a 100% coverage despite not having cov-
ered all the possible datapaths, and also false-negatives, not showing 100% coverage even if
all paths are activated. On the other hand, the latency-aligned values provide an accurate
representation of the corresponding activated paths, providing a reliable feedback on RTL
exploration for fuzzing experiments.

By incorporating the latency information into our coverage metric, we are essentially defining
how these individual control signals interact with each other in different stages of the RTL
pipeline. Instead of looking at a snapshot of all control signals in a single cycle, as with
the latency-agnostic metric, we are following along RTL datapaths and looking at control
signals in their effective cycle latencies that they contribute to the datapath output relative
to the current cycle. Also, it should be noted, that designers can choose any type of control
signals they decide to be of testing importance as coverpoints that can be realigned and
bundled into covergroups. Here, the MUX select signals were chosen as coverpoints because

CHAPTER 4. HIGH-FIDELITY COVERAGE 46

Table 4.1: When providing different MUX control signal streams to the latency-
agnostic metric can both over-represent and under-represent explored RTL paths while the
latency-aligned metric provides an accurate exploration feedback.

cycle 0 1 2 3 4 5
cl 0 0 1 1 0 0
c2 1 1 0 0 1 1
path - H#2 H#3 H#3 H#1 2

{cl, c2} 01 01 10 10 01 01 — 50%

{c1,¢c2 xr} - 01 11 10 00 01 - 100%
c1 1 1 0 1 1 0
2 1 1 1 0 1 0
path S OH3 H2 H#3 H3 H2
{cl,c2} 11 11 01 10 11 00 - 100%
{c1,c2 1} - 11 01 11 10 01 — 75%

they serve as generic RTL signals acting as decision points within the design, however, many
other control signals driving various functional units can be added to the metic with the
discretion of the hardware developers.

4.4.2 Automated Coverage Instrumentation

For inferring the latency information between coverpoints, we propose an automated in-
strumentation algorithm that leverages an open-source SystemVerilog compiler to generate
the casual tree of drivers for each net in the design. This tree can be methodically tra-
versed to generate the timing information necessary for the instrumentation. After that,
each coverpoint can be realigned for composing the latency-aligned covergroup. The in-
strumentation algorithm for enabling latency-aligned coverage metric takes a given design
description in SystemVerilog, extracts information about coverpoints and their relative la-
tency information, and adds non-functional and synthesizable statements non-intrusively to
instrument the DUT for coverage collection. The identification of candidate coverpoints is
done using a configurable C++ visitor routine that parses an intermediate representation
(IR) of the input design. The IR is generated by Surelog [4], an open-source SystemVer-
ilog pre-processor, parser, and elaborator. Given an RTL design in SystemVerilog, Surelog
produces an abstract syntax tree-like representation of the design, called Universal Hard-
ware Data Model (UHDM), compliant with the Verilog Object Model. UHDM object then
can be parsed through Python or C++ using Verilog Procedural Interface (VPI) APIs [45].
We use the design’s UHDM object reference as an input to the C++ visitor routine which
in turn traverses the data structure to extract coverage information. The instrumentation
algorithm then generates corresponding hierarchical references in dot notation [122] to bun-
dle the aligned candidate coverpoints after cycle-shifting them their relative latencies into
covergroups. The latency-aligned covergroups then can be fed into coverage engines for the

CHAPTER 4. HIGH-FIDELITY COVERAGE 47

purposes of efficient storage and streaming out of FPGA to be used in verification.

To enable greater flexibility and debuggability through isolation, the algorithm processes the
UHDM object in the granularity of functional units. The DUT is broken into various mod-
ules controlling different aspects of the its functionality, and each module is instrumented
and represented by one covergroup. Isolating the exportability of different functional units
into different covergroups can enable more mature fuzzers, like ML-based test generators,
to associate coverage on specific subsections of the designs to the generated instruction se-
quences, and use that learned association to drive up coverage in the corresponding unit.
For each instrumented module, the proposed visitor routine, develops a netlist-level asso-
ciation between individual nets and their corresponding drivers. Subsequently, using this
association, it derives all possible datapaths terminating at each of the output ports of the
top module starting, by generating the causal graph of said output port ending in input
ports as leaves and internal nets as intermediate nodes. Each distinct datapath driving the
output is modeled as a route from the root to the leaves and the MUX control signals on that
route represent the coverpoints activating that datapath. The visitor also tracks the logical
depth increments, equivalent to the number of registers passed throughout the route, for
each datapath to help align the coverpoints by their relative latency to the output port. The
latency-alignment is done through DFF chain instances before assembling the covergroup.

The visitor routine has two main stages: Parse stage and Traverse stage. The algorithm
begins in the Parse stage where a UHDM model of the top module generated by Surelog is
parsed to capture the relationships between its ports, nets, and sub-module IO connections.
This relationship is transparent to the boundaries of the language features such as generate
blocks, always blocks, macro declarations, etc, and populates a collection of data structures
containing causal information about RTL nets and their corresponding drivers. At this
stage, for each module instance, several data structures are populated with related netlist
information. This includes instance parameters, ports and their high-connections, internal
nets and their driver information, and sub-module instances and pointers to their data
structures. For the purposes of this stage, only the information about right-hand-side drivers
of a net is stored and logical operands are discarded, however, information about a net being
driven as a DFF output is stored for the purposes of latency calculation.

Following this, the Traverse stage identifies all the output ports of the top module and tra-
verses each port’s driver or source independently. The traverse routine, shown in Algorithm
[1} starts at each module output with a zero depth latency, and begins traversing upstream re-
cursively through their driver tree until it reaches the module boundaries at the input ports.
For each net, to avoid infinite recursion caused by RTL loops, the traversal routine checks
and returns if the current net has been already visited in the current recursion path. If the
current net contains a coverpoint, such as MUX selects, it records the coverpoint alongside
its current depth in relation to the output. Then the traversal routine is invoked on all of
the current net’s drivers, which can be internal signals in the current module, or ports in

CHAPTER 4. HIGH-FIDELITY COVERAGE 48

Algorithm 1 Coverage Instrumentation Algorithm

1: procedure INSTRUMENT(module)

2 PARSE(module) > populate module data-structures
3 covs < {}

4 for port in OuTPUTPORTS(module) do > start traversing output ports
5: TRAVERSE(port, 0, covs)

6 return covs

7: end procedure

8:

9: procedure TRAVERSE(net, depth, covs)

10: if 1sSTop(module) and 1SINPUT(net) then > return on an input endpoint
11: return

12:

13: if net in visited then > return on a visited net on current branch
14: return

15: visited.insert(net)

16:

17: if IsSMuxOuT(net) then > record cover-point relative latency
18: covs.insert ({muxSel, depth})

19:
20: for driver in drivers[net] do > traverse RHS net drivers
21: if ISREG(net) then > increase latency upon traversing registers
22: TRAVERSE(driver, depth + 1)
23: else
24: TRAVERSE(driver, depth)
25: visited.pop() > update branch visited nets

26: end procedure

a sub-module, or the super-module containing the current module instance. To keep track
of the current net’s latency relative to the output, the depth number is incremented when
passing through a DFF output during traversal. Once the traversal ends, the latency-aligned
covergroups can be generated by running the coverpoints through DFF chains matching the
length of their corresponding output latency.

While instrumenting the DUT a one-time task and not part of the fuzzing loop, the algorithm
parses SystemVerilog designs quickly. Also, the visitor routine is highly conducive to parallel
programming. When traversing a net’s driver sub-tree, each branch can be independently
traversed. This presents opportunities to parallelize parse and traverse instances dynami-
cally as threads or work-items. In large chip designs, a parallelized visitor routine can highly
benefit incremental design iterations. For the experiments we conducted the instrumenta-

CHAPTER 4. HIGH-FIDELITY COVERAGE 49

Table 4.2: Coverage instrumentation time for various BlackParrot sub-modules. Even with-
out parallelization, covergroup information including the constituent coverpoints and their
relative latencies can be inferred in reasonable time.

BlackParrot 7C706 Utilization Covergroup | Visitor

Submodule | LUT | BRAM | FF Width Time
Backend 23611 16 7067 909 1:55
Frontend 3239 12 2333 246 1:28
Core 26847 28 9400 1171 2:03

tion of the BlackParrot core complex on an Intel Core i9-7940X CPU running at 3.10GHz,
[Table 4.2 records the instrumentation time for BlackParrot’s core units for an estimation of
the algorithm speed with the logic size.

4.5 Accelerated Coverage Collection

4.5.1 CAM-based Group Coverage Engine (CCE)

With the development of smarter and more efficient test-generators [5, 132] most time-
consuming parts of the hardware fuzzing loop are DUT simulation and coverage collection.
FPGA prototyping is already a popular checkpoint in design verification exercises, and can
be adapted to fuzzing to considerably improve the iteration times. However, as coverage
metrics mature to increase fuzzing accuracy, the corresponding processing load increases
and can create a bottleneck in the fuzzing loop. While toggle-coverage can be implemented
with almost linear scalability, as we move to group-coverage, we face an exponential explo-
sion of possible covergroup values that need to be collected and processed [100]. Previous
implementations have opted to convert N-bit covergroups to 2V-bit toggle-maps, each bit
representing one possible combination of the N-bit number. These toggle-maps aggregate
the activated values of the covergroup during emulation and are post-processed after running
the test. Due to the exponential growth of these toggle-maps, various methods have been
employed to reduce the number of instrumented coverpoints within a group. These efforts
range from reducing the total number of coverpoints by filtering-out the ones that are not
explicitly marked as a control signal to hashing coverpoints together to create smaller cov-
ergroups|77]. While these methods enable an imperfect implementation of group-coverage
which is an upgrade on simple toggle-coverage, they still suffer from scalability issues, and
diminish the coverage quality by throwing out important coverage information by either
ignoring coverpoints or due to hashing collisions when encoding the covergroup.

To avoid sacrificing coverage accuracy due to hashing collisions, and to significantly improve
the scalability of covergroups, we propose specialized CAM-based Coverage Engines (CCE).
As shown in [Figure 4.3] CCEs sample values of latency-aligned covergroups, record only

CHAPTER 4. HIGH-FIDELITY COVERAGE 50

Coverage
Engine

| |
I I
| Il
= i
Q.
S | I 3
S | | 5 o
> B — H— 5—!—» L
8 I Iz | T
(@) [e) |
o < I ol O | Data |
Q : - _1_8:_, = rd full —— Gate
> | 0
= 151 | < AN .
< 1, <1, wdata out nique
> I | I . | Covergroup
™ T T Combinations
15] L, wen match |
g I I r _‘ :
I I |
: Realigner | I °<|I :
1

Figure 4.3: To assemble the latency-aligned covergroups, coverpoints are fed into a series
of DFF chains corresponding to their interfered instrumentation depth. Once aligned, the
covergroup is processed by a CAM-based group coverage engine where only unique combi-
nations are stored into the CAM. Once the CAM is fully drained, the DUT clock is ungated
and the emulation will resume. The use of CAMs alongside clock-gating enables the runtime
processing of covergroups and eliminates the need for 2V-bit toggle-maps.

unique values in their Content-Addressable Memory (CAM), and transfer them to the host
control program after necessary clock domain crossings. By frequently draining the recorded
covergroup values during emulation runtime, we eliminate the need to use 2V-bit sized toggle-
maps to hold the coverage information in RTL until program termination. To ensure cycle-
accuracy and avoid perturbing DUT emulation when coverage streaming causes backpressure,
the CCE employs a clock-gating mechanism to gate DUT execution while it streams the
covergroup data to the host, and when the CCE is ready to sample again, it deasserts the
gate to the DUT clock to resume emulation. By using clock-gating we ensure the DUT will
not experience any extra emulation cycles due to the coverage collection overhead. This way,
CCEs enable cycle-accurate runtime collection of covergroup values with minimal overhead
to the emulation system, opening up FPGA acceleration of fuzzing for more complex coverage
and larger designs. Using CAMs in place of toggle-maps allows for a much smaller storage
overhead since the CAMs are also continuously draining throughout execution. Moreover,
when an adequately deep CAM is used (suitably for the chosen width of the covergroup),
the likelihood of the CAM filling up can be reduced. This is because even though there
exists 2%V possible combinations for each covergroup, while the goal of fuzzing is to achieve
a high coverage over many iterations, it’s very rare that a single test generated by the

CHAPTER 4. HIGH-FIDELITY COVERAGE

51

PL i i
: :
| i
PS | |
AXI4 . E // I]
- pma | Srem AXI Stream) 5
Engine Adapter i E
! 4
PL-Shell E
[PL2PSFIFO_| — DUT
o Asynchronous FIFOs |-—
Host Program 8 [PL2PSCNT | L Y ;
- 8 PS2PL FIFO — L
ISA Model AXl4-Lite % PSoPLCNT 1 : Asynchronous FIFOs : |—>
3 l«—] csrO | ! |
. % ;_ I : : CSR Domain Crossing %
[Ccsr1 —]
i I H
Figure 4.4: The integration of CCEs into Condominium system enables accelerated and

non-intrusive collection of latency-aligned group coverage from an instrumented DUT. CCEs
collect unique coverage data and stream them to the PS DRAM using a high-throughput
AXI-STREAM DMA engine to create an agile verification loop. By plugging the CCEs into
Condominium’s clock-gating logic, coverage data can be collected and processed without
perturbing the DUT emulation.

fuzzer will achieve a number close to that 2V possibilities, but they will usually be hit over
many iterations of fuzzer generated programs. This enables users to have a dynamic storage
capacity for covergroups that can be tuned based on their performance, utilization, and
streaming bandwidth considerations.

