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The rapid advancements in large language models (LLMs) have significantly reshaped the
artificial intelligence landscape, enabling transformative applications. However, these devel-
opments pose profound challenges for hardware architectures, particularly concerning per-
formance, efficiency, and scalability. This dissertation investigates these critical challenges,
proposing novel methodologies and architectural designs for specialized hardware, with a
primary focus on optimizing large-scale LLM inference.

Core contributions of this thesis include the development of RealLLM and Chiplet Cloud.
ReaLLM is a holistic simulation framework for LLM serving, designed to bridge detailed
accelerator-level insights with system-wide performance evaluations. This framework facili-
tates rapid exploration and precise simulation of both hardware architectures and software
strategies. Chiplet Cloud is a cloud-scale architecture optimized for the Total Cost of Own-
ership (TCO) of LLM inference. Its key architectural innovations include fitting model
parameters within on-chip memory to improve performance, co-optimizing chip size with
software mapping to reduce TCO, and effectively exploiting model sparsity to support larger
models.

Additionally, the thesis discusses ChronoStack, a 3D memory architecture developed as

part of a collaborative research effort, featuring a novel Time-Multiplexed KV-Prefetching



technique, specifically optimized for the demands of long-context LLMs. The dissertation
also incorporates foundational research on accelerators for earlier Al paradigms, including
Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and deep
reinforcement learning, providing a broad perspective on Al hardware evolution.

Together, this body of work presents a detailed investigation into architectures and
methodologies for Al inference hardware, tracing a clear progression from foundational net-
work acceleration to modern large language model serving. The research aims to contribute
novel approaches and critical insights towards achieving efficient, high-performance comput-

ing for the advancing field of artificial intelligence.
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Chapter 1

INTRODUCTION

The last decade has seen significant advancements in the capabilities and applications of
Artificial Intelligence (AI), leading to transformative changes across various sectors. From
influencing industries like healthcare and finance to enabling everyday applications such
as natural language translation, recommendation systems, and autonomous vehicles, Al is
increasingly impacting modern life [160]. Central to these advancements are sophisticated
machine learning models, particularly Deep Neural Networks (DNNs), which have demon-

strated notable performance across a spectrum of complex tasks [114].

The trajectory of Al progress has been characterized by a trend towards developing larger
and more complex models. While foundational network architectures like Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) established key principles,
the recent emergence of Large Language Models (LLMs) such as GPT-3 [21], PaLM [34], and
Llama [197]| has enabled significant progress in natural language understanding, generation,
and reasoning. These models, often comprising hundreds of billions or even trillions of
parameters |51], generally follow scaling laws which suggest that model performance improves
with increased scale (data, parameters, and computation) [93|. However, this demand for
increased scale translates directly into substantial growth in computational requirements for
both training these models and, importantly, for deploying them for inference at scale. The
computational power needed to serve these models to many users in real-time presents a
significant challenge, straining existing hardware infrastructure and impacting operational
costs and energy consumption.

The computational support for the current Al developments has largely been provided
by general-purpose hardware, primarily Central Processing Units (CPUs) and Graphics Pro-
cessing Units (GPUs). While CPUs offer flexibility, their architecture is not ideally suited

for the massively parallel computations that are prevalent in Al workloads. GPUs, origi-



nally developed for graphics rendering, have been widely adopted for Al due to their parallel
processing capabilities and have become common solutions for training and deploying many
AT models [133, 134]. However, as Al models, especially LLMs, continue to grow in size and
complexity, the limitations of these general-purpose architectures are becoming more evident.
GPUs, despite their power, retain overheads from their general-purpose design and may not
provide the optimal balance of performance, power efficiency, and cost when deployed at the
scale required by modern Al services. A key challenge is the memory wall, where the rate
of improvement in processor speed has outpaced improvements in memory bandwidth and
latency [208]. LLM inference, characterized by large model sizes and substantial intermedi-
ate data (such as the KV cache in Transformers [200]), is often memory-bandwidth bound,
particularly during the token generation phase [150]. This can lead to underutilization of
compute units and reduce overall system efficiency. Furthermore, the energy consumption
associated with running these large models on general-purpose hardware at scale raises con-
siderations regarding environmental sustainability and economic viability [144].

To address the performance, efficiency, and scalability limitations of general-purpose
hardware, the development of Application-Specific Integrated Circuits (ASICs) tailored for
AT workloads has become an important direction [176]. ASICs offer the potential for sub-
stantial improvements in performance and energy efficiency by designing hardware specif-
ically optimized for the computational patterns and data movement characteristics of Al
algorithms, such as matrix multiplications, convolutions, and attention mechanisms. By
removing unnecessary general-purpose logic and co-designing the architecture with the tar-
get algorithms, AT ASICs can achieve higher throughput and lower power consumption per
operation [157]. While the Non-Recurring Engineering (NRE) costs associated with ASIC
design are considerable [98], the large volume of computations required for large-scale LLM
deployment can make this investment practical. The significant operational Total Cost of
Ownership (TCO) of running LLM inference on existing hardware means that even moder-
ate improvements in TCO per token, offered by a specialized ASIC, can lead to considerable
savings, potentially amortizing the NRE costs. These economic factors, along with the
continued demand for Al, are driving the development of specialized Al hardware.

The primary objective of this doctoral research is:



To design and evaluate high-performance and efficient ASIC accelerator architectures and
supporting methodologies for diverse and evolving Al applications, with a primary focus on
Large Language Models.

This dissertation examines the challenges in Al hardware and presents methodologies
and architectural designs to address them. The work is organized as follows, with each

chapter detailing specific contributions toward this goal:

e Chapter 2: Background provides an overview of fundamental AT models, including
early paradigms like CNNs, RNNs and deep reinforcement learning, as well as the
architecture of modern Large Language Models. It also discusses system techniques
for AI inference, principles of specialized hardware acceleration, and the economic

considerations motivating ASIC development.

e Chapter 3: Foundational Work: Accelerating Early AI Paradigms details ini-
tial research on accelerating earlier AI workloads. This chapter discusses contributions
to the development of iIFPNA [26, 25|, a flexible deep learning processor adaptable
to various network types, and presents DRLP, a specialized accelerator for Deep Q-
Learning that introduced the efficient F|B|C (Filter-Batch-Channel) dataflow.
This foundational work provided insights into architectural flexibility, dataflow opti-

mization, and hardware-software co-design relevant to subsequent research.

e Chapter 4: ReaLLM: A Holistic Simulation Framework for LLM Serv-
ing introduces RealLLM, a comprehensive, multi-level hardware system simulation
framework developed to address the complexity of evaluating modern LLM inference
systems [146]. It is designed to bridge detailed accelerator-level insights with system-
wide performance evaluations, enabling exploration and simulation of hardware archi-
tectures and software strategies for LLM serving through features like a precomputed

kernel library and trace-driven analysis.

e Chapter 5: Chiplet Cloud: A TCO-Optimized LLM Hardware Architec-
ture proposes Chiplet Cloud, a cloud-scale, chiplet-based ASIC architecture [145].



This work focuses on the economic viability of large-scale LLM deployment and is
optimized for the Total Cost of Ownership (TCO) of LLM inference. Key aspects
include fitting model parameters within on-chip memory, co-optimizing chip size with

software mapping, and exploiting model sparsity.

e Chapter 6: ChronoStack: A 3D-Memory Architecture for Long-Context
LLMs describes ChronoStack, a 3D memory architecture developed as part of a
collaborative research effort to which the author contributed, designed to tackle the
memory bandwidth challenges posed by increasing context lengths in LLMs. It fea-
tures a Time-Multiplexed KV-Prefetching technique, aiming to leverage the high
bandwidth of hybrid-bonded 3D DRAM to accelerate attention operations and improve

end-to-end latency in long-context LLMs.

e Chapter 7: Conclusion summarizes the key findings of this dissertation, reiterates
the main contributions of the research, and discusses potential directions for future

work in the field of AI hardware.

Collectively, the research detailed in these chapters offers an investigation into archi-
tectures and methodologies for Al inference hardware, covering aspects from foundational
network acceleration to the specific requirements of contemporary large-scale language model
serving.

Bibliographies: The work of Section 3.1 on iFPNA was published at [25] and [26].
The work of Chapter 4 RealLLM simulator will be published at [146], and opensource at
https://github.com/bespoke-silicon-group/reallm. The work of Chapter 5 Chiplet
Cloud was published at [145].
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Chapter 2

BACKGROUND
2.1 Fundamentals of Early Models

In the landscape of artificial intelligence, early progress was profoundly influenced by founda-
tional models such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), and the emergence of Deep Reinforcement Learning (DRL) algorithms. This sec-
tion presents a concise overview of the core architectures and methodologies that define

CNNs, RNNs, and DRL.

2.1.1 Convolutional Neural Networks and Recurrent Neural Networks

Convolutional Neural Networks (CNNs) are specialized neural networks designed to process
grid-like data structures such as images. They leverage spatial locality by using convolutional
layers, pooling layers, and fully connected layers. The convolution operation for a two-

dimensional input g(z,y) with a two-dimensional filter f(i,j) is defined as:

(f * g)(z,y) = ZZf(M)-g(a:—z‘,y—j) (2.1)

This process extracts hierarchical feature maps that encode edges, textures, and complex
patterns. Pooling layers reduce spatial resolution to improve computational efficiency and
translation invariance. The fully connected layers map these high-level features to output
classes. CNNs have dramatically advanced tasks like image classification, exemplified by
networks such as AlexNet [106] and ResNet |71].

Recurrent Neural Networks (RNNs) are designed to handle sequential data, maintaining
a hidden state that captures temporal dependencies. The basic RNN computation at time

step t is:



hi = oc(Wanzt + Whnhi—1 + bp)
(2.2)
ot = Whoht + bo
where o is the non-linear function such as tanh, o; is the output, h; is the hidden state,
x; the current input, and Wy, by, Wy, Whp, and by, are learnable parameters. Traditional
RNNSs often suffer from vanishing or exploding gradients; hence, LSTMs [73] and GRUs [36]
were introduced, utilizing gating mechanisms to manage information flow effectively.
CNNs, RNNs, and their variants have distinct architectural patterns and computational
characteristics. To effectively support the wide diversity of models and operations, the
underlying hardware must be designed with versatility in mind. In Section 3.1, we present

a flexible deep neural network accelerator architecture that can efficiently execute all these

workloads.

2.1.2 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) combines reinforcement learning with deep neural net-
works to allow agents to learn optimal policies from environment interactions. It is applied
to applications that need to make real-time decisions continuously, such as video and board
game playing, and robot motion control[171, 161].

One common reinforcement learning methodology is called @-learning method. It learns
a value function ¢(s, a), that estimates the expectation of the discounted return, or value, of
an action in a certain state. Taking one of the most popular DRL algorithms, DQN [128],
as an example. It uses deep neural networks to approximate the value function. It takes
the environment states as inputs and outputs the value of each valid action. Unlike other
DNNs, DRL generates datasets for training by interacting with the environment.