4.5.2 Condominium Integration

To enable accelerated and non-intrusive collection of latency-aligned group coverage data,
the CCEs are integrated into Condominium’s emulation infrastructure. Each CCE takes
in the aligned covergroup representing on of DUT’s instrumented units and records unique
combinations during DUT execution cycles. When a CCE is full, it signals the Condominium
clock-gating logic to pause DUT execution. During the draining phase, an arbiter picks a
CCE to be drained and streams the coverage data alongside a header packer indicating
the CCE information to the PS. When all CCEs are drained, Condominium un-gates DUT
clock to resume emulation. shows the integration of instrumented DUT into
Condominium for accelerated coverage collection.

While the PL-shell provides general PS-PL handshake, and AXI4 ports provide direct DRAM
access, there needs to be a separate route for high throughput streaming of cycle-accurate

CHAPTER 4. HIGH-FIDELITY COVERAGE 52

RTL information to the PS to reduce the gated DUT cycles gating caused by the CCEs
and execution data backpressure. To this end, the covergroup data stream is routed to an
AXI-DMA controller |[177] through an AXI-STREAM interface |9]. The AXI-DMA engine is
controlled by the PS through a GP-AXI4-LITE interface and is connected to the a DRAM
allocated buffer by a HP-AXI4 client port. During emulation, the PS initializes the AXI-
DMA engine and allocates a CMA buffer for data collection, then the PS continuously issues
transfer commands to the DMA engine to write the information stream to the CMA buffer.
Once the buffer is full, PS gets notified by an interrupt or by polling the DMA engine’s status
registers, reads and processes the buffer information, and issues another transfer command.
By using the AXI-DMA controller we achieve an 18x speedup in emulation speed compared
to streaming the coverage information over a simple FIFO interface. Also, to assist with
runtime verification, we can transmit the runtime instruction commit information through
the AXI-DMA for cross-comparison with a golden ISA model hosted on the ARM core.

4.6 Evaluation

This section evaluates the practical application of employing high-fidelity coverage for accel-
erated hardware fuzzing. We inspect slowdown-utilization trade-offs for proposed coverage
engines and compare implementation feasibility with previously proposed logic. We in-
spect case studies on BlackParrot where the high-fidelity metric shows a unique capability
to uniquely identify activated buggy states of the hardware. Finally, we leverage conven-
tional test-generation and decision-making algorithms to implement a simple coverage-guided
fuzzing loop and inspect the effect of guiding the loop with high-fidelity coverage compared
to previously proposed coverage metrics.

4.6.1 FPGA Implementation

This section evaluates the FPGA-acceleration of the proposed coverage metric. We use
the BlackParrot RISC-V core [115] as the DUT, and instrument its major submodules for
targeted coverage feedback. depicts a stacked bar-graph of the relative latency dis-
tribution among the coverpoints within the module’s instrumented covergroup. As evident
from the figure, most covergroups have a significant portion of their constituent coverpoints
with a relative latency of 1 or more cycles. This observation is important, because in an un-
aligned covergroup, those coverpoints will result in false-positive and false-negative changes
in coverage that do not correlate with a change in newly activated RTL datapaths. The
instrumented BlackParrot core is implemented on a Zynq 7000 SoC ZC706 Evaluation Kit
[174]. The ZC706 uses a python-based PYNQ environment to provide the APIs for memory
allocation, writing the bitstream to the PL, and configuring PL peripherals such as the AXI-
DMA controller. The PL hosts the BlackParrot core alongside the CCEs, the gating logic,
the AXI-Stream DMA adapter, and the PL-shell. For the purposes of these experiments,
the AXI domain is clocked at 160MHz and the DUT domain is clocked at 40MHz.

CHAPTER 4. HIGH-FIDELITY COVERAGE 53

B % unaligned [depth>3 depth=2 [depth=1 [depth=0
225 100.00%
200
175 75.00%
150
125 l
50.00%
£ 100 0 g5
g o
g 75 %
§ 50 25.00% 50
I X
0.00%
FF & & X @ s
FFF IS FFITFTESF TS
S G T T
& e DPFS Py 5
= & S <

Figure 4.5: A breakdown of coverpoints at recorded relative latencies within each covergroup
corresponding to BlackParrot modules. The Y-axis depicts both the number of coverpoints,
categorized by their corresponding latency depth of 0, 1, 2, or 34, and also the percentage
of unaligned coverpoints within each covergroup before realignment.

showcases how as covergroups grow in width for more complex designs, the con-
temporary method of using toggle-maps [77] for group coverage processing quickly burns
through FPGA utilization while CCEs offer a much more practical overhead. Toggle-map
group coverage is implemented using simple dual-port 64-bit wide block RAM(BRAM) units.
This is because most Zyng-7000 series, like most FPGAs, do not natively support bit-wise
write operations in BRAMs, so single bit updates can be effected at a throughput of 1 update
per cycle by simultaneous reading and writing of a dual-port BRAM. Since toggle-maps grow
exponentially with covergroup width, so does their BRAM utilization, quickly outgrowing
the ZC706 utilization past 24-bits rendering them impractical to be used for group-coverage
collection in more complex designs. CAMs on the other hand utilize the FPGA LUT re-
sources and grow linearly with covergroup width, allowing them to easily be coupled with
the DUT for coverage collection.

CHAPTER 4. HIGH-FIDELITY COVERAGE 54

CAM-8 X CAM-16 X CAM-32 X CAM-64 X Toggle-map LUT
B Toggle-map BRAM

0.60% 40.00%

30.00%

~
S 0.40% g
< =]
g .2
= 20.00% &
= 5
=
S 0.20% é
— 10.00% oA

0.00% = = 0.00%
8 10 12 14 16 18 20 22 24
covergroup width (bits)

Figure 4.6: Representation of the tradeoff between the use of CCEs with varying CAM
depths vs. use of BRAM-based toggle-maps for various covergroup widths (on X-axis). The
left Y-axis represents LUT utilization on ZC706 for both CCEs and toggle-maps, while the
right Y-axis represents BRAM utilization for toggle-maps. Note that CCEs do not consume
BRAM resources on the FPGA.

showcases the tradeoff between FPGA emulation slowdown caused by CCE clock
gating and their area utilization share when changing CAM depths used for coverage col-
lection of the instrumented BlackParrot. It is evident that as CAM depths increase from
very small sizes, the likelihood of the program hitting more unique coverage values than
the depth supports reduces, resulting in a significant decreases in emulation slowdown for
bigger depths. On the other hand, the utilization overhead for CCEs and the entire emu-
lation system grows linearly with CAM depth. This results in a sweet spot where by using
24 entry CAMs we can conduct FPGA accelerated coverage collection at only 1.75x gating
slowdown with CCEs consuming a share of 10% and 22% of entire system’s LUTs and FFs
respectively. Designers can optimize this tradeoff by preliminary testing of their target DUT
with an initial CAM configuration, recording utilization and gating slowdowns resulting from
CCE gating, and tuning each CCE CAM based on their covergroup widths and how often

CHAPTER 4. HIGH-FIDELITY COVERAGE 95

@® FPGAslowdown M CCELUT Emulation System LUT € CCEFF
Y Emulation System FF

9 80.00%

8

7 60.00%
s g
S 5 et
= 40.00% &
=} [
- 4 g
< 2
g 3 E
= 20.00% =

2 =

+
1 —9
0o —1 I I I I I 0.00%
10 20 30 40 50 60
CAM depth

Figure 4.7: A representation of the FPGA slowdown-utilization tradeoff for varying CAM
depth sizes for BlackParrot coverage instrumentation on ZC706. The left Y-axis depicts
FPGA emulation slowdown due to DUT clock gating compared to the baseline of FPGA
emulation without coverage collection. The right Y-axis shows the share of CCE LUT and
FF utilization in the emulation system.

they contribute to emulation clock gating.

4.6.2 Case Study: BlackParrot Pipeline

In this case study we inspect the coverage instrumentation of BlackParrot’s pipeline and
showcase how latency-aligned group-coverage provides the necessary accuracy in identifying
newly activated, potentially buggy datapaths that otherwise could not be distinguished
through unaligned coverage metrics. BlackParrot’s back-end (BE), depicted in ,
is responsible for non-speculative execution of RISC-V instructions. It receives a speculative
PC-instruction pair from the front-end, decodes it, feeds it to various execution pipes, and
picks the correct result from the corresponding pipe and writes it back to the register-file.
Once decoded and dispatched for execution, the instruction is fed to all the execution pipes

CHAPTER 4. HIGH-FIDELITY COVERAGE 56

with various latencies and the result is picked from the correct pipe in the corresponding
pipeline stage based on its decoded information. The BlackParrot pipeline consists of 6 main

pipes:

o Integer pipe: For 1-cycle simple ALU operations.

o System pipe: For 1-cycle CSR operations and trap handling.

o Auxiliary floating-point pipe: For 2-cycle floating-point conversion operations.

« Memory pipe: For 2/3-cycle integer and floating-point memory operations, data-
cache handling, and cache-coherence communication.

« FMA pipe: For 4-cycle integer multiplication and 5-cycle floating-point arithmetic
operations.

o Long pipe For dynamic latency integer and floating-point division and square-root
operations.

This case study presents a realistic, artificially injected bug. The bug is due to a floating-
point load (FLD) instruction, a memory operation, getting marked as both a memory and a
floating-point instruction. This causes the outputs of both memory and FMA pipe to be valid
for FLD in different cycles, and since the FMA pipe has a higher latency, its invalid result will
override the correct result from the memory pipe. Looking at the coverage instrumentation
of the part of pipeline responsible for generating the floating-point write-back data, we see
that there are 5 successive MUXes at every pipe’s output in successive pipeline stages. When
the covergroup is assembled, the control signals of each MUX is latency-aligned relative to
its distance to the write-back data. For the case study, we investigate the effect of latency
alignment of this covergroup by running Core-Mark[55] on both the buggy and bug-free
version of the BlackParrot pipeline and observing both coverage metrics. [Figure 4.9| shows
the progression of this covergroup activation during the Core-Mark execution. We can see
that the latency-aligned metric shows an increment in coverage in the cycle the corrupt
FLD result is being written back in the buggy pipeline. However, this increment does not
happen during the execution of the bug-free pipeline. Since each possible combination in the
floating-point write-back covergroup corresponds to a specific data-flow path, a combination
that contains more than one set bit indicates that a pipe is overwriting the data from another
pipe, and this results in the unique jump in coverage when the FLD bug is triggered. On
the other hand, the latency-agnostic metric does not only behave completely different than
the latency-aligned metric throughout the execution, but also does not show any contrast
between the buggy and clean pipelines when FLD result is written-back. This case study
shows how, as opposed to other coverage metrics, an accurate encoding of pipeline writeback
paths can easily map erroneous pipe overwrites as unique covergroup values that can uniquely
be identified when triggered in the RTL.

CHAPTER 4. HIGH-FIDELITY COVERAGE 57

Completion Pipe — — — —

|
|
|
|
|

Int Pipe (1 cy)

Sys Pipe (1 cy) aux

Aux FP Pipe (2 cy) ;Ij7

mem

(0]

B | |

3 | | Int

] Mem Pipe (2/3 cy) ;Ij fma Regfile
| | j FP
FMA Pipe (4 cy) long Redfile

Long Pipe (variable cy) ;Iji

Figure 4.8: BlackParrot’s execution pipeline. Each pipe is responsible for computing a
RISC-V instruction type and the corresponding result is picked through a MUX chain for
writeback. If due to wrong decoding, an instruction is fed into multiple pipes, the correct
result can be overwritten by the misattributed and longer pipe.

4.6.3 Case Study: BlackParrot PC-Generator

In this case study we inspect the coverage instrumentation of the BlackParrot PC-generator
and observe how the latency-aligned group coverage can identify unique, potentially buggy
paths being triggered as a result of the alignment of asynchronous events. The BlackParrot
front-end (FFE) is responsible for speculatively fetching instructions from the memory and
providing the BE with a stream of speculative PC-instruction pairs. The BE then inspects
these pairs and can logically redirect the FE upon a PC misprediction or trap handling.
The PC-generator, depicted in [Figure 4.10] is implemented as a three stage pipeline. In
the first stage, the PC-generator computes a speculative PC based on previous cycles or
a BE redirection command, and starts fetching the instruction from the instruction cache.
The instruction cache has a two cycle latency, so in the third stage, the FE can pass the
PC-instruction pair to the BE. The default RISC-V instruction size is 32-bits, so instruction

CHAPTER 4. HIGH-FIDELITY COVERAGE 58

1
—o— fld_bug + latency_aligned ot bl Lathatl
17.5 4 fid_bug + unaligned
—&— no_bug + latency_aligned
—&- no_bug + unaligned
15.0
i |
s fros s s s s s s R -
2 t
) pESE .
E H]
g ! i
S 10.0 - | !
g | A N
= i
) " " " " N "
= L g L L g L L g L L
E 7.5 S
E (=]
o 1 L
..... —— 12
' ! 5
5.0 e
e
| =
18
|\
2.5 s
1 |E
| m
1 E
]
T T T T T L T T T
0 100000 200000 300000 400000 500000 600000 700000

emulation cycles

Figure 4.9: A representation of the cumulative coverage of the latency-agnostic and latency-
aligned metrics for the BlackParrot pipeline’s floating-point writeback result running Core-
Mark on both the buggy and fixed versions of the core. The latency-aligned metric shows
a distinct increase in the coverage when program reaches the buggy FLD instruction while
the latency-agnostic metric shows no divergence between the buggy and fixed FLD cycle.

cache also fetches 32-bit chunks from the memory. To optimize the memory footprint for pro-
gram storage, RISC-V also supports 16-bit compressed instructions. To enable compressed
instruction fetching in FE and also avoid bubbles, an instruction re-aligner is introduced to
convert the 32-bit chunks of instruction cache fetch data into two 16-bit compressed instruc-
tions. The re-aligner sits at the third stage of the pipeline, and based on a rudimentary
instruction decoding, decides if the fetched 32-bit chunk actually contains two compressed
instructions. If so, it outputs the first instruction at stage three and sets next the PC at the
second stage to point to the higher second half the 32-bit chunk, so it can output the second
instruction in the next cycle.

However, the addition of the re-aligner introduces a bug where a BE exception, or any other
type of PC redirection, can be ignored by the FE. The bug manifests exactly one cycle after
receiving a BE exception where the PC fetched at the third stage is identified as a compressed

CHAPTER 4. HIGH-FIDELITY COVERAGE 59

redirect
| i 1 ? co
redirect 1 : npc i pc_

PC fetch_pc : o .
W

realign
realign redirect_r path
compressed?

0 0 PC+4
0 1 redirect | I-Cache | : 32t
1 0 PC+2 A A ner
1 1 masked

redirect!

Figure 4.10: A simplified representation of BlackParrot’s front-end including a 3-stage PC-
generator paired with a 2-cycle I-cache. The PC-generator can be redirected by the back-
end due to causes like traps and branch mispredictions. In this case study, an instruction
realigner, upon fetching a compressed RISC-V instruction will set the next PC, resulting in
the masking of a previously received redirection. This asynchronous event can be distinctly
identified by the latency-aligned coverage.

instruction. At this stage, the re-aligner overrides the exception PC from the second stage,
thereby killing the instruction cache fetch, and replacing the corresponding instruction with
the top half of the previously fetched chunk. As can be seen in [Figure 4.10) the relative
alignment of these two asynchronous events, compressed fetch and BE exception, can be
uniquely identified by a specific combination of the latency-aligned covergroup representing
the PC-generation pipeline. Whereas, the timing-agnostic metric does not provide a clear
feedback on how these events can interact with each other.

4.6.4 Fuzzing Experiment

To evaluate the efficacy of the proposed latency-aligned group-coverage metric for guiding
a fuzzer towards better RTL exploration, we design an experiment to compare fuzzers that
are guided by different coverage metrics. For test generation we employ Cascade [132], a
black-box RISC-V test generator that produces valid RISC-V programs of arbitrary length
with randomized and interdependent control and data flows. By using ISA pre-simulation
to entangle the data and control flow of generated programs, Cascade can produce programs
without dead-code and a runtime self-verification mechanism, where a wrong computation
value can result in early program termination. Cascade is also highly configurable and can

CHAPTER 4. HIGH-FIDELITY COVERAGE 60

take in a probably array of RISC-V instruction types in order to generate different flavors
of programs. In this experiment we will use the probability array as a means to steer the
fuzzing experiment towards better coverage.

To use the coverage feedback to guide the Cascade test generator, inspired by MABFuzz [60],
we employ a multi-armed bandit (MAB) algorithm which is a reinforcement learning method
where a decision maker iteratively selects one of multiple choices, arms, to maximize the
cumulative reward received from pulling said arms. MAB algorithms aim to use previously
gathered knowledge on arm rewards to strike a balance between exploitation of previously
known fruitful arms, and exploration of other arms to get more information about their
expected payoffs. The coverage-guided fuzzing experiment is a non-stationary environment
with diminishing returns as iterative testing yields less newly covered states over time. So, as
to let the MAB algorithm to reflectively react to this changing environment, we use a sliding-
window EXP3 [17] configuration, shown in Algorithm , that gradually discards coverage
rewards gathered in older iterations and puts a higher emphasis in more recent information.
Each MAB arm is assigned to a specific RISC-V probability array configuration, and in each
iteration based in previous coverage rewards, the MAB algorithm decides on an arm to pull,
commanding Cascade to generate a test with the corresponding probability configuration.
The new coverage resulting from running the test on DUT is fed back into the MAB algorithm
as through a sigmoid reward function and updated the probabilities of pulling the arms. By
coupling Cascade and a MAB agent, we have designed a simple fuzzer that aims to maximize
the total cumulative coverage by choosing between different arms, different configurations of
RISC-V programs, based on the coverage rewards that these arms have yielded in previous
iterations.

We employ four instances of this fuzzer, each being driven by a different coverage metric:
latency-aligned group-coverage, unaligned group-coverage, toggle-coverage, and no coverage.
BlackParrot is used as DUT and its instruction scheduling unit is instrumented for coverage
collection. Then, we launch each fuzzer independently and compare the cumulative activated
RTL datapaths over 10k iterations. As shown in [Figure 4.11] the proposed latency-aligned
group-coverage outperforms the unaligned group-coverage by 5%. We can also see while the
unaligned group-coverage offers a slight improvement over unguided fuzzing in the initial
iterations, other metrics fail to offer any special guidance for the experiment. As observed
by studies of efficacy of coverage-guided fuzzers [29], previously introduced coverage metrics
do not offer improvements on the bug finding ability of said fuzzers. This is confirmed by our
experiment where fuzzers guided by latency-agnostic toggle and group coverage metrics do
not produce an excess of explored datapaths compared to black-box fuzzing. On the other
hand, the proposed latency-aligned group-coverage has improved the design exploration ca-
pability of an existing black-box fuzzer, Cascade, by steering it with a metric that establishes
a clear mapping to explored RTL datapaths. This experiment demonstrates that future ef-
forts on developing more mature and complex fuzzers can leverage high-fidelity coverage to
fully flourish the effectiveness of their exploration algorithms for the purposes of hardware

CHAPTER 4. HIGH-FIDELITY COVERAGE 61

Algorithm 2 Sliding-Window EXP3 Multi-Armed Bandit
Require:

Number of iterations T°

Number of arms K

Window length W

Exploration rate v € (0,1)

Sigmoid constant s > 0

1 Vie{l,....,K}: w; < ones(W) > initialize arm weight windows
2: fort=1to T do
3: for =1 to K do > update arm probabilities
4 (o) ek
: pi “Ner = T =
JK:1 Hl?ilwyyk K
5: end for
6: Ay ~ choice(py, ..., pK) > sample arm based on probabilities
7 1< pull(Ay) > pull arm and observe reward
1 —exp(—sr
8: T 4 L= cap(=sry) > normalize reward € [0, 1)
1+ exp(—sry)
9: T < S Di > EXP3 update

0 otherwise
10: for i=1to K do

11: w; — {w;2, ..., ww} > remove oldest weight
2

12: w; <— append (w; w . exp(%)) > append new weight

13: end for

14: end for

verification.

4.7 Related Work

A variety of research has been conducted in the area of hardware fuzzing, verification, and
hardware coverage metrics. The initial work on verification through hardware fuzzing was
motivated by the success of software fuzzers, such as AFL |180], and also the development
of random program generators, such as RISCV-DV, that have opened the door for random
test verification in hardware design process. To this end, a range of research has been
conducted on improving and innovating on different parts of the iterative fuzzing process.
These efforts include, but are not limited to, designing better random program generators,
developing better test mutation techniques, leveraging various learning-based methods for
guiding test generation, specializing fuzzing for finding specific types of data and timing

CHAPTER 4. HIGH-FIDELITY COVERAGE 62

—— aligned_group_cov

- unaligned_group_cov
350000 4 — toggle_cov
—— unguided

300000

250000 -

200000

150000 A

Unique datapath activations

100000 +

50000

T T T T T
0 2000 4000 6000 8000 10000
Fuzzing iteration

Figure 4.11: A comparison of four fuzzing experiment driven by different coverage metrics
based on BlackParrot’s scheduler unit. While the fuzzer guided by the proposed latency-
aligned group-coverage achieves a higher number of unique datapath activations over 10k
tests, the fuzzers guided by unaligned group-coverage and toggle-coverage struggle to over-
perform the unguided fuzzer.

vulnerabilities, and fusing formal verification methods with fuzzing. While many of these
works have proposed a variety of coverage-guided fuzzing methods, few have focused on the
effectiveness and performance tradeoffs of used coverage metrics for verification. While some
works have proposed using more generic microarchitectural coverage metrics for fuzzing, such
as MUX-based coverage, others have relied solely on RTL simulator provided metrics as a
rough estimation of design exploration. Others have focus on application-specific coverage
for purposes of ensuring ISA compatibility, ex. RISC-V CSRs, or custom designed coverage
for tracking certain timing and dataflow behaviors, ex. interface and timing side-channel
custom coverage.

In this work, we have focused on a microarchitectural coverage metric that aims to provide
a generic representation of RTL datapath exploration. As previous surveys on hardware
bugs [29] have concluded, most designer errors, in their final form, manifest as a faulty

CHAPTER 4. HIGH-FIDELITY COVERAGE 63

Table 4.3: This work aims to enable high-fidelity group coverage metric that is both Reliable
and Feasible. Previously proposed metrics lack the incorporation of RTL latency information
in group-coverage definitions. Moreover, this work aims to solve the scalability issue of FPGA
acceleration for group-coverage instrumentation, enabling high-accuracy, high-performance
verification.

. Group- Latency- FPGA- Application-
Work Coverage Metric Coverage Aligned Capable HDL Agnostic

RFUZZ [99] MUX Control Toggle X X v FIRRTL v
DifuzzRTL |77] MUX Control Register v X v o Verilog/FIRRTL v
TheHuzz |90] VCS Coverage v X X Verilog/FIRRTL v
Laeufer et al. [100] Branch/Line/Toggle/FSM v X vl FIRRTL v
ProcessorFuzz |35| RISC-V CSR transition v X X Verilog X
WhisperFuzz 30| Micro-Event Graph v X X Verilog/FIRRTL X
This Work [30| Latency-aligned Group v v v Verilog v

0 Covergroup hashing is used to make FPGA prototyping possible to mitigate the scalability issue of expo-
nentially growing toggle-maps, also embedding inaccuracies in the metric due to hashing collisions.

L Group coverage is mentioned to be a limitation of this work due to inefficiency of instantiating exponential
number of counters for each possible value.

logical section in a certain datapath. So we believe that by proposing a generic coverage
metric that encourages maximizing datapath activations, we can provide a better guidance
feedback for future fuzzing efforts. Furthermore, we believe when it comes to iterative
verification, speed can be one of the main factors contributing to verification efficacy. The
more testing iterations a fuzzer can conduct in a certain time-frame, the more likely it is
to trigger a bug. Since prior work on fuzzing has been mostly focused on developing better
fuzzing algorithms, there has not been much thought poured into optimizing their iteration
speed, and FPGA acceleration has remained mostly an afterthought. While, outside the
scope of fuzzing research has been conducted accelerating coverage collection using FPGAs
[100], they have focused on conventional simulator metrics and avoided group-coverage that
scales exponentially. To ensure our proposed high-fidelity coverage can be used in an high-
performance fuzzing environment, we focused on enabling FPGA acceleration by designing
the specialized CAM-based engines and their leverage of DUT clock gating.