Similar to DNNs, DRL is also optimized to minimize the loss E between the network

output and the target output O,
E = (qo(Si; Ai) — 0)? (2.3)

where gy is the value function (DNN) with parameter 6, also called online network. The

time step 7 is randomly sampled from the replay memory. The target output of DQN is



defined as,

O=R;+ v max gz (Sit1; a’) (2.4)

The intuition of this function is the value ¢ of a state S; with an action A; is equal to the
immediate reward R; plus the maximum ¢ value of the next state S;;1. 6 represents the
parameters of a target network. It is a periodic copy of the online network, and not directly
optimized. This helps to reduce the correlation with the target value.

DQN has been widely used in later Q-learning algorithms, such as Rainbow [72], Ape-
X |75], and R2D2 [94]. In Section 3.2, we design an accelerator that optimizes these Q-

learning DRL algorithms.

2.1.3 Neural Network Training

Neural network training adjusts model parameters to minimize a loss function through it-
erative optimization. The primary three phases are Forward Propagation (FP), Backward
Propagation (BP), and Weight Gradient Computation (WG). In Figure 2.1, we illustrate
the tensors and operations on a convolutional layer in these phases. Each phase has two
input tensors and one output tensor, which are addressed using seven dimensions. B refers
to the input batch, C refers to the input channel, F' refers to the number of filters and the
output channel. R, H, and E refer to the 2D spatial size of filter weight, input and output
activation, respectively, with x, y are the 2D spatial coordinates. The color of the tensor
indicates whether it is filter weight W (blue), input activation I (yellow) or output activa-
tion O (green). Gradient tensors are represented by the dashed lines, such as the output
activation gradient g—g in BP.

During FP, a sliding-window 3D convolution is performed by filter weight W and input
activation I to generate the output activation O. The detailed calculation process is shown
in a 7-level nested loop, corresponding to 7 different dimensions across 3 tensors. The
operation pattern in BP retains unchanged as what in FP. Note that the filter weight W are
transposed at the C' and F' dimensions, and each plane of ng_x R, is rotated 180 degrees.

Gradient aggregation embeds in gradient computation. Normally, the operations

in WG phase are shown at the left side of Figure 2.1-(3). The weight gradients of the loss



on each sample in a batch, i.e., giwl,, - %%V, are computed first through a 2D convolution

between the input activation and its corresponding output activation gradients. Then, the
optimization function uses the mean values of all weight gradients to update the weight.
The data movement for gradient aggregation becomes a performance bottleneck for DRL and
many other DNNs training using data parallelism [119, 120, 116]. When we design acceleartor
for DRL in Section 3.2, we combine the weight gradient computation and aggregation in one
phase. As shown in the right side of Figure 2.1-(3), the dimension B of g—g and I becomes the
second axes of the tensor, which is accumulated during the computation. This combines the
weight gradient computation and aggregation in one unified operation, thereby eliminating
unnecessary data movement. Meanwhile, the operation pattern in WG is also unified with

FP and BP as the same 7-level nested loop through this reshaping. Therefore, the dataflow

introduced in Section 3.2 can be seamlessly applied to these three phases.
2.2 Fundamentals of Large Language Models

2.2.1 Decoder-Only Transformer Architecture

Large Language Models (LLMs) predominantly utilize the Transformer architecture, intro-
duced by Vaswani et al. [200]. Specifically, decoder-only Transformers are employed for au-
toregressive tasks such as text generation. The architecture, as shown in Figure 2.2 comprises
a stack of multiple identical decoder blocks, each containing a Multi-Head Self- Attention
(MHSA) mechanism, a Feed-Forward Network (FFN), Residual Connections and
Layer Normalization.

Each token in the prompt is first embedded into a vector space and combined with
positional encodings to retain sequence information. The output of the final decoder block
is projected onto the vocabulary space using a linear transformation followed by a softmax

function to obtain probability distributions over the next token.

Multi-Head Self-Attention (MHSA)

The self-attention mechanism allows the model to weigh the importance of different tokens

in the input sequence when encoding a particular token. For an input sequence represented



‘uwreyyed peyrun e

s ‘9sou doo[ pue wWRISRIP YOO[( 9} Ul UMOYS oI IoAe] [RUOIIN[OAUOD ® JO soseyd oot} ur suorjerodo pue SIOSUQJ, :T°g 9INSIIg

yojeq e jo sjuaipesb

xeliellgli) 20x busxeliieAslilio] , 7 =+ ballAllo] 72 ( 1
1
pajebaibby A op X3 1BUN 0 = X0 10} sjuaipelb
op A3 |3un g = fs 10} |le Jo ueaw
op Xy |3UN Q = XJ 10} ayj aje|nojed 0
op Ay Inun g = A1 10} ‘ d
0 A op g |pun g = q 104 usay} ‘sswn g < iy
op 4 1un Q = 4 Jo} uolN|oAu0d gz gmé
i op D |BuUN Q=9 10}
H| «— —>
Q& »L " “
! M ' o oe
— Y —% uoyebaibbe (roao) M€ (gegoyy (o)
X2 A " firy iz, “m 3 oe HCQ_—UN.._D ~ 1 20 1 20
Car Cremao,y (27449 g, suquod JusIpelD yBIop :OM (€)
DellAlio], M xDexyliA+AylHIa1 28 =+ [xyliAyllollq] W PallANPIAM x
e Pa+xa][Au+Aa]ollq] 1 =+ [xaliAs]kllglO
Op X¥ IB3UN ( = XJ 1o} Op X¥ IB3UN ( = XJ 10}
op A [3un g = A1 10} op Ay |13un o = A1 10}
Oop XH [13UN O = Xy 10} op X3 [13Un = X8 10}
op AH mun g = Ay 10} op A3 |yun g = Ao 10y
g g P D op 4 npung =4 .o} q q : d op D I3un g =2 o}
Oop D |3un( =9 104 op 4 |jpun O = J Jo}
A op g pun g =qio} i op g nunQ=qio}
" @NH @@F\ Bed am@ H \ W&F
< 5 Aﬂ!\m <A uonebedoid 7 2 —") uonebedoid
S o0 piemyoeq | : g pJEMIOH
Aaml&mlbhmvmmw A:\”m?wmﬂmlmvmﬁ Aamramrnﬂrbvk\s "mm ANV A@maﬂm“h“mVO Ammasmaonm.vN Aam&.ﬁﬂmnonnﬂv\_\» ”mh— A_\V
A3/x3 AH/XH Ad/xd E| ) g uolnejoN
WBIRH/YIPIAM JUBIBH/IPIM wbeH/yPIM | (jBuueyd Indino) jsuuey) Jndu yojeg nduj uoisuawiq Josua]
Indino Indu| J8yi4 1814 Jublop #




10

Softmax R P
| [ l S b ¢
1 '
| LITEET: | g Feedforward
I /’ Network
Decoder Block L7
Decoder Block Layer Norm
\
a
AN A
Decoder Block N
\
' \ Multi-Head
| Positional Embedding | N S
] \
| Linear | \\\
' AN Layer Norm
| Tokenization | S

1

Open the pod bay doors, HAL.

Figure 2.2: The decoder-only transformer model architecture.

by matrix X € R™*? where n is the sequence length and d is the model dimension, the

self-attention is computed as:

Attention(Q, K, V) = soft (QKT> % (2.5)
ention(Q, K, V) = softmax .
Vdy

Here, the queries @, keys K, and values V are linear projections of the input:

Q=XW?e K=xwkE, v=xw" (2.6)

where W WK WV e R¥dk are learnable weight matrices, and dj, is the dimension of
the key vectors.
To capture different types of relationships and features, multiple self-attention mecha-

nisms, known as heads, are run in parallel:

MHSA(X) = Concat(heady, . .., head;,)W©° (2.7)
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where each head is computed as:

head; = Attention(XWiQ, Xwi xw)) (2.8)

and WO € R"xxd ig 3 learnable projection matrix.
To improve efficiency and scalability, several variants of the attention mechanism have

been proposed:

e Multi-Query Attention (MQA): Uses a single set of keys and values for all heads,

reducing memory usage and computational cost [167].

e Grouped-Query Attention (GQA): Groups multiple queries to share keys and
values, balancing between MHA and MQA in terms of performance and efficiency [6].

Figure 2.3 shows the block diagram of a transformer block with GQA.

e Multi-head Latent Attention (MLA): Compresses key and value inputs into lower-
dimensional latent vectors, which significantly reduces the Key-Value (KV) cache size

for more efficient inference (46, 47].

These variants are particularly beneficial during the decoding phase of inference, where

efficiency is critical.

Feed-Forward Network (FFN)

Each Transformer layer includes a FFN, which usually consists of two linear projections with

a non-linear activation in between:

FFN(z) = o(zW1)Ws (2.9)

where o is the non-linear activation such as ReLU, W € R%%4sr W, € R4 %4 and d If
is typically larger than d, allowing the model to capture complex patterns [200].

Variants using Gated Linear Units (GLU) introduce a different structure [168]. An
FFN with GLU, such as SwiGLU (using the Swish activation) or GEGLU (using GELU),
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employs three linear projections to create a gating mechanism that can selectively control

the information flow, often leading to improved performance and training dynamics:

FFNGLU(x) = (U(.%'W) X .%'V)WQ (2.10)

where V' acts as the gate and is element-wise multiplied by the activated output of
the first linear projection. Figure 2.3 shows the block diagram of a transformer block with

SwiGLU.

Mizture-of-Ezxperts

Mixture-of-Experts (MoE) models introduce sparsity by activating only a subset of expert
networks for each input, allowing for larger models without a proportional increase in com-

putational cost. The routing mechanism determines which experts are activated:

E

MoE(zx) = Z Gi(z) - Expert;(x) (2.11)
1=1

where F is the total number of experts, Expert, is the i-th expert network, and G;(x) is

the gating function output, often implemented as a softmax over the experts [169].

2.2.2  Phases of LLM Inference

This inference process of generative LLM unfolds in two phases: prompt processing, or
prefill, and token generation, or decode. The prefill stage occurs first and is used to generate
only the first token of the response. All subsequent tokens are generated in the decode stage.
This iterative process continues until a specific end-of-sequence (EOS) token is generated
or the sequence reaches a predefined maximum length. The key operations of an attention
head in prefill and decode are shown in the right part in Figure 2.3.

During the prefill stage, we compute over the full context of the input prompt to generate
the first new token. This often turns the computation bounded as we have dense computation
over the full input sequence. We also keep the key and value projections inside each layer

of the self-attention block into a data structure called the key-value (KV) cache.
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During the decode stage, only the last generated token is given as the input context .
Inside the self-attention block, we need the KV projection for the entire context, thus the new
token’s KV projections are concatenated with the cached KV projection to attain the full
context KV projection. This new token’s KV projections are also written back to the cache
for future tokens. Because the transformer decoder block is causal and masks backwards
connections, the result using the KV cache is algebraically equivalent to recomputing the
entire model on the full context.

The KV cache will significantly reduce the number of operations per token at the expense
of maintaining the KV cache. It also makes the model significantly more memory bound.
In the decode stage, as shown in lower right of Figure 2.3, each decode token has to do
the self-attention independently. Therefore, two MatMul operations q_mul_k and a_mul_v
become matrix-vector multiplications (GEMVs), which require a large KV cache load as the

context length increases.