4.7.1 FPGA Acceleration of Coverage

Laeufer et al. [100] proposes automated synthesizable coverage metrics that include line,
toggle, and finite state machine (FSM) coverage for Chisel-based [22] designs. They leverage
FIRRTL [80] compiler passes to insert cover primitives for capturing branch, line, tog-
gle, FSM, and ready/valid coverage. They synthesize their coverage metric through the
FireSim |92] infrastructure and post-process the information captured from cover primitives
alongside the static analysis of the RTL to generate said coverage metrics. Since they convert
all forms of group-coverage, like FSM transitions, to exponential number of counters cover-
ing all possible combinations, they report limitations in implementing cover-value primitives,
equivalent to group-coverage, due to state explosion for wider covergroups.

CHAPTER 4. HIGH-FIDELITY COVERAGE 64

4.7.2 Coverage Metrics enabling Verification

Many projects have introduced coverage metrics to represent RTL exploration and guide the
fuzzing effort. RFUZZ [99] introduced MUX toggle-coverage that formulates coverpoints as
the sum total of MUX select signals and activations to be individual toggles. This approach,
while easy to implement, treats hardware coverage like software branch coverage and ignores
the complex concurrent relationships between various control signals in RTL. DifuzzRTL [77]
proposes a type of the MUX group-coverage metric by instead instrumenting the upstream
registers driving said MUXes. The key insight here is to reduce the number of coverpoints
over those identified by RFUZZ. DifuzzRTL also proposed using techniques like hashing
coverpoints together to downsize multiple covergroups to overcome the exponential scalablity
issue. While DifuzzRTL improves on RFUZZ by highlighting the interplay of coverpoints
by bundling them in covergroups, it introduces blind spots due to hashing collisions. Also,
using exponentially sized toggle-maps for group-coverage implementation is not scalable
during FPGA acceleration. Furthermore, because DifuzzRTL bundles coverpoints in different
pipeline stages into a single covergroup without latency-alignment, the covergroups do not
accurately represent the true testing progress.

DirectFuzz [34] proposed targeted gray-box testing with focus on specific design units to in-
crease overall fuzzing performance. ProcessorFuzz |35 focuses on ensuring ISA compliancy
of RISC-V processors by assessing the coverage over key RISC-V CSR value transitions and
exploring different execution modes and associated state changes in RISC-V implementa-
tions. TheHuzz [90] aims to over-perform previous fuzzers by extracting a variety of VCS
coverage metrics including statement, toggle, branch, expression, condition, and FSM cov-
erage for guiding test-generation. Aside from relying on a commercial RTL simulator for
coverage instrumentation, the sheer amount of the processed coverage data makes TheHuzz
non-eligible for FPGA acceleration.

4.7.3 Coverage-guided Fuzzing

Other projects have focused on proposing decision-making algorithms for effectively utilizing
the coverage feedback for test-generation to achieve faster and more efficient state space
exploration. MABFuzz [60] introduces an algorithm based on Multi-Armed Bandit decision
making, and PSOFuzz |37] proposes a Particle Swarm Optimization solution for dynamic
test generation and mutation aimed at improving the effectiveness of state exploration. Both
build upon TheHuzz by employing an algorithms that takes in the achieved coverage by in-
dependent fuzzing threads, and based on a reward function, accumulate information about
expected rewards to make decisions on future test generation for maximizing the overall cov-
erage. WhisperFuzz [30] is specialized for identifying timing security vulnerabilities through
2-stage fuzzing. In the first stage, HyPFuzz is utilized for generating a set of program seeds
for diversifying the program bank. In the second stage, a data fields of instructions are
mutated to reveal possible timing differences. Then another fuzzer, driven by a custom

CHAPTER 4. HIGH-FIDELITY COVERAGE 65

coverage metric designed to identity different timing patterns of RTL, analyzes the mutated
seeds to find timing vulnerabilities. Rostami et al. [123] use a combination of LLM-based
ISA learning, and RL-based learning of valid and interesting instruction generation based
on a coverage-driven reward function. It uses the same VCS coverage metrics as TheHuzz
but improves on it because in the terms of speed. MorFuzz [179] proposes runtime dynamic
mutation of instructions in the processor pipeline aimed at generating more diverse instruc-
tions in simulation time. While it has the potential of generating more divers mutations, it’s
inherently slow and intrusive since it injects the fuzzer in the fetch to dispatch path of the
RTL.

4.7.4 Fuzzing Hardware like Software

Trippel et al. [157] propose exploiting the well-explored practices in software fuzzing by
targeting the generated software functional model of a given hardware design, through AFL,
a software fuzzing infrastructure. While this approach relies on well-established software
fuzzers and therefore has good potential for finding corner cases, the process is equivalent
to performing fuzzing aimed at maximizing HDL line coverage which is not suitable for
acceleration.

4.7.5 Black-box Fuzzing

As mentioned before, the ineffectiveness and overhead of coverage-guided fuzzing has led
many researchers to solely focus on developing high-quality random test generation tech-
niques, also known as black-box fuzzing. Cascade [132] focuses on generating high-quality
and dead-code free test programs by carefully controlling the control flow in the generated
programs. One existing challenge with proposed techniques for test generation and mutation
is that the while fuzzer may expect to explore a new design space based on a new addition or
mutation to an existing test, if said change happens in parts of the test program which are
never executed, then the fuzzer will not see a corresponding coverage reward for said change
and will miss on learning valuable information for future exploration. Cascade addresses
this issue by creating by fusing program’s data and control flow. By running a preliminary
ISA simulation on a initial skeleton of the test program, it can fill-in immediate address and
values to ensure a deterministic execution flow of the program and create self-verification
mechanisms where a wrongly computed value can result in an early termination.

4.7.6 Targeted Coverage Verification

BugsBunny [119], using the same coverage metric as DifuzzRTL, proposes a directed fuzzing
approach where a dependency tree is generated for a target signal and guides the fuzzer
based on the coverage metric and distance to the target. BugsBunny uses module-trimming
to directly manipulate the target by controlling the unit’s input ports. While this approach is
effective for targeting certain coverpoints, it’s inherently intrusive as it directly asserts RTL

CHAPTER 4. HIGH-FIDELITY COVERAGE 66

wires instead of driving them using input programs. HyPFuzz [36] uses a combination of
coverage-guided fuzzing, TheHuzz in this case, and formal verification tools, JasperGold [70],
to balance the explorability power of formal alongside the state exploitation power of fuzzers.
A scheduler is designed for picking coverpoints to target and constantly switching between
fuzzing and formal based on progression rate. Design2Vec [159] proposes an convolution
based neural architecture that embeds the RTL and provides a model for providing the
coverage achieved for a set of input instructions. Such models have great potential to be used
for fuzzing as, with a high-fidelity coverage metric, they can be used to predict instructions
to efficiently explore the state corresponding to the possible values of the coverage metric.
By learning the semantic abstractions of the RTL, the next generation of fuzzers can mostly
abandon random testing and instead develop a loop that iteratively goes through target
covergroup values, corresponding to RTL datapath activations, and based on acquired RTL
knowledge generate inputs to trigger and verify them.

4.7.7 Bug Injection and Fuzzer Evaluation

Encarsia [29] is an automated RTL-level bug-injection tool aimed at evaluating the efficacy
of recent plethora of developed hardware fuzzers by offering a standardized way of creating
buggy hardware benchmarks through methodological bug injection. To design the tool,
the researchers conducted a survey of several previously reported bugs on various RISC-
V processors and concluded that, in terms of manifestation in RTL, almost all of those
bugs reduce to two categories: signal mixz-ups and broken conditionals. Bugs in both these
categories can be effectively triggered by activation of their corresponding RTL datapath and
capturing the wrongly computed output in verification, which is why we argue a coverage
metric that incentivizes fuzzers to maximize new datapath activations can help with revealing
these categories of hidden hardware bugs. Furthermore, they conducted evaluations of both
the performance bottleneck of coverage collection and the ineffectiveness of conventional
coverage metrics in guided contemporary fuzzers.

4.8 Discussion and Future Work

4.8.1 Evaluation of Latency-Aligned Coverage

The latency-aligned group coverage metric is a high-fidelity coverage metric which has only
recently seen feasibility with the advent in synthesizable coverpoints which enables orders
of magnitude speedups. The true value of a high-accuracy, and resource-efficient coverage
metric for verification can be unleashed when coupled with intelligent fuzzers with program
generators that can quickly adapt to the changing coverage utilization to target the fraction
of the state space that are yet to be exercised. Such a fuzzer must be sensitive to what
instruction sequences influence what coverpoints and be able to align itself to maximize
coverage over subsequent iterations. With the advent of more sophisticated machine-learning

CHAPTER 4. HIGH-FIDELITY COVERAGE 67

based fuzzers and models predicting instruction sequences targeting certain coverpoints [159],
this intuition can be learned and used to generate precise instruction streams targeted at
quickly maximizing accumulated coverage. To this end, more research is needed to couple
more advanced fuzzing algorithms with high-fidelity coverage metrics.

4.8.2 One-to-One Coverage Mapping

While latency-alignment in group-coverage metrics guaranties a deterministic mapping from
coverage value to activated RTL datapaths, depending on the type of chosen coverpoints,
multiple values may point represent the same activated path. This is specially apparent
when a majority of coverpoints consist of MUX select signals, given the fact that MUXes
effectively render coverpoints upstream of the discarded input irrelevant to the output. This
results in a coverage combination state space that is bigger than all the possible activated
paths, with multiple combinations pointing to the same path. In this work we have focused
on the general effect of latency-alignment in providing deterministic and reliable guidance
for fuzzing assuming generic coverpoints that represent any interesting control net within
the design. More research is needed to inspect the effect of creating a one-to-one mapping
for covergroups consisting exclusionary coverpoints, such as MUX selects, on the fuzzing
performance. While establishing a one-to-one mapping can eliminate some false-positives in
the experiment, it also incentivizes multiple activation of a same datapath, providing more
chances for manifesting the proper inputs for triggering a bug on the same path.

4.8.3 Progressive Coverage

While many coverage metrics concern themselves on whether certain selected coverpoints
have toggled, they do not provide any information on how close the fuzzer has come to
activate them. This binary situation makes the job of fuzzers trying to explore new states
more difficult as they cannot learn on what actions have the potential of increasing the likeli-
hood of toggling a certain coverpoint. By incorporating information on the progress towards
toggling coverpoints through incorporating precursor intermediate nets affecting said cover-
points we can provide a smooth sense of progress to the fuzzer, potentially increasing fuzzing
performance. We aim to further investigate the efficacy of implementing such progressive
coverage for better coverage-guided fuzzing. Also, this approach can potentially bias the
fuzzer to not only care about whether a coverpoint toggles, but if it toggles correctly by
exhausting combinations of operand signals that the coverpoint is derived from.

4.8.4 BRAM-based Alternative to CCEs

The use of CAMs is motivated from the need to reduce duplicate covergroup values which
can significantly lower the bandwidth consumption on Condominium. CAMs can be inef-
ficient when synthesized on FPGAs, so the alternative to CAMs is to employ block-RAMs
(BRAMSs). Wider covergroups have little advantage in reducing duplicates when CAMs are

CHAPTER 4. HIGH-FIDELITY COVERAGE 68

used, since the probability of duplicate data reduces significantly with a bigger state space.
BRAMSs are then the natural alternatives. Of course, with BRAMSs, their storage window,
before data needs to be drained, is equal to the BRAM depth which could lead to consider-
able and emulation slowdowns. This slowdown can be potentially offset by instantiating a
larger coverage buffer that can be simultaneously written by DUT and drained through the
DMA route, resulting in some mitigation of potential slowdowns.

4.8.5 Extending to other Cores and HDLs

Although initially this work was motivated by verification of the BlackParrot core, the pro-
posed methods are DUT and HDL agnostic. To demonstrate the flexibility of high-fidelity
coverage and provide more insights for improving fuzzing efficacy, more experimentation is
needed to extend this work for other RISC-V cores, such as CVA6 [181] and Rocket [14],
and languages like Chisel [22].

69

Chapter 5

Conclusion

With the continued growth of open-source hardware development ecosystem, introduction of
new design tools and libraries, and development of a diverse plethora of cores and application-
specific accelerators, the need for delivering a clean design on a reduced time-to-tapeout
cycle can be determinative in adoption of new designs. This dissertation explores challenges
facing hardware engineers as design verification needs evolve throughout different stages of
the development process. We present solutions that streamline these challenges by offering
frameworks and techniques for agile functional verification and performance optimization.

In[chapter 2] we inspect sources of bottlenecks in hardware development. We argue as designs
mature and move to continuous regression testing using long and complex real-life bench-
marks, the slow nature of software RTL simulators acts a pinch-point causing long iteration
times and wasted engineering hours waiting for simulation results. The move to FPGA pro-
totyping for accelerated emulation has the potential of reducing iteration times but suffers
from very limited visibility into the design, and with a lack of emulation reproducibility,
debugging FPGA issues can quickly become a whack-a-mole leading to repeated bitstream
generations. We observe how, first time silicon success rates remain low, functional verifi-
cation consumes a significant portion of engineering time. While formal verification suffers
from scalability issues, longer benchmarks can be slow to debug and engineers have to rely
on manually browsing waveforms to find silent bugs, highlighting the need to automated bug
localization methods. Similarly, as conventional benchmarks provide standardized programs
for stress testing different functional aspects of hardware, aggregated high-level metrics, like
IPC or built-in ISA event counters, fail to provide any indication on the RTL and instruction
sources contributing to benchmark performance bottlenecks. Modern performance profilers
have been proposed by offering fine-grained attribution of execution cycles to stall sources
and program instructions. However, these profilers process a high-volume of data that has
to be processes by the emulation environment without perturbing the benchmark execution
flow. Both of the proposed solutions for functional verification and performance optimization
suffer from the same limitations of the performance-transparency tradeoff when migrating

CHAPTER 5. CONCLUSION 70

between software RTL simulation and FPGA emulation. We also introduce BlackParrot,
an open-source Linux-capable RISC-V multicore. Much of the work in this dissertation was
inspired by the need to develop agile design analysis during various stages of designing and
maintaining BlackParrot in a large team with parallel threads of feature design.

In we present Condominium, a cycle-accurate FPGA emulation infrastructure
that aims to provide both the acceleration and design visibility needed for leveraging the
aforementioned functional verification and performance analysis methods. Built upon Zynq
FPGA boards, Condominium decomposes design subsystems to be emulated on the PL fab-
ric, while hosting the rest of the abstracted system and emulation control software on the
PS ARM core. The two interface using a flexible PL-shell wrapper connected to the physical
Zynq AXI ports and offering bi-directional memory-mapped CSRs and SB-FIFOs for com-
munication. To enable the cycle-accuracy needed for reproducibility, the AXI, PL, and DUT
clock domains are decoupled and a clock-gating state-machine is implemented for pausing
DUT emulation upon PS backpressure. Also, the same clock-gating logic is used to provide
access time guaranties between DUT and abstracted peripheral models hosted on the PS.
Similarly, clock gating can be used to standardize system-call access time by enforcing the
same timing models on the downstream peripherals they access. Using Condominium, we can
easily perform cycle-accurate ISA cosimulation using PL-shell FIFOs to transmit execution
metadata to a PS-hosted golden reference model for cross-comparison. This enables acceler-
ate, reproducible bug localization for long benchmarks which results in significant reduction
of manual debugging efforts, making Condominium a suitable candidate for integration into
design’s CI pipeline. Furthermore, Condominium was shown to enable unprecedented in-
sight into microarchitectural performance by hosting fine-grained performance profilers. As
opposed to relying on high-level metrics which do can only confirm pre-existing knowledge
of RTL bottlenecks, Condominium enables per-cycle instruction and stall source attribution
that gives users an accurate breakdown of when, in program, and where, in RTL, the design
is wasting cycles waiting for data or a dependency to be resolved. We demonstrate this
technique with a case study on adding a catch-up ALU to the BlackParrot pipeline upon
discovering a high percentage of load-use dependencies.

In [chapter 4] we present a high-fidelity hardware coverage metric for accelerated hardware
fuzzing. As designs evolve into their final stages of development, random fuzz testing is
employed to reveal corner-case bugs and vulnerabilities that can often be missed by conven-
tional hand-crafted benchmark. Coverage-guided fuzzers rely on a hardware coverage metric
as the sole microarchitectural feedback on newly activated logic and guide it towards better
design exploration. We explain limitation of previously employed coverage metrics and how
they often provide an ambiguous feedback on design exploration and are hard to prototype
for accelerated fuzzing. We propose high-fidelity coverage, a latency-aligned group-coverage
metric that present a deterministic mapping from coverage values to activated RTL datap-
aths. We provide an automated instrumentation algorithm that parses SystemVerilog designs
and extracts coverpoints and their corresponding relative latencies used for assembling the

CHAPTER 5. CONCLUSION 71

high-fidelity coverage. We design specialized CAM-based coverage engines, that by integrat-
ing into Condominium, collect unique covergroup combinations from the DUT and stream
them to the host for to be used as feedback for guiding the fuzzer. The CCEs enable cycle-
accurate DUT coverage collection by resolving the exponential scalability issues of naively
implementing covergroups and avoiding usage of remedies that introduce inaccuracies into
the system such as covergroup hashing and pruning. We evaluate high-fidelity coverage by
inspecting the FPGA slowdown and resource utilization tradeoff of instrumenting BlackPar-
rot. We present case studies where the high-fidelity coverage metric uniquely identifies a
buggy state of the hardware. Finally, we compare the high-fidelity coverage with previously
proposed metrics by integrating them into different instances of a simple coverage-guided
fuzzing loop and observe how the proposed metric guides the fuzzer towards better design
exploration.

In conclusion, this dissertation identifies, tackles, and improves upon common challenges
faced by hardware engineers when employing various techniques for hardware prototyping,
functional verification, and performance optimization. By streamlining design evaluation, the
research presented in this dissertation opens promising avenues for development of future re-
search. Possible directions include open-source core and accelerator designs, improved FPGA
emulation frameworks, better design verification and performance profiling techniques, and
development of advanced LLM-based fuzzers for targeted design exploration.

72

Bibliography

A. Agarwal et al. “The RAW compiler project”. In: Proceedings of the Second SUIF
Compiler Workshop. 1997, pp. 21-23.

Tutu Ajayi et al. “Celerity: An Open Source RISC-V Tiered Accelerator Fabric”. In:
HOTCHIPS. Aug. 2017.

Alibaba. 2023. URL: https://www.alibabacloud.com/product/computing.
Chips Alliance. hitps://github.com/chipsalliance/Surelog. 2023.
Chips Alliance. RISCV-DV. https://github.com/chipsalliance/riscv-dv.

Alric Althoff et al. “Hiding Intermittant Information Leakage with Architectural Sup-

port for Blinking”. In: International Symposium on Computer Architecture (ISCA).
2018.

Amazon. 2023. URL: https://aws.amazon.com/ec2/spot/pricing/.

Amazon. Amazon Web Services. 2022. Amazon EC2 F1 Instances. 2023. URL: https:
//aws.amazon.com/ec2/instance-types/f1/.

AMBA. AXI Protocol Specification. https://developer.arm.com/documentation/
ihi0022/latest/.

ARM. 2023. URL: https://developer .arm. com/documentation/102202/0300/
AXI-protocol-overview.

ARM. https://github.com/littlefs-project/littlefs. 2023.

Manish Arora et al. “Reducing the Energy Cost of Irregular Code Bases in Soft
Processor Systems”. In: IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM). 2011.

Khalil Arshak, Essa Jafer, and Christian Ibala. “Testing FPGA based digital system
using XILINX ChipScope logic analyzer”. In: 2006 29th International Spring Seminar
on Electronics Technology. IEEE. 2006, pp. 355-360.

Krste Asanovic et al. “The rocket chip generator”. In: EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2016-17 4 (2016), pp. 6-2.

https://www.alibabacloud.com/product/computing
https://github.com/chipsalliance/riscv-dv
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://developer.arm.com/documentation/ihi0022/latest/
https://developer.arm.com/documentation/ihi0022/latest/
https://developer.arm.com/documentation/102202/0300/AXI-protocol-overview
https://developer.arm.com/documentation/102202/0300/AXI-protocol-overview

BIBLIOGRAPHY 73

[15] Saahil Athrij. “Vectorizing the Hamerblade Compiler”. MA thesis. University of Wash-
ington, 2024.

[16] Sameh Attia and Vaughn Betz. “StateLink: FPGA system debugging via flexible simu-
lation /hardware integration”. In: 2021 International Conference on Field-Programmable
Technology (ICFPT). IEEE. 2021, pp. 1-10.

[17] Peter Auer et al. “The Nonstochastic Multiarmed Bandit Problem”. In: SIAM Journal
on Computing 32.1 (2002), pp. 48—-77. DOI: 10.1137/S0097539701398375.

[18] AVnet. 2023. URL: https://www.avnet . com/wps/portal/us/products/avnet-
boards/avnet-board-families/ultra96-v2/.

[19] Z. Azad et al. “RACE: RISC-V SoC for En/decryption ACceleration on the Edge for
Homomorphic Computation.” In: ISLPED. 2022.

[20] Zahra Azad et al. “RISE: RISC-V SoC for En/Decryption Acceleration on the Edge for
Homomorphic Encryption”. In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems. 2023.

[21] Jonathan Babb et al. “The Raw Benchmark Suite: Computation Structures for Gen-
eral Purpose Computing”. In: IEEE Symposium on Field- Programmable Custom Com-
puting Machines (FCCM). Apr. 1997.

[22] Jonathan Bachrach et al. “Chisel: Constructing Hardware in a Scala Embedded Lan-
guage”. In: Proceedings of the 49th Annual Design Automation Conference. DAC "12.
San Francisco, California: Association for Computing Machinery, 2012, pp. 1216-1225.
ISBN: 9781450311991. DO1: 10.1145/2228360.2228584. URL: https://doi.org/10.
1145/2228360.2228584.

[23] Scott Beamer and David Donofrio. “Efficiently Exploiting Low Activity Factors to Ac-
celerate RTL Simulation”. In: 2020 57th ACM/IEEFE Design Automation Conference
(DAC). 2020, pp. 1-6. DOI: 10.1109/DAC18072.2020.9218632.

[24] B. Beresini, S. Ricketts, and M.B. Taylor. “Unifying manycore and FPGA process-
ing with the RUSH architecture”. In: Adaptive Hardware and Systems (AHS), 2011
NASA/ESA Conference on. 2011, pp. 22-28.

[25] Bespoke Silicon Group. PanicRoom: Newlib Port with DRAM-Based File System.
https://github.com/bespoke-silicon-group/bsg newlib_dramfs. 2021.

[26] Vikram Bhatt et al. ¢ Sichrome: Mobile web browsing in Hardware to save Energy 7.
In: Dark Silicon Workshop, ISCA. 2012.

[27] Christian Bienia et al. “The PARSEC benchmark suite: Characterization and archi-
tectural implications”. In: Proceedings of the 17th international conference on Parallel
architectures and compilation techniques. 2008, pp. 72-81.

[28] Mark Bohr. “A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper”. In:
IEEE Solid-State Circuits Society Newsletter 12.1 (2007), pp. 11-13. DO1: 110.1109/N-
SSC.2007.4785534.

https://doi.org/10.1137/S0097539701398375
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/ultra96-v2/
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/ultra96-v2/
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1109/DAC18072.2020.9218632
https://github.com/bespoke-silicon-group/bsg_newlib_dramfs
https://doi.org/10.1109/N-SSC.2007.4785534
https://doi.org/10.1109/N-SSC.2007.4785534

BIBLIOGRAPHY 74

[29]
[30]
[31]

[32]

[33]
[34]
[35]

[36]

[42]

Matej Boleskei et al. “Encarsia: Evaluating CPU Fuzzers via Automatic Bug Injec-
tion”. In: 34th USENIX Security. 2025.

Pallavi Borkar et al. “Whisperfuzz: White-box fuzzing for detecting and locating
timing vulnerabilities in processors”. In: arXiv preprint arXiv:2402.03704 (2024).

Ajay Brahmakshatriya et al. “Taming the Zoo: A Unified Graph Compiler Framework
for Novel Architectures”. In: ISCA. 2021.

James Bucek, Klaus-Dieter Lange, and Joéakim v. Kistowski. “SPEC CPU2017: Next-
generation compute benchmark”. In: Companion of the 2018 ACM/SPEC Interna-
tional Conference on Performance Engineering. 2018, pp. 41-42.

Cadence. 2023. URL: https://www.cadence.com/en?%5C_US/home/tools/system—
design-and-verification/emulation-and-prototyping/palladium.html.