2.3 System Techniques for AI Inference

2.8.1 Multi-Device Parallelism

Large AI models such as LLMs require distributing operations across multiple devices (map-
ping) due to their computational and memory demands. This section covers five key multi-
device parallelism paradigms. While Data Parallelism and Model Parallelism are broadly
applicable to Deep Neural Networks (DNNs), Context Parallelism and Expert Parallelism
are primarily employed in LLMs.

Data Parallelism (DP) [107, 117] replicates the entire model on each device, with each
processing a subset of the input batch. DP is simple to implement but memory-intensive. It
is commonly used in large batched DNN training to improve the training throughput, while
the batch size of inference tasks can be very small, in which case data parallelism cannot
take advantage of all nodes.

Model Parallelism [43] partitions the model itself, assigning parts to different devices.
This reduces per-device memory but can increase inter-device communication. Depending

on the partition dimension, there are Tensor Model Parallelism (TP) and Pipeline
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Model Parallelism (PP) [78, 104, 213, 55|. TP partitions individual model layers across
devices. Operations within layers are distributed, requiring frequent synchronization, such
as partial sum accumulation and layer normalization. PP assigns blocks of layers to devices,
and all devices operate in a pipelined fashion. Compared to TP, PP eliminates most of the
inter-node communication.

Context Parallelism (CP) [118, 212] distributes the input sequence across multiple de-
vices or processing units. Instead of processing an entire sequence on a single device, context
parallelism divides the tokens so that different parts of the sequence are handled in parallel.
CP helps reduce memory pressure and improves throughput, especially for long-context in-
puts, by enabling devices to work on separate portions of the sequence simultaneously while
synchronizing only the necessary intermediate states.

Expert Parallelism (EP) [51], used in Mixture of Experts (MoE) models, distributes
numerous specialized expert subnetworks across devices. EP scales model capacity while
keeping per-token computation manageable, but faces challenges in load balancing and effi-
cient token routing.

These parallelism strategies are often combined, and the choice of which to use, or how
to combine them, is critical for achieving optimal performance and efficiency in large-scale

AT inference.

2.3.2 Dynamic Batching and Scheduling for LLM Serving

Efficiently serving LLMs requires sophisticated batching and scheduling techniques to max-
imize throughput and resource utilization while maintaining acceptable latency for users.
Batching, the process of grouping multiple requests for simultaneous processing, is particu-
larly critical for improving throughput, especially for inference tasks like token generation
during decoding, which often have a low arithmetic intensity. However, naive batching
strategies applied to interactive requests, such as those in chat applications, can introduce
unacceptable end-to-end latency. Dynamic batching techniques aim to strike a balance be-

tween these competing objectives.

Several batching strategies have been developed to address different aspects of the latency-
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throughput trade-off in LLM serving;:

Standard Batching (or Static Batching) is the traditional approach where incoming
requests are grouped into batches, often of a fixed size, before execution. A key drawback
is potential underutilization: all requests in a batch are typically processed until the longest
sequence completes, often involving padding shorter sequences. This means compute re-
sources can be idle while waiting for the entire batch to finish, especially when sequence
lengths vary significantly.

Continuous Batching (CB) [216] improves upon static batching by processing a dy-
namic batch of requests. In each iteration, the system processes all active requests in the
current batch. New requests can be added to the batch as they arrive and capacity permits,
and completed requests are removed. Consequently, new requests do not have to wait for all
preceding requests in a fixed batch to finish. This significantly improves system utilization
and reduces average latency, especially for dynamic workloads with varying request rates
and lengths.

Mixed Continuous Batching (MCB) [74] further refines CB by enabling the prefill
phase of new requests to be processed concurrently with the decode phase of ongoing re-
quests within the same iteration, as illustrated in the top plot of Figure 2.4. This strategy
efficiently interleaves the compute-intensive prefill operations with the memory-bandwidth-
bound decode operations. MCB enhances hardware utilization and reduces queueing delays,
proving particularly beneficial in interactive settings where responsiveness is key.

Chunked Mixed Continuous Batching (C-MCB) [4]| addresses the challenge of
large prefill requests, which can still significantly increase iteration times even in MCB. C-
MCB mitigates this by dividing large prefill computations into smaller, more manageable
chunks. This allows decode operations for active requests to be interleaved more finely
with these prefill chunks, minimizing the latency impact of long prompts on other requests,
as shown in the bottom plot of Figure 2.4. By carefully selecting chunk sizes, C-MCB
can prioritize decode tasks, thereby improving overall system utilization and throughput.
While chunking might imply additional KV-cache operations, this typically incurs negligible
performance overhead because the prefill phase is generally compute-bound rather than

memory-bound.
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2.8.83 Hardware-Aware Model Co-design

Beyond optimizing system-level scheduling and batching for existing models, a significant
trend in improving Al inference efficiency involves hardware-aware model co-design. This
paradigm no longer views Al models and hardware architectures as independent entities,
but instead advocates a synergistic approach where model architectures, algorithms, and
even training methodologies are developed with explicit consideration of the underlying
hardware’s capabilities and constraints [64|. This holistic strategy becomes increasingly
important, especially for large-scale models like LLMs, where the interplay between model
complexity and hardware limitations determines the overall performance, cost, and energy
efficiency.

Recent large-scale LLM deployments provide compelling examples of this co-design con-
cept. For example, the DeepSeek-V3 system demonstrates how hardware-aware model design
choices can lead to more cost-efficient training and inference on existing GPU clusters [222].
Key aspects of such co-design include:

Memory Efficiency through Model Architecture: The enormous memory foot-
print of LLMs, particularly due to the Key-Value (KV) cache in Transformer attention
mechanisms, is a primary target for co-design. Techniques like Multi-head Latent Attention
(MLA), as employed in DeepSeek-V3, aim to reduce KV cache demands by compressing key-
value representations, thereby improving memory efficiency and allowing for longer context
lengths or larger batch sizes on memory-constrained hardware [47, 222|. Other model-side
innovations like Grouped-Query Attention (GQA) [6] and Multi-Query Attention (MQA)
[167] also represent efforts to make attention mechanisms more hardware-friendly from a
memory perspective.

Computational and Communication Co-optimization: For models incorporating
techniques like Mixture of Experts (MoE), which scale model capacity by selectively acti-
vating sub-networks (experts), co-design is crucial. The routing of tokens to experts and the
communication patterns for aggregating expert outputs must be optimized in conjunction
with the hardware’s interconnect topology and parallelism capabilities. DeepSeek-V3 [222]
discusses optimizing their MoE architecture for the specific NVIDIA H800 GPU cluster, con-
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sidering computation-communication trade-offs and employing techniques like node-limited
routing.

Leveraging Low-Precision Arithmetic: Modern Al hardware often includes spe-
cialized units for lower-precision arithmetic (e.g., FP8, INT8) to improve throughput and
reduce memory bandwidth. Hardware-aware model co-design involves training or fine-tuning
models to be robust to these lower precisions (e.g., through quantization-aware training or
specific training recipes for formats like FP8). This ensures the model can effectively utilize
the hardware’s peak performance capabilities without significant accuracy degradation.

Hardware-Aware Neural Architecture Search (NAS): Another dimension of co-
design involves incorporating hardware performance metrics (e.g., latency, energy) directly
into the search process for optimal neural network architectures [49].This ensures that the
discovered architectures are not only accurate but also efficient on the target hardware
platform.

The insights from such large-scale deployments and research efforts highlight that achiev-
ing optimal efficiency for demanding Al workloads, particularly LLMs, increasingly requires
a departure from a siloed approach to model and hardware development. Instead, a deeply
integrated co-design process, where algorithmic innovations evolve in tandem with architec-
tural features, is becoming the norm to push the frontiers of Al system performance and

scalability.

2.4 Specialized Hardware Acceleration

The computational demands of state-of-the-art Al models, especially Large Language Models
(LLMs), have exceed the capabilities of general-purpose processors like CPUs and GPUs.
This has created an urgent need for specialized hardware accelerators to deliver the required

performance and energy efficiency.

2.4.1 Motivation for ASICs

General-purpose CPUs are designed for a wide range of tasks and offer great flexibility,
but their architecture is not inherently optimized for the highly parallel, matrix-multiply-

intensive operations that dominate AI computations. While GPUs, originally designed for
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parallel graphics rendering, have been successfully repurposed for Al workloads due to their
massively parallel architecture, they still retain some general-purpose overheads and may
not always provide the optimal balance of performance, power, and cost for specific Al tasks
at scale.

Application-Specific Integrated Circuits (ASICs) offer a solution by providing hardware
tailored to the computational patterns of Al algorithms [87, 27, 41]. By designing circuits
from the ground up for tasks like convolution, matrix multiplication, and activation func-
tions, ASICs can achieve the following:

Higher Performance: Dedicated data paths and massive parallelism allow ASICs to
perform Al computations significantly faster than general-purpose hardware.

Greater Energy Efficiency: By eliminating unnecessary general-purpose logic and
optimizing data movement, ASICs consume less power for the same Al workload, a critical
factor for both edge devices and large-scale datacenter deployments.

Lower Cost at Scale: While the initial design cost (Non-Recurring Engineering, or
NRE) of ASICs is high, for high-volume applications, the per-unit manufacturing cost can be
lower than that of complex general-purpose chips, leading to better Total Cost of Ownership
(TCO).

The rise of LLMs, with their enormous parameter counts and computational needs, has
further intensified the drive towards AI ASICs. The sheer scale of computation required to
train and serve these models makes efficiency paramount, and ASICs provide a pathway to

achieve this at the scale demanded by modern Al applications.

2.4.2  Principles of Hardware Acceleration for Al

Effective hardware acceleration of Al depends on several key architectural principles and
optimization techniques:

Specialized Compute Units: Instead of general-purpose ALUs, Al accelerators fea-
ture dedicated units for operations like MAC (Multiply-Accumulate), vector processing, and
sometimes specific activation functions. Tensor cores with systolic arrays, which perform

matrix-matrix multiplications efficiently, are a prime example [109, 87, 132].
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Dataflow Architectures: The way data (activations, weights, partial sums) is moved
and processed within the accelerator is critical. Different dataflow strategies (e.g., weight
stationary, output stationary, input stationary, row stationary as discussed in Section 3.1
or more flexible schemes like F'|B|C as discussed in Chapter 3.2 for DRLP) aim to maxi-
mize data reuse and minimize energy-intensive data movement to and from off-chip memory.
Systolic arrays are a common architectural pattern that implements specific dataflows effi-
ciently [28, 29, 112].

Memory System Optimization: Traditionally, this involves memory hierarchies with
large on-chip SRAM (caches, scratchpads, buffers) to keep frequently accessed data (weights,
activations, LLM KV cache) near compute units, reducing costly off-chip data movement
(e.g., DRAM or HBM) [87, 29]. Emerging paradigms further minimize data transfer. Near-
memory processing moves compute closer to memory (e.g., in 3D stacks). In-memory com-
puting or processing-in-memory (PIM) performs computations directly within memory ar-
rays (e.g., using ReRAM or specialized SRAM/DRAM) |5, 166, 165].

Reduced Precision and Quantization: Many DNNs can tolerate computations at
lower numerical precision (e.g., 16-bit floating point (FP16/BF16), 8-bit integers (INTS),
or even lower) with minimal loss in accuracy. Using reduced precision reduces memory
footprint, memory bandwidth requirements, and the energy/area of compute units [68, 86].