Sadullah Canakci et al. “DirectFuzz: Automated Test Generation for RTL Designs
using Directed Graybox Fuzzing”. In: DAC. 2021.

Sadullah Canakci et al. “ProcessorFuzz: Processor Fuzzing with Control and Status
Registers Guidance”. In: HOST. 2023.

Chen Chen et al. “HyPFuzz: Formal-Assisted Processor Fuzzing”. In: 32nd USENIX
Security Symposium (USENIX Security 23). Anaheim, CA: USENIX Association,
Aug. 2023, pp. 1361-1378. 1SBN: 978-1-939133-37-3. URL: https://www . usenix .
org/conference/usenixsecurity23/presentation/chen-chen.

Chen Chen et al. “PSOFuzz: Fuzzing processors with particle swarm optimization”.
In: 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD).
IEEE. 2023, pp. 1-9.

Lin Cheng et al. “A Tensor Processing Framework for CPU-Manycore Heterogeneous
Systems”. In: IEEFE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (2022), pp. 1620-1635.

Lin Cheng et al. “Beyond Static Parallel Loops: Supporting Dynamic Task Paral-
lelism on Manycore Architectures with Software-Managed Scratchpad Memories”. In:
ASPLOS. 2023.

Derek Chiou et al. “Fpga-accelerated simulation technologies (fast): Fast, full-system,
cycle-accurate simulators”. In: 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO 2007). IEEE. 2007, pp. 249-261.

Grigory Chirkov and David Wentzlaff. “SMAPPIC: Scalable Multi-FPGA Architec-
ture Prototype Platform in the Cloud”. In: Proceedings of the 28th ACM International

Conference on Architectural Support for Programming Languages and Operating Sys-
tems, Volume 2. 2023, pp. 733-746.

Yuan-Mao Chueh. “A Complete Open Source Network Stack For BlackParrot”. MA
thesis. University of Washington, 2022.

https://www.cadence.com/en%5C_US/home/tools/system-design-and-verification/emulation-and-prototyping/palladium.html
https://www.cadence.com/en%5C_US/home/tools/system-design-and-verification/emulation-and-prototyping/palladium.html
https://www.usenix.org/conference/usenixsecurity23/presentation/chen-chen
https://www.usenix.org/conference/usenixsecurity23/presentation/chen-chen

BIBLIOGRAPHY 1)

[43]

Eric S Chung et al. “ProtoFlex: Towards scalable, full-system multiprocessor sim-
ulations using FPGAs”. In: ACM Transactions on Reconfigurable Technology and
Systems (TRETS) 2.2 (2009), pp. 1-32.

Scott Davidson et al. “The Celerity Open-Source 511-core RISC-V Tiered Accelerator
Fabric”. In: Micro, IEEE (Mar. 2018).

C. Dawson, S.K. Pattanam, and D. Roberts. “The Verilog Procedural Interface for
the Verilog Hardware Description Language”. In: Proceedings. IEEE International
Verilog HDL Conference. 1996, pp. 17-23. DOI: 10.1109/IVC.1996.496013.

Nekija Dzemaili. “A reliable booting system for Zynq Ultrascale+ MPSoC devices”.
PhD thesis. CERN, 2021.

Mahyar Emami et al. “Manticore: Hardware-Accelerated RTL Simulation with Static
Bulk-Synchronous Parallelism”. In: Proceedings of the 28th ACM International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
Volume 4. ASPLOS ’23. Vancouver, BC, Canada: Association for Computing Ma-
chinery, 2024, pp. 219-237. 1SBN: 9798400703942. poOI: 10.1145/3623278.3624750.
URL: https://doi.org/10.1145/3623278.3624750.

Hadi Esmaeilzadeh and Michael Bedford Taylor. “Open Source Hardware: Stone
Soups and Not Stone Satues, Please”. In: SIGARCH Computer Architecture Today.
Dec. 2017.

Jeffrey Fairbanks, Akshharaa Tharigonda, and Nasir U. Eisty. “Analyzing the Effects
of CI/CD on Open Source Repositories in GitHub and GitLab”. In: arXiv preprint
arXiv:2303.16393 (2023).

Harry D. Foster. “White Paper - 2024 Wilson Research Group IC/ASIC functional
verification trend report”. In: Wilson Research Group and Mentor, A Siemens Busi-
ness. 2024.

Raspberry Pi Foundation. https://www.raspberrypi.org. 2023.
RISC-V Foundation. https://github.com /riscv-software-src/riscv-pk. 2023.
FSFE. https://www.gnu.org/software/libc/. 2023.

Emily Furst. “Code Generation and Optimization of Graph Programs on a Manycore
Architecture”. PhD thesis. University of Washington, 2021.

Shay Gal-On and Markus Levy. “Exploring coremark a benchmark maximizing sim-
plicity and efficacy”. In: The Embedded Microprocessor Benchmark Consortium (2012).

S. Garcia et al. “The Kremlin Oracle for Sequential Code Parallelization”. In: Micro,
IEEFE 32.4 (July 2012), pp. 42-53.

Saturnino Garcia et al. “Bridging the Parallelization Gap: Automating Parallelism
Discovery and Planning”. In: USENIX Workshop on Hot Topics in Parallelism (HOT-
PAR). 2010.

https://doi.org/10.1109/IVC.1996.496013
https://doi.org/10.1145/3623278.3624750
https://doi.org/10.1145/3623278.3624750

BIBLIOGRAPHY 76

[58]

[59]

[60]

[61]

[69]

[70]

[71]

Saturnino Garcia et al. “Kremlin: Rethinking and Rebooting gprof for the Multi-
core Age”. In: Proceedings of the Conference on Programming Language Design and
Implementation (PLDI). 2011.

GDB Developers and Free Software Foundation. Debugging with GDB: The GNU
Source-Level Debugger. Tenth Edition, for GDB 16.3. Free Software Foundation. 2025.

Vasudev Gohil et al. “Mabfuzz: Multi-armed bandit algorithms for fuzzing proces-
sors”. In: 202/ Design, Automation & Test in Europe Conference €& Exhibition (DATE).
IEEE. 2024, pp. 1-6.

Bjorn Gottschall, Lieven Eeckhout, and Magnus Jahre. “TEA: Time-Proportional
Event Analysis”. In: Proceedings of the 50th Annual International Symposium on
Computer Architecture. 2023, pp. 1-13.

Bjorn Gottschall, Lieven Eeckhout, and Magnus Jahre. “Tip: Time-proportional in-
struction profiling”. In: MICRO-54: 54th Annual IEEE/ACM International Sympo-
stum on Microarchitecture. 2021, pp. 15-27.

Nathan Goulding et al. “GreenDroid: A Mobile Application Processor for a Future of
Dark Silicon”. In: HOTCHIPS. 2010.

N. Goulding-Hotta et al. “The GreenDroid Mobile Application Processor: An Archi-
tecture for Silicon’s Dark Future”. In: Micro, IEEE (Mar. 2011), pp. 86-95.

Nathan Goulding-Hotta. “Specialization as a Candle in the Dark Silicon Regime”.
PhD thesis. University of California, San Diego, 2020.

Nathan Goulding-Hotta et al. “GreenDroid: An Architecture for the Dark Silicon
Age”. In: Asia and South Pacific Design Automation Conference (ASPDAC). 2012.

Anshuman Gupta, Jack Sampson, and Michael Bedford Taylor. “DR-SNUCA: An
Energy-Scalable Dynamically Partitioned Cache”. In: International Conference on
Computer Design (ICCD). 2013.

Anshuman Gupta, Jack Sampson, and Michael Bedford Taylor. “QualityTime: A
Simple Online Technique for Quantifying Multicore Execution Efficiency”. In: Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS).
2014.

Anshuman Gupta, Jack Sampson, and Michael Bedford Taylor. “Time Cube: A Many-
core Embedded Processor with Interference-Agnostic Progress Tracking”. In: Inter-
national Conference On Embedded Computer Systems: Architectures, Modeling And
Simulation (SAMOS). 2013.

Ziyad Hanna and Jamil R. Mazzawi. “Formal Analysis of Security Data Paths in RTL
Design”. In: Proceedings of the Haifa Verification Conference (HVC). Demonstrates
the JasperGold formal-verification flow. Cadence Design Systems. 2012.

Byron Hawkins, Brian Demsky, and Michael Bedford Taylor. “A Runtime Approach
to Security and Privacy”. In: European Security and Privacy. 2016.

BIBLIOGRAPHY 7

[72]

Byron Hawkins, Brian Demsky, and Michael Bedford Taylor. “ BlackBox: Lightweight
Security Monitoring for COTS Binaries”. In: Code Generation and Optimization.
2016.

John L Henning. “SPEC CPU2000: Measuring CPU performance in the new millen-
nium”. In: Computer 33.7 (2000), pp. 28-35.

John L Henning. “SPEC CPU2006 benchmark descriptions”. In: ACM SIGARCH
Computer Architecture News 34.4 (2006), pp. 1-17.

Vladimir Herdt et al. “Verifying Instruction Set Simulators using Coverage-guided
Fuzzing”. In: 2019 Design, Automation & Test in Furope Conference € FExhibition
(ll4TfU.2019,pp.360*365.D(H:10.23919/DATE.2019.8714912.

Hu et al. “FPGA Global Routing Architecture Optimization Using a Multicommodity
Flow Approach ”. In: ICCD. 2007.

Jaewon Hur et al. “DifuzzRTL: Differential Fuzz Testing to Find CPU Bugs”. In:
2021 IEEE Symposium on Security and Privacy (SP). 2021, pp. 1286-1303. DOI:
10.1109/SP40001.2021.00103.

IEEFE Standard for SystemVerilog— Unified Hardware Design, Specification, and Ver-
ification Language. IEEE Computer Society, 2018. DOI: 10. 1109/ IEEESTD. 2018.
8299595.

ISO/IEC TS 22277:2017 — Technical Specification: C++ Extensions for Coroutines.
Tech. rep. International Organization for Standardization, 2017. URL: https://www.
iso.org/standard/73008.html.

Adam Izraelevitz et al. “Reusability is FIRRTL ground: Hardware construction lan-
guages, compiler frameworks, and transformations”. In: 2017 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD). IEEE. 2017, pp. 209-216.

Donghwan Jeon, Saturnino Garcia, and Michael Bedford Taylor. “Skadu: Efficient
Vector Shadow Memories for Poly-scopic Program Analysis”. In: Conference on Code
Generation and Optimization (CGO). 2013.

Donghwan Jeon et al. “Kismet: Parallel Speedup Estimates for Serial Programs”. In:

Conference on Object-Oriented Programming, Systems, Language and Applications
(OOPSLA). 2011.

Donghwan Jeon et al. “Kremlin: Like gprof, but for Parallelization”. In: Principles
and Practice of Parallel Programming (PPoPP). 2011.

Donghwan Jeon et al. “Parkour: Parallel Speedup Estimates from Serial Code”. In:
USENIX Workshop on Hot Topics in Parallelism (HOTPAR). 2011.

Dai Cheol Jung. “Caches for Complex Open Source System-on-Chip Designs”. MA
thesis. University of Washington, 2019.

Dai Cheol Jung et al. “Ruche Networks: Wire-Maximal, No-Fuss NoCs”. In: NOCS.
2020.

https://doi.org/10.23919/DATE.2019.8714912
https://doi.org/10.1109/SP40001.2021.00103
https://doi.org/10.1109/IEEESTD.2018.8299595
https://doi.org/10.1109/IEEESTD.2018.8299595
https://www.iso.org/standard/73008.html
https://www.iso.org/standard/73008.html

BIBLIOGRAPHY 78

[87] Dai Cheol Jung et al. “Scalable, Programmable and Dense: The HammerBlade Open-
Source RISC-V Manycore”. In: ISCA. 2024.

[88] Nursultan Kabylkas et al. “Effective Processor Verification with Logic Fuzzer En-
hanced Co-simulation”. In: MICRO-54: 54th Annual IEEE/ACM International Sym-
posium on Microarchitecture. MICRO ’21. Virtual Event, Greece: Association for
Computing Machinery, 2021, pp. 667-678. 1SBN: 9781450385572. DOI: 10 . 1145/
3466752.3480092. URL: https://doi.org/10.1145/3466752.3480092.

[89] Nursultan Kabylkas et al. “Effective Processor Verification with Logic Fuzzer En-
hanced Co-simulation”. In: MICRO-54: 54th Annual IEEE/ACM International Sym-
posium on Microarchitecture. MICRO ’21. Virtual Event, Greece: Association for
Computing Machinery, 2021, pp. 667-678. 1SBN: 9781450385572. DOI: 10 . 1145/
3466752.3480092. URL: https://doi.org/10.1145/3466752.3480092.