Sparsity Exploitation: DNN weights and activations can often be sparse (containing
many zero values). Hardware that can skip computations involving zeros or store sparse
data in compressed formats can significantly improve performance and efficiency [68].

The effectiveness of Al accelerators is evaluated based on several metrics:

e Throughput: Operations per second (e.g., TOPS, FLOPS) or inferences or tokens

per second.

e Latency: Time taken to complete a single inference or generate a token.

e Energy Efficiency: Operations throughput normalized by power (e.g., TOPS/W),

or energy per operation (e.g., Joule/Inference, Joule/Token).
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e Area Efficiency: Operations per unit of silicon area (e.g., TOPS/mm?).

e Total Cost of Ownership (TCO): Includes capital expenditure (chip cost, server
cost) and operational expenditure (power, cooling) over the system’s lifetime. For
cloud providers and large-scale deployments, TCO per unit of performance (e.g.,

TCO/Token) is often the ultimate metric.

2.4.8 Challenges in Al Accelerator Design

Despite the potential benefits, designing efficient and effective Al accelerators presents nu-
merous challenges [176, 157].

The Memory Wall: As compute capabilities increase, providing sufficient memory
bandwidth and capacity to keep the PEs fed with data becomes a primary bottleneck. This
is particularly acute for memory-bound operations common in LLMs, such as the attention
mechanism and large embedding table lookups.

Scalability: AI models continue to grow in size and complexity. Designing architectures
that can scale efficiently to accommodate future models, both within a single chip and across
multiple chips/servers, is a major hurdle. This involves scalable interconnects, memory
systems, and programming models.

Flexibility vs. Efficiency Trade-off: Highly specialized ASICs can achieve peak ef-
ficiency for a specific model or task but may perform poorly on others. As Al algorithms
rapidly evolve, designing accelerators that offer a good balance between efficiency and pro-
grammability /flexibility to support a range of current and future models is crucial.

Power Delivery and Thermal Management: High-performance accelerators can
consume significant power, leading to challenges in power delivery networks and heat dissi-
pation, especially in dense server environments or power-constrained edge devices.

Hardware-Software Co-design: Achieving optimal performance requires close inter-
action between hardware architecture and software (compilers, runtime systems, mapping
strategies). Compilers must efficiently map complex Al models onto the parallel hardware,
optimizing data movement and resource utilization [40].

Cost and Non-Recurring Engineering (NRE): The design and verification of an
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ASIC involve substantial upfront NRE costs, including expenses for design tools, engineering
effort, and silicon mask sets. For an ASIC to be economically viable, these NRE costs must
be amortized over a sufficiently large volume of chips or justified by significant TCO savings

compared to alternative solutions [98, 123].

2.4.4 The NRE Challenge and Amortization in the Era of LLMs

The high NRE costs associated with ASIC development have traditionally been a barrier to
their widespread adoption, especially for applications with uncertain market sizes or rapidly
changing algorithms. However, the landscape is shifting with the advent of large-scale Al
deployments, particularly for LLMs.

The immense demand for LLM inference capabilities, driven by applications like chatbots,
content generation, and Al-powered search, translates into a massive volume of computa-
tions. As discussed in [145], the operational TCO of running these workloads on existing
general-purpose hardware (like GPUs) at the required scale can be extraordinarily high.
For instance, serving applications like ChatGPT or integrating LLMs into high-volume web
search implies a TCO that can run into hundreds of millions or even billions of dollars an-
nually. In such high-demand scenarios, the substantial TCO savings offered by an efficient,
specialized ASIC can quickly outweigh its initial NRE. Even if an ASIC offers only a mod-
est percentage improvement in TCO/Token compared to GPUs, the sheer volume of tokens
generated means that the cumulative TCO savings can amortize the NRE relatively quickly.

Figure 2.5 shows the minimum required TCO /Token improvement in order to justify the
NRE. We extend the NRE model from Moonwalk [98] to use a 7Tnm technology node and
estimate the NRE of an ASIC accelerator for large language models to be approximately
$35M, including silicon mask cost, CAD tools, IP licensing, flip-chip BGA packing, server
designs, and labor. Even if it were $100M, the current cost of running workloads like
ChatGPT and web search with integrated LLMs is so massive that it not only justifies
the cost of creating ASIC supercomputers but going even further as to co-optimize those
supercomputers for specifics LLMs for additional improvement in TCO per token.

Therefore, while NRE remains a significant factor, the unprecedented scale of LLM de-
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Figure 2.5: Minimum TCO/Token improvement required from an ASIC to justify NRE costs

as a function of baseline TCO on existing hardware.

ployment is creating a scenario where the economic benefits of specialized ASICs can over-

come this initial investment, paving the way for more customized and efficient Al hardware.
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Chapter 3

FOUNDATIONAL WORK: ACCELERATING EARLY Al
PARADIGMS

The rapid evolution of artificial intelligence has been characterized by increasingly com-
plex neural network models. Before the recent dominance of Large Language Models (LLMs),
significant research focused on developing efficient hardware for earlier paradigms like Con-
volutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Deep Rein-
forcement Learning (DRL). These foundational models, while significantly smaller in scale
than modern LLMs, presented their own unique challenges for hardware designers, includ-
ing diverse computational patterns, memory access bottlenecks, and the need for flexibility.
This chapter details foundational research undertaken during the author’s doctoral studies,
exploring architectures designed to accelerate these earlier AI workloads. These explorations
provided critical insights and experience that informed the subsequent focus on LLM acceler-
ation. Specifically, we will discuss iFPNA | a flexible processor targeting diverse early models,
and DRLP, a specialized accelerator tackling the unique demands of Deep Q-Learning, in-

cluding its emulation on cloud FPGAs.

3.1 iFPNA: A Flexible and Efficient Deep Learning Processor in 28nm CMOS

The discussion, figures, and tables related to the iFPNA architecture presented in this section
are based on and reprinted from our prior work published in [26].

As deep learning algorithms evolved rapidly, the need for hardware that could adapt to
various network types (CNNs, RNNs, Fully Connected networks) became apparent. Fixed
data flow schemes in early processors limited their coverage of different algorithms, motivat-
ing the development of more flexible solutions.

The instruction and Fabric Programmable Neuron Array (iFPNA) architecture was de-
veloped collaboratively to address this need [26]. Presented as a 28nm CMOS chip prototype,
iFPNA aimed to accelerate a variety of DNNs efficiently on a single platform. The iFPNA
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Figure 3.1: The iFPNA architecture.

architecture combines instruction-level programmability as in an Instruction Set Architec-
ture (ISA) with logic-level reconfigurability as in a Field-Programmable Gate Array (FPGA)
in a sliced structure for scalability. Four data flow models, namely weight stationary, input
stationary, row stationary and tunnel stationary, are described as the abstraction of vari-
ous DNN data and computational dependence. The iFPNA compiler partitions a large-size
DNN to smaller networks, each being mapped to, optimized and code generated for, the
underlying iFPNA processor using one or a mixture of the four data-flow models. Experi-
mental results have shown that various CNNs, RNNs, and FC networks can be mapped to

the iFPNA processor, achieving the near ASIC performance.

Architecture Overview

Figure 3.1 illustrates the overall iIFPNA accelerator architecture. It features a programmable
data flow engine for executing instructions and 16 neuron slices for performing data-intensive
computing in parallel. FEach slice consists of a reconfigurable multiply-and-accumulate
(MAC) array, a programmable adder tree, a universal activation engine (UAE), a pooling
block, local scratchpad registers, and a weight memory block.

Each MAC array is highly configurable, supporting multiple vector/bit modes: specif-
ically, it can be configured as 9x16-bit, 16x8-bit, 25x6-bit, or 36x4-bit MAC units by
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Instruction (Opcode) Operand I | Operand II | Operand III

Weight Load (WL) Length Src. Addr. | Dst. Addr.

Vector Collect (VC) Src. Addr. | Dst. Reg. Sld./Sps.
Computing Execute (EX) Mode Dst. Addr.

Table 3.1: iFPNA Instruction Set.

programming its constituent 27x8-bit and 9x4-bit multipliers and adder trees. All slices
share a feature vector input generated by the data flow engine and computing instructions
but possess their own weight memory. To support data flows like row stationary, slices can

accumulate partial sums from neighboring slices.

A register file (RF) bridges the data flow engine and the slices, containing three types
of registers: an 8x8&8-bit configuration register array, an 8x8-bit general-purpose register
array (for addresses, etc.), and a 4x128-bit SIMD register array for collecting/feeding data

from /to slices in parallel. Off-chip memory access utilizes a 16-bit custom I/O interface.

Programmability

iFPNA features multi-level programmability:

Instruction Set: The central controller uses an ISA extended with DNN-specific in-
structions (Table 3.1) like Weight Load (for DMA), Vector Collect (for loading features into
SIMD registers with options for sliding/sparse data), and Computing Ezecute (to trigger
computation in the slices). This allowed different data reuse patterns and PE operations to

be defined by compiled programs, offering more flexibility than fixed FSM controllers.

Fabric Reconfigurability: The MAC units supported various quantization modes (4
bit to 16 bit). The activation/pooling engine could be configured for different functions
(ReLU, Sigmoid, Tanh, various pooling types, element-wise operations for LSTM /Batch
Norm). Inter-slice communication fabric allowed for partial sum transfer between neighbor-

ing slices, enabling more complex data flows like Row Stationary.
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Data Flow Models

To handle diverse computational patterns and data dependencies, iFPNA supported four
distinct data flow models, selectable by the compiler based on network layer characteristics

and hardware constraints:

e Weight Stationary (WS): Weights are held stationary in slice memory, and input
features slide across them (Figure 3.2). Simple but potentially high latency due to

repeated feature loading.

e Input Stationary (IS): Input features are held stationary in registers/scratchpads,
while different weights are shuffled through the PEs (Figure 3.3). Effective for layers

with many kernels, reducing feature load latency.

e Row Stationary (RS): Exploits convolutional reuse by holding rows of weights sta-
tionary and streaming input rows, accumulating partial sums diagonally across slices
using inter-slice communication (Figure 3.4). Reduces movement of all data types but

requires more scratchpad space and specific PE array configurations.

e Tunnel Stationary (TS): An enhancement over RS, fragmenting weights differently
(like 1x 1 x9 tunnels) to hold smaller input feature segments stationary, reducing input
scratchpad needs and improving PE utilization without requiring inter-slice commu-

nication for accumulation (Figure 3.5).

FEvaluation

A silicon prototype of the iFPNA processor has been designed and fabricated in a 28nm
HPC technology. The prototype system, as shown in Figure 3.6, consists of a PC running
the compiler, a PCle link that transfers data from the PC to the chip, and an FPGA board
to buffer the data transmitted to the chip. Table 3.1 shows the measured performance and

comparison with Eyeriss for CNNS [28], and OCEAN for RNNS [24]|. The iFPNA processor,
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Figure 3.6: iFPNA chip prototype and demonstration system.

while being highly flexible and programmable, achieves performance comparable to dedicated

CNN/RNN accelerators.

The experience with iFPNA highlighted the importance of architectural flexibility, adapt-

able dataflows, and compiler support in efficiently mapping evolving Al workloads onto

hardware.