[90] Rahul Kande et al. “TheHuzz: Instruction Fuzzing of Processors Using Golden-Reference
Models for Finding Software-Exploitable Vulnerabilities”. In: 31st USENIX Secu-
rity Symposium (USENIX Security 22). Boston, MA: USENIX Association, Aug.
2022, pp. 3219-3236. 1SBN: 978-1-939133-31-1. URL: https://www . usenix . org/
conference/usenixsecurity22/presentation/kandel

[91] Sagar Karandikar et al. “FirePerf: FPGA-Accelerated Full-System Hardware/Soft-
ware Performance Profiling and Co-Design”. In: Proceedings of the Twenty-F'ifth Inter-
national Conference on Architectural Support for Programming Languages and Oper-
ating Systems. ASPLOS '20. Lausanne, Switzerland: Association for Computing Ma-
chinery, 2020, pp. 715-731. 1SBN: 9781450371025. pOI: 10.1145/3373376.3378455.
URL: https://doi.org/10.1145/3373376.3378455.

[92] Sagar Karandikar et al. “FireSim: FPGA-accelerated Cycle-exact Scale-out System
Simulation in the Public Cloud”. In: Proceedings of the 45th Annual International
Symposium on Computer Architecture. ISCA "18. Los Angeles, California: IEEE Press,
2018, pp. 29-42. 1SBN: 978-1-5386-5984-7. DOI: 10.1109/ISCA.2018.00014. URL:
https://doi.org/10.1109/ISCA.2018.00014.

[93] Nikos Karystinos et al. “Harpocrates: Breaking the Silence of CPU Faults through
Hardware-in-the-Loop Program Generation”. In: 2024 ACM/IEEE 51st Annual In-
ternational Symposium on Computer Architecture (ISCA). 2024, pp. 516-531. DOI:
10.1109/ISCA59077.2024.00045.

[94] Moein Khazraee. “Reducing the development cost of customized cloud infrastructure”.
PhD thesis. University of California, San Diego, 2020.

[95] Moein Khazraee et al. “Moonwalk: NRE Optimization in ASIC Clouds or, accelera-
tors will use old silicon”. In: Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 2017.

[96] Moein Khazraee et al. “Specializing a Planet’s Computation: ASIC Clouds”. In: IEEE
Micro (May 2017).

https://doi.org/10.1145/3466752.3480092
https://doi.org/10.1145/3466752.3480092
https://doi.org/10.1145/3466752.3480092
https://doi.org/10.1145/3466752.3480092
https://doi.org/10.1145/3466752.3480092
https://doi.org/10.1145/3466752.3480092
https://www.usenix.org/conference/usenixsecurity22/presentation/kande
https://www.usenix.org/conference/usenixsecurity22/presentation/kande
https://doi.org/10.1145/3373376.3378455
https://doi.org/10.1145/3373376.3378455
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/ISCA59077.2024.00045

BIBLIOGRAPHY 79

[97]

[98]

[99]

[100]

[101]
[102]
[103]
[104]
[105]
[106]
107]

108

109]

Jason Kim et al. “Energy Characterization of a Tiled Architecture Processor with On-
Chip Networks”. In: International Symposium on Low Power Electronics and Design
(ISLPED). Aug. 2003.

Sravanthi Kota Venkata et al. “SD-VBS: The San Diego Vision Benchmark Suite”.
In: IEEE International Symposium on Workload Characterization (IISWC). 2009.

Kevin Laeufer et al. “RFUZZ: Coverage-Directed Fuzz Testing of RTL on FPGAs”.
In: 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
2018, pp. 1-8. DOI: [10. 1145/3240765 . 3240842,

Kevin Laeufer et al. “Simulator Independent Coverage for RTL Hardware Languages”.
In: Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3. ASPLOS 2023. Van-
couver, BC, Canada: Association for Computing Machinery, 2023, pp. 606-615. ISBN:
9781450399180. DOT: |10.1145/3582016.3582019. URL: https://doi.org/10.1145/
3582016.3582019.

Kangli Li. “An Open Source Non-Blocking Manycore L2 Cache”. MA thesis. Univer-
sity of Washington, 2024.

Ryan Lund. “Design and Application of a Co-Simulation Framework for Chisel”. PhD
thesis. MA thesis. EECS Department, University of California, Berkeley, 2021.

Tkuo Magaki et al. “ASIC Clouds: Specializing the Datacenter”. In: International
Symposium on Computer Architecture (ISCA). 2016.

Sergio Mazzola et al. “Data-Driven Power Modeling and Monitoring via Hardware
Performance Counters Tracking”. In: arXiv preprint arXiv:2401.01826 (2024).

Mentor. 2023. URL: https://eda.sw.siemens.com/en-US/ic/veloce/.

Sergiu Mosanu et al. “FreezeTime: Towards System Emulation through Architectural
Virtualization”. In: 2023 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW). IEEE. 2023, pp. 129-136.

Sripathi Muralitharan. “TinyParrot: An Integration-Optimized Linux-Capable Host
Multicore”. MA thesis. University of Washington, 2021.

Anoop Mysore Nataraja. “A Research-Fertile Co-Emulation Framework for RISC-V
Processor Verification”. English. PhD thesis. University of Washington, 2023, p. 93.
ISBN: 9798380328562. URL: https://www.proquest.com/dissertations-theses/
research-fertile-co-emulation-framework-risc-v/docview/2863720086/se-
2.

S. Pal et al. “A 7.3 M Output Non-Zeros/J Sparse Matrix-Matrix Multiplication Ac-
celerator using Memory Reconfiguration in 40 nm”. In: Symposium on VLSI Circuits.
2019, pp. C150-C151.

https://doi.org/10.1145/3240765.3240842
https://doi.org/10.1145/3582016.3582019
https://doi.org/10.1145/3582016.3582019
https://doi.org/10.1145/3582016.3582019
https://eda.sw.siemens.com/en-US/ic/veloce/
https://www.proquest.com/dissertations-theses/research-fertile-co-emulation-framework-risc-v/docview/2863720086/se-2
https://www.proquest.com/dissertations-theses/research-fertile-co-emulation-framework-risc-v/docview/2863720086/se-2
https://www.proquest.com/dissertations-theses/research-fertile-co-emulation-framework-risc-v/docview/2863720086/se-2

BIBLIOGRAPHY 80

[110] Scott Beamer Thomas Nijssen Krishna Pandian and Kyle Zhang. “ESSENT: A High-
Performance RTL Simulator”. In: Workshop on Open-Source EDA Technology (WOSET),
at International Conference on Computer-Aided Design (ICCAD) (2021).

[111] D. Park et al. “A 7.3 M Output Non-Zeros/J, 11.7 M Output Non-Zeros/GB Re-
configurable Sparse Matrix-Matrix Multiplication Accelerator”. In: IEEE Journal of
Solid-State Circuits (Apr. 2020), pp. 933-944.

[112] Huwan Peng. “Methodologies and Architectures for AI Inference Hardware: From
Foundational Networks to Large Language Models”. PhD thesis. University of Wash-
ington, 2025.

[113] Huwan Peng et al. “Chiplet Cloud: Building AI Supercomputers for Serving Large
Generative Language Models”. In: arXiv:2307.02666 [cs] (2024). arXiv: 2307 . 02666.

[114] Huwan Peng et al. “ReaLLM: A Trace-Driven Framework for Rapid Simulation of
Large-Scale LLM Inference”. In: ASAP. 2025.

[115] D. Petrisko et al. “BlackParrot: An Agile Open-Source RISC-V Multicore for Accel-
erator SoCs”. In: IEEE Micro (July 2020), pp. 93-102.

[116] Daniel Petrisko et al. “NoC Symbiosis”. In: NOCS. 2020.

[117] Vaughan Pratt. “Anatomy of the Pentium bug”. In: Colloquium on Trees in Algebra
and Programming. Springer. 1995, pp. 97-107.

[118] Linux man-pages project. syscalls(2) — Linuz system calls. Version 6.10. Linux man-
pages. Nov. 17, 2024. URL: https://man7.org/linux/man-pages/man2/syscalls.
2.html.

[119] Hany Ragab et al. “BugsBunny: Hopping to RTL Targets with a Directed Hardware-
Design Fuzzer”. In: SILM (2022).

[120] Robert "Max" Ramstad. “Enabling Vector Load and Store instructions on Ham-
merBlade Architecture”. MA thesis. University of Washington, 2024.

[121] Shashank Vijaya Ranga. “ParrotPiton and ZynqParrot: FPGA Enablements for the
BlackParrot RISC-V Processor”. MA thesis. University of Washington, 2021.

[122] David Rich. “The missing link: the Testbench to DUT connection”. In: Fremont, CA:
Design and Verification Technologies Mentor Graphics 9 (2013).

[123] Mohamadreza Rostami et al. “Beyond random inputs: A novel ml-based hardware
fuzzing”. In: 2024 Design, Automation & Test in Europe Conference & Ezhibition
(DATE). IEEE. 2024, pp. 1-6.

[124] A. Rovinski et al. “A 1.4 GHz 695 Giga Risc-V Inst/s 496-Core Manycore Processor
With Mesh On-Chip Network and an All-Digital Synthesized PLL in 16nm CMOS”.
In: 2019 Symposium on VLSI Circuits. 2019, pp. C30-C31.

[125] A. Rovinski et al. “Evaluating Celerity: A 16-nm 695 Giga-RISC-V Instructions/s
Manycore Processor With Synthesizable PLL”. In: IEEFE Solid-State Circuits Letters
2.12 (2019), pp. 289-292.

https://arxiv.org/abs/2307.02666
https://man7.org/linux/man-pages/man2/syscalls.2.html
https://man7.org/linux/man-pages/man2/syscalls.2.html

BIBLIOGRAPHY 81

[126] Jack Sampson et al. “An Evaluation of Selective Depipelining for FPGA-based Energy-
Reducing Irregular Code Coprocessors”. In: Conference on Field Programmable Logic
and Applications (FPL). 2011.

[127] Jack Sampson et al. “Efficient Complex Operators for Irregular Codes”. In: High
Performance Computing Architecture (HPCA). 2011.

[128] Andreas Sandberg et al. “Full Speed Ahead: Detailed Architectural Simulation at
Near-Native Speed”. In: 2015 IEEE International Symposium on Workload Charac-
terization. 2015, pp. 183-192. DOI: [10.1109/IISWC.2015.29.

[129] Raghul Saravanan and Sai Manoj Pudukotai Dinakarrao. “The Emergence of Hard-
ware Fuzzing: A Critical Review of its Significance”. In: arXiv preprint arXiv:2403.12812
(2024).

[130] Debendra Das Sharma et al. “PCI Express 6.0 Specification: A Low-Latency, High-
Bandwidth, High-Reliability, and Cost-Effective Interconnect with 64 GT /s pam-4
Signaling”. In: IEEE Micro 41.1 (2021), pp. 23-29. DOI: |10.1109/MM. 2020 . 3039925.

[131] Wilson Snyder. 2024. URL: https://github.com/verilator/verilator.

[132] Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi. “Cascade: CPU fuzzing via
intricate program generation”. In: Proc. 33rd USENIX Secur. Symp. 2024, pp. 1-18.

[133] Steven Swanson and Michael Taylor. “GreenDroid: Exploring the next evolution for
smartphone application processors”. In: IEEE Communications Magazine. Mar. 2011.

[134] Synopsys. 2023. URL: https ://www . synopsys . com/verification/emulation/
zebu-server.html.

[135] Synopsys, Inc. VCS Functional Verification Solution. Datasheet, release 10/26,/2021.
Synopsys, Inc. 2021.

[136] Zhangxi Tan et al. “Diablo: A warehouse-scale computer network simulator using
fpgas”. In: ACM SIGPLAN Notices 50.4 (2015), pp. 207-221.

[137] MB Taylor et al. “The Raw processor-a scalable 32-bit fabric for embedded and
general purpose computing”. In: Proceedings of Hot Chips XIII. 2001.

[138] Michael Taylor. “A Landscape of the New Dark Silicon Design Regime”. In: Micro,
IEEE (Sept. 2013).

[139] Michael Taylor. “A Landscape of the New Dark Silicon Design Regime”. In: Design
Automation and Test in Europe. Apr. 2014.

[140] Michael Taylor. “The Evolution of Bitcoin Hardware”. In: Computer, IEEE (Sept.
2017).

[141] Michael Taylor. “Tiled Microprocessors”. PhD thesis. Massachusetts Institute of Tech-
nology, 2007.