3.2 F|B|C: Optimized Deep Q-Learning with the Filter-Batch-Channel Dataflow

Deep Reinforcement Learning (DRL), particularly value-based methods like Deep Q-Learning

(DQN) and its successors (e.g., Rainbow |72]), represents another crucial Al paradigm. DRL

agents learn optimal policies through interaction with an environment, making them suit-

able for applications requiring real-time decision-making, such as game playing and robotics.

However, accelerating DRL presents unique challenges distinct from supervised learning.
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Eyeriss|28] OCEAN]|24] iFPNA
Technology 65nm LP I 65nm 28nm HPC
VDD (V) 0.82-1.17 0.8-1.2 0.65-0.9
Clock (MHz) 100-200 20-400 20-200
Application CNN RNN CNN/RNN
Data flow RS / WS/IS/RS/TS
Bit width 16b 16b 4b-16b
Power 278 mW 6.6-155.8 mW 33.3 mW
Peak Performance 56 GOPS 311.6 GOPS 53.4 GOPS
Peak Energy Efficiency | 0.35 TOPS/W | 2.0 TOP/W | 1.6 TOPS/W

Table 3.2: iFPNA measured performance and comparison.

3.2.1 Motiwation and Challenges in DRL Acceleration

Similar to conventional DNNs; DRL needs many training samples to train the DNN param-
eters. The main difference is that DRL is unsupervised learning. It generates the datasets
for training while the training itself is happening. Simply scaling up performance by using
massive numbers of GPUs for a large number of training data samples is often not possible in
DRL training because of the evolving environment. To generate the training data and target
outputs, there are often numerous network inferences with different inputs and parameters
involved.

We profile the end-to-end latency of one popular Q-learning algorithm Rainbow [72] on
a NVIDIA T4 GPU with different training batch sizes and different number of DNN layers.
As shown in Figure 3.7, DNN inferences (FP) account for up to 47.6% of the total end-
to-end latency, followed by the backward propagation, weight gradient computation, and
replay memory sampling. Thus, an accelerator with the optimization only on inference or
training will not be sufficient for an end-to-end DRL system. It is necessary to carry out
software/hardware co-optimization from a higher level.

Figure 3.8 shows a study of popular DRL algorithms. In contrast to DNNs, DRL typically
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Figure 3.7: End-to-end of Rainbow DRL latency breakdown on a GPU. DNN inferences
(FP) account for 36.0% to 47.6% of latency.

take millions of training iterations, while its model size is often much smaller, and the
dimensions of layers vary greatly. For hardware designers, the various shapes of DNN layers
are challenging because they affect the key design point of DNN accelerators: dataflow.
Many existing DNN dataflow works [111, 214, 77| aim to optimize a single layer. They rely
on a set of pre-selected data dimensions to exploit parallelism across an array of processing
elements (PEs), which usually works fine for DNNs where most layers has the similar shape,
such as ResNet-50 [71]. However, when the set of pre-selected data dimensions change across
layers, the array utilization may decrease (i.e., fewer PEs are used), resulting in a decrease
in both performance and energy efficiency. Furthermore, these works lack consideration
of actual physical implementation. Some dataflows require high data bandwidth of the
network-on-chip (NoC) to keep the PEs fully utilized, and custom-designed datapaths for
inputs and outputs data, leading to a high design and control overhead. As a result, these
dataflows and architecture designs are often difficult to scale, which makes it difficult to
accelerate future large-scale DRLs (more actors/learners, large training batch size, potential

large networks, etc). Therefore, a dataflow that can maintain its advantages across all layers

of DRL training and an accelerator architecture with good scalability are crucial.
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Figure 3.8: A study of popular DRL algorithms. With the large number of training
iterations, DRL often uses a shallow DNN and the layer shape varies greatly.

Prior research in accelerator architectures for deep reinforcement learning is relatively
uncommon. FA3C [32] is an FPGA-based DRL platform for a certain class of algorithms,
Asynchronous Advantage Actor-Critic (A3C) [127]. It exploits standard DNN hardware ac-
celeration techniques, like the dynamic data layout optimized for inference and training of
the neural networks in A3C. Implemented on FPGAs, FA3C achieves 1.28x better perfor-
mance and 1.62x better energy efficiency than using GPUs. We focus on Q-learning based
DRL training such as Google DeepMind’s Rainbow [72| and R2D2 [94], which enjoys several
desirable properties over A3C. Since A3C is asynchronous, the training data is generated in
real time, so the training batch size is limited, usually set as 5. With the help of the ex-
perience replay mechanism [125, 139|, training data in Q-learning DRL comes from a large
replay memory, and the batch size can be as large as 32 in most cases. Compared with
policy-based methods, Q-learning methods are more sample efficient and achieve state-of-
the-art performance on the Atari benchmarks [94]. To the best of our knowledge, our work

is the first work that aims to accelerate Q-learning-based DRL training.
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Figure 3.9: Change rate of adjacent frames.

3.2.2  Hardware/Software Co-Optimization Strategies

To tackle the unique performance hurdles of Deep Q-Learning, two key hardware-software

co-optimization strategies were developed.

Exploiting State Similarity

In many simulation-based or game environments, consecutive states (St, Sy11) exhibit high
temporal locality. To better quantify the similarity between states (frames), we analyze the
difference of neighboring frames from 5 different Atari 2600 games, 3 scenarios from Google
Research Football [110], and 3 popular board games, as shown in Figure 3.9. For the Atari
games, we observe that only around 0.95% to 5.15% of pixels are changed per frame.

Inspired by the observation, we propose a method to use the similarity between
states to reduce the computation of FP in training. In current implementations,
qo(S;) and qg(S;+1) are executed sequentially as two forward propagation. However, there
are a lot of repeat operations in those two FPs, because their inputs are similar. Since the
DNN topology is known, given the index of different elements of two input tensors, one can
easily calculate the different indexes of output of each layer. If we did one NN FP on one
of the input tensor, to get the results of another input tensor, we just need to recalculate
those different indexes of each layer.

Figure 3.10 shows the example of a CONV layer with a 2 x 2 filter and the stride is

1. If two inputs have different element at idex (x = 2,y = 1), according to the operation
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Figure 3.10: The different output indexes can be derived based on different input indexes.

pattern of a CONYV layer, we can easily find out the different output elements, which are
located at (z = 1,y = 3),(z = 2,y = 3),(x = 1,y = 2), and (x = 2,y = 2). The input
different element involves the calculation of all of them. Note that different output channels
have the same different indexes since they come from the same inputs. Using this method,
when adding a new frame f;11 to the replay memory, we will also add a frame difference
Afit1. Afiy1 includes a set of tuple (index, fi+1]index]) that records the location and value

of different elements in frame f;11 compared with the previous one f;.

Target Pre-sampling

The target network gz in DQN, as shown in Equation 2.4, is a periodic copy of the online net-
work gg. It helps stabilize learning but doubles the network parameter storage requirement
on the accelerator. Given that the large replay memory (e.g., 1 million transitions) changes
very slowly relative to the training frequency (e.g., only 0.8% change after 8k steps), the tar-
get pre-sampling technique was proposed. Instead of storing and using ¢z directly, the system
periodically (e.g., every m steps) pre-computes the target values needed for the loss function
(go(Sj+1) for a representative sample of next states Sj;1 likely to be drawn from the replay
memory soon) using the current online network parameters 6. These pre-computed target
values are then used for the subsequent training steps until the next pre-sampling phase.

This effectively eliminates the need to store or transfer the target network parameters 6 on
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Figure 3.11: The training speed differences when applying different sampling scheme. X-

axis represents training steps, Y-axis represents achieved scores during the training.

the accelerator, halving the on-chip parameter memory requirements.

Figure 3.11 compares the highest evaluation scores achieved of the pre-sampling enhanced
Rainbow [72]| with the original version on four different Atari tasks. Compare with the
baseline, our method performs the same in pong, improving by 0.3% and 0.7% in boxing
and crazy climber, respectively, and is 1.8% worse in space invaders. This demonstrates that

the pre-sampling will not compromise training accuracy.

These co-optimizations target the major bottlenecks identified in DRL Q-learning: exces-

sive forward passes and replay memory access, significantly improving end-to-end efficiency.
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3.2.8 The F|B|C Dataflow for Efficient DRL Training

To address the challenge of low PE utilization caused by varying layer shapes in DRL
networks and the high overhead of complex dataflows in some prior accelerators, a novel
dataflow named Filter-Batch-Channel (F|B|C) was proposed. This notation was originally
introduced in Interstellar [214] to represent which loops are spatially unrolled on a 2 dimen-
sional processing elements (PE) array. Specifically, U|V means that tensor dimension U
and V are processed in parallel across the vertical and horizontal PEs. All tensor dimension

notation refer to Figure 2.1.

Existing dataflows often parallelize across spatial dimensions or use complex schemes like
F|C or B|C. Spatial parallelization can lead to underutilization when output feature map
dimensions (E,, Ey) or filter counts (F) don’t match the PE array size. Complex schemes
like F|C or B|C can require multiple types of data movement (unicast, broadcast, neigh-
bor accumulation), leading to high NoC bandwidth requirements (O(n?) buffer bandwidth,
O(n?) link traversals for an n x n array), complex control, and poor scalability, as shown in

Figure 3.12.
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and C' are processed in parallel, and the other dimension is accumulated temporally.

F|B|C Dataflow

The F|B|C dataflow exploits spatial parallelism across the dimensions that are typically
more regular and often multiples of common values like 32 in DNN training: Filter count
(F), Batch size (B), and input Channel count (C). The specific dimensions parallelized
spatially versus accumulated temporally adapt to the phase of training to maximize data

reuse and efficiency (Figure 3.13):

e Forward Propagation (FP): Employs F|B spatial parallelism. Each PE row pro-
cesses a different sample from the batch (B dimension), and each PE column processes a
different output filter (F dimension). Input activations are broadcast vertically (reused
across filters F), weights are broadcast horizontally (reused across batch samples B),
and the computation across input channels (C dimension) is accumulated temporally

within each PE.

e Backward Propagation (BP): Employs B|C spatial parallelism. PE rows handle
batch samples (B), columns handle input channels (C). Weights are reused within rows,

output gradients within columns. Filter dimension (F) is accumulated temporally.

e Weight Gradient (WG): Employs C|F spatial parallelism. PE rows handle input
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channels (C), columns handle output filters (F). Output gradients are reused within
rows, input activations within columns. Batch dimension (B) is accumulated tempo-

rally (integrating gradient aggregation, as shown in Figure 2.1).

The architecture design can be simplified and easy to scale by adopting our F|B|C. With
F|B|C dataflow, partial sum output element can be accommodated onto the PE array. Thus,
data locality for partial sum can be enhanced and all data reuse happens on-chip, significantly
reducing the overall data movement. Additionally, according to our above discussion, our
F|B|C dataflow require only one-dimensional broadcast. Compared with the three different
types of data movement needed in previous works (unicast, 1D broadcast and the adjacent
addition), our dataflow substantially decreases the design and control cost. For example,
the peak buffer bandwidth needed for a n x n PE array is O(n), and the link traversals of
the dataflow is O(n?), as shown in Figure. 3.14.

In Figure 3.15, we compare F|B|C with three common dataflows: Ry|E, (i.e., row-
stationary) from [28], F|C' from [99], and E;|E, from [33] on a 32 x 32 PE array. For
dataflows cannot fill the whole array, we add a third-level parallelism dimension, which can
utilize as many PEs as possible.

By parallelizing across F, B, and C, which are often larger and more regular than spa-
tial dimensions, F|B|C achieves near 100% PE utilization across different layer types and

training phases. F|B|C only requires efficient 1D broadcasts (row-wise or column-wise).
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This drastically simplifies the NoC design compared to schemes needing unicast or complex
routing (Figure 3.14 vs Figure 3.12). It reduces NoC traffic and energy consumption. It en-
ables spatial reuse of both input tensors (activations/gradients and weights) in each phase,
reducing memory access. It can flexibly prioritize activation or weight reuse temporally
based on the phase, which is beneficial as DRL training involves significant activation data.
The F|B|C dataflow provides a robust foundation for building efficient and scalable DRL
training accelerators.

The principle of achieving hardware efficiency through flexible, compiler-aware mapping
of tensor operations, rather than relying on fixed-size matrix multiplication units, is a grow-
ing area of investigation in Al accelerator design. For instance, recent work on general
tensor contraction processors, such as the TCP architecture by Kim et al. [100], also em-
phasizes flexible hardware (e.g., PEs divisible into slices) and a compiler-driven approach
to explore a broad space of lowered shapes and tactics for optimizing various tensor con-
tractions, primarily demonstrated for LLM inference. While TCP targets a broader range
of AT workloads and general tensor contractions with a more extensive compiler framework,
the F'|B|C dataflow represents a specific, structured strategy for adapting parallelism in the

context of DNN training phases.

3.2.4 DRLP: A Tiled Accelerator Architecture for F|B|C

Leveraging the F'|B|C dataflow, the DRLP (Deep Reinforcement Learning Processor) archi-
tecture was designed with simplicity and scalability as primary goals.

DRLP utilizes a 2D tiled architecture, as shown in Figure 3.16. A 32x 32 tile configuration
was chosen based on typical DRL batch sizes (often 32 or multiples thereof). The tiles (PEs)
are connected by a novel, efficient 1D broadcast Network-on-Chip (NoC). This NoC consists
of two independent sets of links (horizontal and vertical) capable of broadcasting data from
any tile to all other tiles in its row or column in a single hop, perfectly matching the
requirements of F'|B|C without needing complex routing logic. I0 modules are placed at
the periphery for communication with the host CPU and off-chip DRAM.

Each tile acts as a PE. It includes small, local register-file-based scratchpads (Input SPad,
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Figure 3.15: Compared with R,|E,, F|C, and E;|E, on a 32 x 32 PE Array, F'|B|C achieves

100% utilization, needs less NoC traffics and costs less energy in most cases.
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Figure 3.16: A high-level DRLP diagram and the tile with mixed-precision MACs. Tiles are
connected by two sets of 1D broadcast NoC to enable the F|B|C dataflow.

Output SPad) for buffering inputs and outputs, maximizing temporal data reuse within the
tile. A local memory (larger than scratchpads, e.g., 1KB) stores partial sums during temporal
accumulation (across C, F, or B depending on the phase) and can buffer activations/weights
for inter-layer or inter-phase reuse. The compute core is a mixed-precision MAC unit:
multiplication uses 16-bit bfloat16 format (reducing area and energy for multipliers and
memory storage), while accumulation uses 32-bit single-precision floating-point (fp32) to
maintain accuracy during the sum reductions, which is critical for DRL training stability.
Converters handle the bfloat16-to-fp32 transition where needed.

The NoC routers (Figure 3.17) implement simple routing rules: data entering from a tile
is broadcast in the specified direction (horizontal or vertical); data entering from a direction
continues in the opposite direction and is also delivered to the tile. This design eliminates the
need for destination addresses, simplifying control and minimizing latency and traffic. We
design the router based on a recent NoC design, Ruche Network [90], from the open-source

hardware library BaseJump STL [192].

3.2.5 FEwaluation

To evaluate the improvements brought from our high-level co-optimization for deep Q-

learning, we use 5 games from the Atari benchmark. To evaluate the dataflow and ar-
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Figure 3.17: (1) In most cases, data read from a tile will be broadcast to the whole row
(red arrows) to reuse horizontally or the whole column (blue arrows) to reuse vertically. (2)

shows the datapath inside each 1D broadcast router.

chitecture, we use different DNNs from the canonical DQN [128], data-efficient DQN [199],
and A3C [127], etc. We use Timeloop[141] to evaluate and compare the performance of
the DRLP and other designs. The evaluation is based on the dataflow, and the accelerator
architecture, etc. We compare a 32 x 32 DRLP against the following state-of-the-art DRL
and DNN systems and accelerators: a FPGA-based accelerator for A3C (FA3C) [32], a multi
GPUs-CPUs DRL system (iSwitch) [119], a recent DNN training accelerator [33] and two
RL accelerators [99] and [206].

Compared to FA3C [32], a prior FPGA-based accelerator for A3C, the projected ASIC
implementation of DRLP achieved a 43x speedup in inference throughput. Compared to
iSwitch [119], a distributed multi-GPU system optimized for DRL training, DRLP achieved
677 training iterations per second, representing a 15x speedup. Figure 3.18 shows the
breakdown that attributed these gains.

DRLP was also compared against optimistically scaled versions of a prior CNN training
accelerator [33] and other DRL accelerators [206, 99]. Across various DQN and A3C network

configurations, DRLP demonstrated speedups ranging from 1.14x to 2.18x (Figure 3.19),
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Figure 3.18: Speedup breakdown of DRLP over FA3C. F|B|C dataflow and co-optimization
bring 1.9x and 1.3x speedup, respectively.

underscoring the benefits of its tailored dataflow and co-design approach even against other
specialized designs.

These results validate the effectiveness of the proposed co-optimizations, the F|B|C
dataflow, and the DRLP architecture in efficiently accelerating demanding Deep Q-Learning

workloads.

3.2.6 FPGA Emulation and Real-Time Demonstration on AWS F1

Given the complexity and long runtimes associated with simulating large DRL workloads on
accelerators, and the cost of traditional hardware emulation systems, an FPGA emulation
approach using the Amazon Web Services (AWS) EC2 F1 cloud platform is adopted for
validation and testing.

A multi-stage flow was used to migrate the DRLP design to the FPGA:

1. Local RTL Simulation (VCS): Initial functional verification of the core accelerator

logic using simple memory models.

2. Local AWS RTL Simulation: Integration of the accelerator core with the AWS
Shell components (AXI interfaces, DMA, DDR controller models) using the AWS-

provided simulation environment. This step included adding AXI protocol checkers
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Figure 3.19: Speedup of DRLP over optimistically scaled CNN training accelerator (CNN
Train) [33], DRL accelerators [206] (DRL1) and [99] (DRL2) on DNNs training in different
DRL algorithms. DRLP achieves speedups of up to 1.68x, 1.49x and 2.18x.

and using a BaseJump-to-AXI bridge (Figure 3.20) to connect the accelerator’s native

interface to the AXI-based shell.

3. Local Co-Simulation (C/C++4/SystemVerilog DPI): Running C/C++ test-
benches that interact with the RTL simulation via the DPI, allowing for more complex
verification scenarios and initial software driver development. Modifications were made

to the AWS co-simulation API for better usability (e.g., handling binary DMA data).

4. FPGA Compilation (Vivado): Compiling the design locally and then uploading
it to AWS. The compile flag instantiates the Integrated Logic Analyzer (ILA) on the
DDR, DMA, and Bridge AXI interfaces to provide debug hooks. The compile process
can take hours, depending on the design. However, the speed advantage after compiling

is significant.

5. Cloud Runtime Testing: Launching an F1 instance, loading the compiled design
(AFI), and running the actual DRL application using software drivers interacting with

the FPGA via PCle.

This emulation setup enables the creation of a system where the DRLP design running on
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Figure 3.20: Block diagram of accelerator integrated with the AWS EC2 F1 shell.

the F1 FPGA controlled an agent in the OpenAl Gym environment. Specifically, the system
successfully demonstrates real-time gameplay of the Atari Breakout game, with the FPGA
performing the neural network inferences required for the agent’s actions. This serves as a
crucial end-to-end validation of the accelerator’s functionality within a complete application

loop.

While RTL simulation takes hundreds of seconds per game frame, the FPGA execution
time per frame is negligible. To make a fair comparison, we define the break-even point
as the number of frames after which the total time spent simulating exceeds the one-time
FPGA compilation cost plus the near-instantaneous emulation runtime. This break-even
point was found to be as low as 6 to 12 frames, as shown in Table 3.2.6. This demonstrates
that for workloads such as DRL, cloud FPGA emulation offers a dramatic acceleration in

development and testing cycles compared to traditional RTL simulation.
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Design Size | Per Frame RTL Simulation | FPGA Compilation | Break-Even

16 PEs 784 s 9403 s 12 frames
8 PEs 836 s 6823 s 9 frames
4 PEs 1065 s 5663 s 6 frames

Table 3.3: Break-even point for RTL simulation v.s. FPGA emulation

3.3 Conclusion

The foundational work described in this chapter, spanning the flexible iFPNA and the co-
designed DRLP, provided valuable lessons for tackling larger and more demanding AT work-
loads. Designing iFPNA underscored the need for programmability and adaptable dataflows
to handle diverse network structures. Developing DRLP highlighted the critical importance
of analyzing the entire application loop (including data generation and memory access pat-
terns unique to DRL), the benefits of hardware-software co-optimization (state similarity,
pre-sampling), and the impact of designing scalable, efficient dataflows (F|B|C') and corre-
sponding architectures tailored to specific computational characteristics. Challenges related
to memory bandwidth, managing different types of data reuse (across layers, phases, and
within operations), and achieving high utilization despite workload variability, encountered
in accelerating these earlier paradigms, directly informed the subsequent research focus on
the significantly larger scale and distinct architectural demands presented by Large Language

Models.
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Chapter 4

REALLM: A HOLISTIC HARDWARE SYSTEM SIMULATION
FRAMEWORK FOR LLM SERVING

4.1 Introduction

Generative Large Language Models (LLMs) have rapidly become one of the most exciting
and disruptive technologies in the machine learning space, revolutionizing natural language
processing tasks and driving advancements in conversational Al [136, 44], code generation
[59], and even multimodal content creation [138, 174]. As these language models continue to
grow in complexity, capability, and scale, following established scaling laws [93], the hardware
required to support them becomes increasingly elaborate and expensive. This exponential
growth in computational resource demands raises significant concerns about the scalability,
cost-efficiency, and environmental sustainability of deploying such advanced Al systems at
scale. Consequently, optimizing LLM inference deployments through effective hardware and

system co-design is increasingly essential.