[142] Michael B. Taylor. “BaseJump STL: SystemVerilog needs a Standard Template Li-
brary for Hardware Design”. In: Design Automation Conference. June 2018.

https://doi.org/10.1109/IISWC.2015.29
https://doi.org/10.1109/MM.2020.3039925
https://github.com/verilator/verilator
https://www.synopsys.com/verification/emulation/zebu-server.html
https://www.synopsys.com/verification/emulation/zebu-server.html

BIBLIOGRAPHY 82

[143]

[144]

[145]

[146]

[147]
[148]

[149]

150]
[151]
[152]
[153]
[154]
[155]

[156]

[157]

[158]

Michael B. Taylor. “Bitcoin and the Age of Bespoke Silicon”. In: International Con-
ference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES).
2013.

Michael B. Taylor. “Is Dark Silicon Useful? Harnessing the Four Horsemen of the
Coming Dark Silicon Apocalypse”. In: Design Automation Conference (DAC). 2012.

Michael B. Taylor et al. “A 16-issue Multiple-Program-Counter Microprocessor with
Point-to-Point Scalar Operand Network”. In: IEEE International Solid-State Circuits
Conference (ISSCC). Feb. 2003.

Michael B. Taylor et al. “Evaluation of the Raw Microprocessor: An Exposed-Wire-
Delay Architecture for ILP and Streams”. In: International Symposium on Computer
Architecture (ISCA). June 2004.

Michael B. Taylor et al. “Scalar Operand Networks”. In: IEEE Transactions on Par-
allel and Distributed Systems. Feb. 2005.

Michael B. Taylor et al. “Scalar Operand Networks”. In: IEEE Transactions on Par-
allel and Distributed Systems (TPDS). Feb. 2005.

Michael B. Taylor et al. “Scalar Operand Networks: On-Chip Interconnect for ILP in
Partitioned Architectures”. In: International Symposium on High Performance Com-
puter Architecture (HPCA). Feb. 2003.

Michael B. Taylor et al. “The Raw Microprocessor: A Computational Fabric for Soft-
ware Circuits and General Purpose Programs”. In: IEEE Micro. Mar. 2002.

Michael Bedford Taylor. “Geocomputers and the Commercial Borg”. In: SIGARCH
Computer Architecture Today. Dec. 2017.

Michael Bedford Taylor. “Your agile open source HW stinks (because it is not a
system)”. In: ICCAD. 2020.

Michael Bedford Taylor et al. “ASIC Clouds: Specializing the Datacenter for Planet-
Scale Applications”. In: CACM (2020), pp. 103-1009.

Fabian Thomas et al. RISC'Vuzz: Discovering architectural CPU vulnerabilities via
differential hardware fuzzing.

Shelby Thomas et al. “CortexSuite: A Synthetic Brain Benchmark Suite”. In: Inter-
national Symposium on Workload Characterization (IISWC). Oct. 2014.

Linus Torvalds. “The Linux edge”. In: Commun. ACM 42.4 (Apr. 1999), pp. 38-39.
1SSN: 0001-0782. DOI: [10.1145/299157.299165. URL: https://doi.org/10.1145/
299157.299165.

Timothy Trippel et al. “Fuzzing hardware like software”. In: 31st USENIX Security
Symposium (USENIX Security 22). 2022, pp. 3237-3254.

TUL. 2023. URL: https://www.tulembedded. com/FPGA/ProductsPYNQ-Z2.html.

https://doi.org/10.1145/299157.299165
https://doi.org/10.1145/299157.299165
https://doi.org/10.1145/299157.299165
https://www.tulembedded.com/FPGA/ProductsPYNQ-Z2.html

BIBLIOGRAPHY 83

[159]

[160]
[161]

[162]

[163]

164]

[165]

[166]

[167]
[168]
[169]
170]
[171]
[172]

[173]
[174]

Shobha Vasudevan et al. “Learning semantic representations to verify hardware de-
signs”. In: Advances in Neural Information Processing Systems 34 (2021), pp. 23491—
23504.

Luis Vega and Michael Bedford Taylor. “ RV-IOV: Tethering RISC-V Processors via
Scalable I/O Virtualization ”. In: CARRV. 2017.

Bandhav Veluri et al. “NeuriCam: Low-Power Video Acquisition using Dual-Mode
[oT Cameras”. In: MobiCom. 2023.

Ganesh Venkatesh et al. “Conservation cores: reducing the energy of mature computa-
tions”. In: Architectural Support for Programming Languages and Operating Systems
(ASPLOS). 2010.

Ganesh Venkatesh et al. “QsCores: Configurable Co-processors to Trade Dark Sil-
icon for Energy Efficiency in a Scalable Manner”. In: International Symposium on
Microarchitecture (MICRO). 2011.

Elliot Waingold et al. “Baring it all to Software: Raw Machines”. In: IEEE Computer.
Sept. 1997.

Vincent M. Weaver. “Self-Monitoring Overhead of the Linux perf event Performance
Counter Interface”. In: Proceedings of the IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS). 2015, pp. 159-168. DOI: 10.
1109/ISPASS.2015.7095792.

Vincent M. Weaver and Sally A. McKee. “Can hardware performance counters be
trusted?” In: 2008 IEEE International Symposium on Workload Characterization.
2008, pp. 141-150. por: [10.1109/IISWC.2008. 4636099.

Western Digital. OpenSBI: RISC-V Open-Source Supervisor Binary Interface. https:
//github.com/riscv-software-src/opensbil Release v1.6. 2024.

Xilinx Wiki. Cadence WDT Driver. URL: https://xilinx-wiki.atlassian.net/
wiki/x/x4EfAQ.

Henry Ting-Hei Wong. A superscalar out-of-order x86 soft processor for fpga. Univer-
sity of Toronto (Canada), 2017.

Mark Wyse et al. “The BlackParrot BedRock Cache Coherence System”. In: arXiv
preprint arXiv:2211.06390 (2022).

Chenhao Xie et al. “Q-VR: System-Level Design for Future Mobile Collaborative
Virtual Reality”. In: ASPLOS. 2021.

Shaolin Xie et al. “Extreme Datacenter Specialization for Planet-Scale Computing:
ASIC Clouds”. In: ACM Sigops Operating System Review. 2018.

Xilinx. 2023. URL: https://docs.xilinx.com/r/en-US/pgl95-pcie-dma.

Xilinx. 2023. URL: https://www . xilinx . com/products /boards - and - kits/
device-family/nav-zynq-7000.html.

https://doi.org/10.1109/ISPASS.2015.7095792
https://doi.org/10.1109/ISPASS.2015.7095792
https://doi.org/10.1109/IISWC.2008.4636099
https://github.com/riscv-software-src/opensbi
https://github.com/riscv-software-src/opensbi
https://xilinx-wiki.atlassian.net/wiki/x/x4EfAQ
https://xilinx-wiki.atlassian.net/wiki/x/x4EfAQ
https://docs.xilinx.com/r/en-US/pg195-pcie-dma
https://www.xilinx.com/products/boards-and-kits/device-family/nav-zynq-7000.html
https://www.xilinx.com/products/boards-and-kits/device-family/nav-zynq-7000.html

BIBLIOGRAPHY 84

[175] Xilinx. 2023. URL: http://www.pynq.io/board.html.

[176] Xilinx. 2023. URL: https://docs.xilinx.com/r/en-US/ugli44-petalinux-
tools-reference-guide/Introduction.

[177] Xilinx. AXI DMA Controller IP. URL: https : //www . xilinx . com/ products /
intellectual-property/axi_dma.htmll

[178] Xilinx. Device Reliability Report (UG116). Tech. rep. Xilinx, 2023.

[179] Jinyan Xu et al. “MorFuzz: Fuzzing processor via runtime instruction morphing en-
hanced synchronizable co-simulation”. In: 32nd USENIX Security Symposium (USENIX
Security 23). 2023, pp. 1307-1324.

[180] Michal Zalewski. AFL. https://github.com/google/AFL.

[181] F. Zaruba and L. Benini. “The Cost of Application-Class Processing: Energy and Per-
formance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI
Technology”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
27.11 (2019), pp. 2629-2640. 1SSN: 1557-9999. poI: [10.1109/TVLSI.2019.2926114.

[182] Karen Zee et al. “Runtime Checking for Program Verification”. In: RV. 2007.

[183] Xingyao Zhang et al. “n-LSTM: Co-Designing Highly-Efficient Large LSTM Training
via Exploiting Memory-Saving and Architectural Design Opportunities”. In: ISCA.
2021.

[184] Ritchie Zhao et al. “Celerity: An Open Source RISC-V Tiered Accelerator Fabric”.
In: 7th RISC-V Workshop. 2017.

[185] Qiaoshi Zheng et al. “Exploring Energy Scalability in Coprocessor-Dominated Archi-
tectures for Dark Silicon”. In: Transactions on Embedded Computing Systems (TECS)
(Mar. 2014).

[186] Yi Zhu et al. “Advancing supercomputer performance through interconnection topol-
ogy synthesis”. In: International Conference on Computer-Aided Design (ICCAD).
2008, pp- 555-558.

[187] Yi Zhu et al. “Energy and Switch Area Optimizations for FPGA Global Routing
Architectures”. In: ACM Transactions on Design Automation of Electronic Systems

(TODAES). Jan. 2009.

http://www.pynq.io/board.html
https://docs.xilinx.com/r/en-US/ug1144-petalinux-tools-reference-guide/Introduction
https://docs.xilinx.com/r/en-US/ug1144-petalinux-tools-reference-guide/Introduction
https://www.xilinx.com/products/intellectual-property/axi_dma.html
https://www.xilinx.com/products/intellectual-property/axi_dma.html
https://github.com/google/AFL
https://doi.org/10.1109/TVLSI.2019.2926114

85

Appendix A

Source-Code Repositories

At the time of writing this dissertation, all the source-code for the discussed projects are
hosted in the following open-source GitHub repositories:

e The design code for BlackParrot alongside its software development kit can be found
at the following repositories:

— https://github.com/black-parrot/black-parrot
— https://github.com/black-parrot-sdk/black-parrot-sdk

e The source-code for Condominium alongside the algorithm for instrumenting RTL
designs with High-Fidelity Coverage can be found at:

— https://github.com/black-parrot-hdk/zyng-parrot

o The source-code for managing the Condominium heterogeneous cluster alongside its
custom PYNQ image generation flow can be found at:

— https://github.com/black-parrot-hdk/zynq-farm
— https://github.com/black-parrot-hdk/pyng-image

o The scripts for running experiments for High-Fidelity Coverage based on a MAB-
Cascade fuzzer can be found at:

— https://github.com/farzamgl/hfcov

https://github.com/black-parrot/black-parrot
https://github.com/black-parrot-sdk/black-parrot-sdk
https://github.com/black-parrot-hdk/zynq-parrot
https://github.com/black-parrot-hdk/zynq-farm
https://github.com/black-parrot-hdk/pynq-image
https://github.com/farzamgl/hfcov

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Challenges in Verification and Optimization of Hardware Designs
	Hardware Simulation
	Hardware Functional Verification
	Hardware Performance Optimization

	BlackParrot
	BlackParrot Architecture
	BlackParrot's Bring-up Evolution

	Condominium
	Acknowledgment
	Motivation
	Condominium Architecture
	Zynq-based Architecture
	Cycle-Accurate Emulation Layer
	Heterogeneous Prototyping Cluster

	Condominium Usage
	Accelerated Functional Verification
	Cycle-Accurate Performance Profiling
	Case Study: Catch-up ALU
	System-Call Abstraction

	Related Work
	Gate-Level Accelerated Emulation
	Emulating Large Systems with FPGAs
	Decomposed FPGA emulation
	FPGA-Accelerated Performance Analysis

	High-Fidelity Coverage
	Acknowledgment
	Motivation
	Background
	Coverage Guided Fuzzing
	Contemporary Coverage Metrics

	High-Fidelity Coverage
	Latency-Aligned Group-Coverage
	Automated Coverage Instrumentation

	Accelerated Coverage Collection
	CAM-based Group Coverage Engine (CCE)
	Condominium Integration

	Evaluation
	FPGA Implementation
	Case Study: BlackParrot Pipeline
	Case Study: BlackParrot PC-Generator
	Fuzzing Experiment

	Related Work
	FPGA Acceleration of Coverage
	Coverage Metrics enabling Verification
	Coverage-guided Fuzzing
	Fuzzing Hardware like Software
	Black-box Fuzzing
	Targeted Coverage Verification
	Bug Injection and Fuzzer Evaluation

	Discussion and Future Work
	Evaluation of Latency-Aligned Coverage
	One-to-One Coverage Mapping
	Progressive Coverage
	BRAM-based Alternative to CCEs
	Extending to other Cores and HDLs

	Conclusion
	Bibliography
	Source-Code Repositories