Despite a growing interest and significant progress in designing hardware accelerators
for LLMs, a substantial gap remains between the theoretical peak performance of hardware
components and the realized system-level efficiency in production environments. Tradi-
tional accelerator studies often focus on chip-level metrics such as Floating Point Opera-
tions Per Second (FLOPS) and DRAM bandwidth, sometimes neglecting important system-
level factors that directly influence service-level objectives (SLOs) like time-to-first-token
(TTFT) and time-between-tokens (TBT). Achieving high throughput and low latency in
large-scale LLM inference requires the sophisticated orchestration of multiple elements, in-
cluding diverse parallelism strategies (e.g., data, tensor, pipeline, context, expert parallelism
[170, 78, 118, 51]), system-level optimizations (such as mixed continuous batching [74, 3|),
efficient inter-device communication, and optimized chip-level kernel execution. Understand-

ing the intricate relationship between hardware architectures, software mapping strategies,
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workloads, and optimization targets remains a significant challenge. Accurately bridging the
gap between chip-level performance and system-level SLOs is therefore essential for designing
next-generation Al accelerators and scalable LLM-serving architectures.

Existing LLM hardware simulators and performance evaluation frameworks often focus
either on detailed chip-level simulations or on more abstract system-level modeling, fre-
quently failing to capture the complex interplay between both levels. For instance, while
some tools offer detailed accelerator performance modeling [219], they may lack compre-
hensive system-level execution analysis. Other system-level simulators [15, 108] might ap-
proximate the impact of compute, memory, and interconnect bandwidth but often lack
kernel-level accuracy, relying on simpler linear models or focusing predominantly on matrix
multiplication kernels while neglecting other significant operations like attention mecha-
nisms, normalization, or activation functions. Furthermore, a comprehensive simulation of
the full execution graph, integrating aspects like dynamic batching with mixed continuous
batching 74|, sophisticated request scheduling, and realistic workload traces, is often miss-
ing or limited. The sheer scale of the design space, encompassing hardware parameters,
parallelism choices, and scheduling algorithms, also makes exhaustive brute-force evalua-
tion computationally prohibitive with many existing tools. This dissertation addresses these
critical gaps by presenting a more holistic solution.

To overcome these challenges, we introduce ReaLLM, a holistic and multi-level hardware
system simulation framework specifically designed for the comprehensive evaluation and
analysis of large-scale LLM inference. ReaLLM aims to bridge the gap between detailed
accelerator design and system-wide performance, providing a unified platform for researchers
and engineers to understand, evaluate, and make informed optimization decisions for LLM
serving systems. The motivation behind RealLLM is to provide a tool that can accurately
model the complex interactions within LLM inference environments, thereby facilitating
the development of more efficient and cost-effective hardware and software solutions, as
highlighted by its comprehensive feature set in Table 4.1.

The key contributions and pillars of the ReaLLM framework are:

e Multi-Level Fidelity: ReaLLM incorporates a multi-level simulation strategy, allow-
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Feature LLMCompass [219] | GenZ [15] | Optimus [108] ‘ ReaLLM ‘
Micro-arch Level Kernel Simulation v X X v
Non-Linear/Complex Kernel Partial X X v
System-Level Parallelism Partial v v v
System-Level Scheduling X X X v
Trace Generation X X X v
Trace-Driven System Simulation X X X v
Comprehensive SLO Analysis X X X v
Interactive Visualization (GUI) X X X v

Table 4.1: Comparison of ReaLLM with existing LLM performance evaluation frameworks.

ing users to balance simulation speed and accuracy. This ranges from initial high-level
performance estimations to detailed, cycle-aware kernel analysis and full system-level

simulation.

e Accelerated Kernel Analysis: To tackle the high computational cost of simulating
numerous kernel variations arising from different model configurations, batch sizes,
and context lengths, ReaLLM introduces the concept of a hypothesis-derived precom-
puted kernel library. This library, populated through optimized micro-architectural
simulations and leveraging interpolation techniques, drastically reduces the overhead

of repeated kernel evaluations during system simulation.

e Trace-Driven System Simulation: RealLLM employs trace-driven simulation to
capture realistic workload dynamics. By using traces derived from real-world applica-
tions or representative synthetic workloads, it can accurately model system behavior
under various conditions, including fluctuating request rates and diverse prompt char-
acteristics. This allows for the precise evaluation of parallelism strategies, dynamic

batching techniques (e.g., mixed continuous batching), and scheduling policies.

e Interactive Visualization: ReaLLM features a web-based graphical user interface

(GUI) that allows users to visualize LLM network structures, operator details (such
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as types and tensor sizes), and overlay simulated latency information. This interactive
component aids in model analysis, debugging, and intuitively understanding perfor-

mance bottlenecks.

ReaLLM supports flexible hardware architecture specifications, diverse software mapping
strategies, and various workload configurations. These inputs can be easily adjusted, en-
abling users to explore the impact of different design choices on performance and cost. By
providing critical metrics such as latency (TTFT, TBT, E2E), throughput, power consump-
tion, hardware cost, and TCO, ReaLLM facilitates the discovery of both high-performance

and cost-effective solutions for LLM serving.

This chapter details the architecture, methodologies, and capabilities of the ReaLLM
simulation framework. The primary goal is to present RealLLM as a comprehensive tool that
addresses the critical need for accurate and efficient modeling of LLM inference systems, from
individual kernel execution up to full-scale, multi-device deployments. We will demonstrate
how its integrated approach allows for a deeper understanding of performance bottlenecks
and facilitates informed decision-making in the co-design of hardware and software for LLM

serving. The remainder of this chapter is structured as follows:

Section 4.2 describes the overall architecture of ReaLLM, its design philosophy, core
components, and the interactive visualization GUI. Section 4.3 delves into device-level mod-
eling and the novel accelerated kernel analysis methodology, including the generation and
utilization of the precomputed kernel library. Section 4.4 explains the system-level model-
ing capabilities, focusing on trace-driven simulation, support for parallelism and batching
strategies, and inter-device communication. Section 4.5 presents the validation of ReaLLM
against real hardware systems, evaluates its simulation efficiency, and showcases illustrative

use cases. Finally, Section 4.6 concludes the chapter.

Through this comprehensive exposition, we aim to establish RealLLM as a valuable tool
for advancing the design and optimization of next-generation hardware systems for the ever-

evolving landscape of large language models.
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4.2 Framework Architecture and Core Components

4.2.1 Design Philosophy

The design of RealLLM is guided by three core principles aimed at addressing the complexities

of LLM inference simulation:

e Holistic Approach: RealLLM is engineered to provide a comprehensive view of LLM
inference, bridging the gap between detailed, low-level hardware execution and high-
level system-wide performance. It captures the intricate interplay between chip-level
kernel behavior, inter-device communication, parallelism strategies, and system-level
scheduling and batching policies. This holistic perspective is crucial for accurately
identifying true performance bottlenecks and understanding the end-to-end implica-

tions of design choices.

e Multi-Level Simulation Strategy: Recognizing that different stages of design and
analysis require varying levels of detail and simulation speed, RealLLM incorporates
a multi-level simulation strategy. Users can leverage rapid analytical models (such as
roofline models) for initial exploration and bottleneck identification. As designs mature
and more precise results are needed, ReaLLM integrates detailed micro-architectural
kernel simulations and comprehensive system-level simulations. This tiered approach

allows for an effective balance between simulation accuracy and computational cost.

e Scalability and Efficiency: Simulating large-scale LLM deployments across a vast
design space is computationally intensive. A primary design goal for RealLLM is to
achieve scalability and efficiency in its simulation process. This is realized through
innovative techniques such as the precomputation of kernel performance data into a
reusable library and the use of efficient trace-driven simulation methodologies. These
features enable rapid evaluation of numerous configurations, making extensive design

space exploration feasible.
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4.2.2  Owerall Stmulation Pipeline

RealLLM operates through a structured simulation pipeline, designed to systematically eval-
uate LLM inference performance from individual kernels to the complete system. The frame-
work takes as input an LLM model description (typically in ONNX format for broad com-
patibility), an abstract hardware description detailing the target system architecture, and
workload characteristics, which can be defined by user-specified parameters or through exe-
cution traces.

The simulation process in ReaLLM can be conceptualized in two primary phases, as

illustrated in Figure 4.1:

1. Kernel Library Construction: This initial phase focuses on characterizing the
performance of all unique computational kernels within the target LLM(s) on the

specified hardware.

o Hypothesis-Driven Kernel Generation: ReaLLM first parses the LLM computa-
tional graph (e.g., from ONNX) and systematically identifies all unique kernels
(e.g., matrix multiplications, attention operations, normalizations, activations).
It then hypothesizes all feasible kernel variants based on factors like batch sizes,

input/context lengths, and potential parallelism splits (tensor, data, etc.).

e Optimized Kernel Profiling: Each unique, hypothesized kernel is then simulated
using a detailed, micro-architecture-aware kernel simulator (RealLLM builds upon
and extends capabilities found in simulators like LLMCompass [219]). This step
determines the optimal mapping strategy (e.g., tiling, loop ordering, dataflow)
for each kernel on the target hardware core and records its execution latency. To
manage the vast number of potential kernel dimension variants (especially due to
varying context lengths), ReaLLM employs interpolation techniques, simulating
a subset of key points and interpolating for intermediate values, significantly

reducing simulation overhead.

o Precomputed Kernel Library: The outcome of this phase is a precomputed kernel

library, which stores the optimal latency and mapping details for each profiled
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kernel variant. This library serves as a fast lookup table during the subsequent

system simulation phase.

2. Trace-Driven System Simulation: Once the kernel library is established, this phase
simulates the end-to-end execution of LLM inference tasks across the entire hardware

system.

o Workload Trace Processing: The system simulator ingests workload traces, which
define sequences of requests with arrival times, prompt lengths, and generation re-
quirements. ReaLLM can utilize user-provided traces or generate synthetic traces
representative of real-world applications (e.g., conversational Al, code generation,

based on datasets like the Azure LLM Inference Dataset [126]).

o System-Level Scheduling and FEzecution: A built-in scheduler models various
batching (e.g., continuous batching, mixed continuous batching with prefill chunk-
ing) and scheduling strategies. It manages request queues and dispatches execu-

tion tasks to the simulated hardware.

e Hardware Simulation: For each step in the LLM execution graph, the simulator
retrieves kernel latencies from the precomputed kernel library. It also models
inter-device communication overhead based on the hardware’s network topology,
bandwidth, latency, and the chosen collective communication algorithms (e.g.,

Ring, 2D-Ring, Tree-based allreduce [215, 164, 83]).

The final outputs of the ReaLLM pipeline include detailed performance metrics such as
Service Level Objectives (SLOs) like Time-To-First-Token (TTFT), Time-Between-Tokens
(TBT), and end-to-end request latency. Additionally, the framework provides data for TCO
analysis, identifies system bottlenecks, and can feed information into the visualization GUI.
This comprehensive pipeline allows for robust evaluation of how different hardware designs,
software strategies, and workload conditions impact overall LLM serving performance and

cost.
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Figure 4.1: High-level overview of the ReaLLM simulator pipeline.

4.2.3 Abstract Hardware Representation

To support a wide variety of existing and future hardware architectures, RealLLM employs
a flexible and parameterizable abstract hardware description. Users define the hardware
system using a YAML-based configuration file, which specifies the architectural details across
multiple hierarchical levels: the chip, the package, and the server.

An example of this hierarchical representation is shown in Figure 4.2:

e Chip Level: Defines the characteristics of a single processing die. This includes pa-
rameters such as the technology node (e.g., 7nm, 5nm), the organization and capacity

of on-chip memory hierarchies (e.g., global SRAM or L2 cache, local shared memory or



Chip:
tech_node: ‘7nm’
global_sram:
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bandwidth: 1.0
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num_cores: 128
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dataflow: €os’
io:
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Figure 4.2: Example of ReaLLM’s abstract hardware description hierarchy, depicting chip,

package, and server level components and their parameterization.
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L1 cache per core), and the details of the compute units. Compute units can be spec-
ified with attributes like the number of cores, the number and size of systolic arrays
(SAs) or tensor cores, vector processing capabilities, and their operational frequency.
Dataflow within compute units (e.g., weight-stationary, output-stationary for SAs) can

also be configured.

e Package Level: Describes how one or more chips are integrated. This includes the
number of chips per package, the type and configuration of off-chip memory (e.g., High
Bandwidth Memory - HBM stacks, specifying capacity, channels, and bandwidth), and
chip-to-chip (C2C) interconnect details if multiple dies are on the same package (e.g.,

via silicon interposer).

e Server Level: Defines the system-level integration of packages. This includes the
number of packages (devices) per server, device-to-device interconnect specifications
(e.g., NVLink, TPU Interconnect, PCle, Ethernet), including bandwidth and latency,

and the topology of this interconnect.

This hierarchical and parameterized approach allows users to easily model existing hardware
like GPUs and TPUs, as well as explore hypothetical future architectures by modifying these
parameters. The configuration can specify single values for fixed designs or lists of values to
facilitate exploration of different hardware design points, although automated design space

sweeping is a future work direction.

4.2.4 Interactive LLM Network and Performance Visualizer

To aid in the understanding of LLM computational graphs and the interpretation of simu-
lation results, ReaLLM includes a web-based Graphical User Interface (GUI), an example
view of which is presented in Figure 4.3. This interactive tool is designed to provide users
with an intuitive way to analyze model structures, configure simulation parameters, and
pinpoint performance characteristics.

The GUI facilitates the following workflow and capabilities:



99

Ve

ZPPYSY

NTTROY JO 9ovjiaqu] 19s() redrydeln) paseq-qom oY J, €' oINS

(AN EE]

——

|A N0 N4d4 TIA%TI nw
Ul N4d

5I0OMI3N PJeMIOPaa

LPPVaY
u1 foid N0

®

£ X 9p0dag

Z g

[8z1 ‘8zl ‘8l :zanduj

[821 ‘vzoL ‘8l :panduj

®

Xewnjos

N42.d

i)

foud AY

J19Ae] auQ

azijensip

y

E<)

[~

[}

)
we x
g
& 5
it o
[} X
B 3
8 =
a 3
£ 8
=3 [
z ol o

©
N

=]
©
c
51
4
=
<
o

R AREANN-
5 |s| |2 |2
2 [ © &
© g o o
o = 2 ®
o 5 % 3
3 S -3 5
NE AN EEE - N

:s90IAQ #

~ 90L-€VWeT
:[opoly

uoneinbyuon waysAs



60

Configuration Input: Users begin by selecting the target LLM (e.g., Llama, DeepSeek)
from a predefined list. They can then choose from a set of predefined hardware configurations
or provide their own abstract hardware description (as detailed in Section 4.2.3). Users can
also specify system-level configurations, such as the desired parallelism strategies (e.g., tensor
parallelism degree, pipeline depth).

Simulation-Driven Data Generation: Based on these user inputs, the ReaLLM back-
end (as described in Section 4.2.2) calculates the effective size of each computational kernel
as it would be mapped onto each device under the specified parallelism. It then retrieves or
computes the corresponding latency for these mapped kernels using the precomputed kernel
library.

Computational Graph Visualization with Performance Annotation: The GUI
renders the computational graph of the selected LLM. The generated data, including the
per-device mapped kernel sizes and their simulated latencies, are then annotated directly
onto this visual representation of the network. This allows users to see, for instance, how
different parts of the model contribute to overall latency on specific devices.

Bottleneck Identification and Comparative Analysis: By visualizing the laten-
cies across the graph, users can easily identify performance-critical operators and potential
bottlenecks within the LLM execution flow for a given hardware and system configuration.
The GUI enables users to iteratively change hardware or system configurations (e.g., try a
different parallelism scheme, or simulate on a hypothetical faster hardware) and observe the
impact on the annotated graph, facilitating direct comparison and aiding in design decisions.

By providing this interactive loop of configuration, simulation-driven data generation,
and visual feedback, the ReaLLM GUI significantly enhances the user’s ability to under-
stand model performance, debug system configurations, and explore the impact of different
hardware and software choices. It transforms raw simulation data into actionable visual in-

sights, making the complex task of LLM system optimization more accessible and intuitive.
4.3 Device-level Modeling and Kernel Profiling

Effective simulation of LLM inference systems requires accurate and efficient modeling of

computational kernels at the device level. This section details RealLLM’s approach to this
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critical aspect, covering the systematic identification and characterization of kernels, the
development of a precomputed kernel library to accelerate simulation, and the use of foun-
dational performance models for initial estimations. This device-level understanding forms

the bedrock upon which system-level simulations are built.

4.8.1 Kernel Identification and Hypothesis Generation

The first step in device-level modeling within ReaLLM is to identify and characterize all
unique computational kernels executed by an LLM. This process is essential for understand-

ing the computational workload and for building the precomputed kernel library.

Systematic Kernel Extraction from LLM Graphs

ReaLLM ingests LLM models, typically provided in the Open Neural Network Exchange
(ONNX) format, which offers a standardized graph-based representation of neural networks.
This compatibility allows RealLLM to support a wide range of LLM architectures and their
constituent operators. The framework parses the ONNX graph, systematically traversing it
to identify and count occurrences of each unique kernel type. Common kernels include matrix
multiplications (MatMul) for fully connected layers and attention projections, attention
mechanisms themselves (e.g., scaled dot-product attention, including its components like
Softmax and element-wise operations), normalization layers (e.g., LayerNorm), activation
functions (e.g., GELU, SiLU, SwiGLU), and various element-wise operations. For each
identified kernel, ReaLLM extracts its fundamental properties, such as its type and the

static shapes of its weight tensors.

Impact of Parallelism, Batching, and Context Lengths on Kernel Dimensions

The actual dimensions of a kernel at runtime are highly dynamic and depend on several
factors, including the batch size of incoming requests, the input sequence length (particularly
for the prefill phase), the accumulated context length (for the decode phase), and the chosen
multi-device parallelism strategy. RealLLM incorporates a sophisticated shape inference

engine that propagates these dynamic dimensions throughout the LLM graph.
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LLM inference systems often distribute the workload across multiple hardware devices
(nodes) using various parallelism techniques to manage the substantial memory and compu-
tational requirements. RealLLM supports commonly adopted parallelism strategies, includ-
ing data, tensor, pipeline, context, and expert parallelism. The choice of parallelism strategy
and the degree of parallelism directly influence the dimensions of the kernels executed on
each device. For example, tensor parallelism will reduce the dimension of a matrix multi-
plication along which it is sharded. RealLLM’s parallelism generator considers the model
hyperparameters (e.g., number of attention heads, number of layers) and system constraints

(e.g., number of available devices) to enumerate valid parallelism configurations.

Given batch size, input/context lengths, and parallelism configurations, ReaLLM cal-
culates and hypothesizes all possible sizes for each kernel. The top part of Table 4.2
lists MatMul kernels for a Llama-like [122] LLM, which uses group-query attention and
gated linear units. Each MatMul operation is represented as (By, Be, M, K) x (B, K, N) =
(B1, By, K, N). l;;, denotes the input sequence length, which is the prompt length for prefill
and 1 for decode. [q; denotes the context length, which is the prompt length for prefill
and past context length for decode. All divisions in Table 4.2 use ceiling division to ensure
the identification of the system’s critical path. The table also lists collective operations re-
quired for certain parallelism strategies. Context parallelism requires SendRecv operations
for g_k and s_v since each node must receive the complete query and scores. Tensor par-
allelism requires AllReduce operations for o_proj and mlp_dn to aggregate partial results.
The bottom section of Table 4.2 presents MatMul kernels for multi-latent attention, which
introduces additional smaller kernels. Low-rank adaptation is applied to key and value

projections, compressing them into a lower-dimensional space d..

By iterating over all input factors, ReaLLM constructs a complete kernel library for
further simulation. Pipeline and expert parallelism do not change kernel sizes but affect

kernel execution times, which is accounted for in system simulation.
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Table 4.2: MatMul kernel size for Llama-like LLM (top) and multi-latent attention (bot-

tom).

SR=SendRecv.

D, T, C are the sizes of data, tensor, and context parallelism. AR=AIIReduce,
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In a LLM | Batch Sizes | Parallelisms | Context Lengths | Total

10 10 102 10° 109

Table 4.3: Order of magnitude of Matmul kernel variations given different input factors.

4.8.2  The Precomputed Kernel Library: Enabling Rapid Simulation

A major challenge in applying accurate kernel simulation to end-to-end LLM system mod-
eling is slow speed of simulation. For example, simulating a single inference pass with LLM-
Compass [219] can take several minutes, mainly due to the long simulation time of Matmul
kernels. Accurate Matmul simulation requires exploring a vast mapping and scheduling
space, including .2 and L1 tiling, loop ordering, and systolic array dataflows, etc. The num-
ber of possible mapping strategies for a single Matmul operation can reach millions. While
LLMCompass [219] applies heuristics to reduce this search space, simulating each Matmul

still takes a minute.

This speed is impractical for system-level simulation, as it dramatically increases the
number of required kernel evaluations. Table 4.3 highlights the order of magnitude of Mat-
mul kernels that need to be simulated. An LLM contains approximately 10 distinct Matmul
kernels. Considering variations in input request rates, batching strategies, and different par-
allelism configurations (data, tensor, pipeline, context, expert, etc.), the number of Matmul
kernels grows exponentially. Furthermore, with dynamic prompt lengths during prefill and
context lengths during decode, modern LLMs with context lengths up to 128K introduce
over 10° variations. As a result, the total number of Matmul simulations required for a
complete system evaluation can reach 10°, which is computationally prohibitive given that
each simulation takes minutes.

The core motivation behind RealLLM’s precomputed kernel library is to decouple the
time-consuming process of detailed kernel profiling from the system-level simulation. By
simulating each unique, hypothesized kernel instance once and storing its performance char-
acteristics, ReaLLM avoids redundant computations during the dynamic system simulation

phase. This approach significantly accelerates the overall evaluation process, making it fea-
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sible to explore a wide range of system configurations and workload scenarios.

ReaLLM’s kernel simulator builds upon the foundations of existing open-source hardware
evaluation frameworks like LLMCompass [219]. It extends these capabilities by incorporating
support for a wider range of attention mechanisms (e.g., grouped-query attention, multi-
latent attention), additional operators in modern LLMs (e.g., SiLU activation, element-wise
operations for gated linear units), and optimizations such as multiprocessing to parallelize
the evaluation of different kernel mappings.

For a given kernel and target hardware core (defined by the abstract hardware descrip-
tion, see Section 4.2.3), the kernel simulator explores a vast space of possible mapping
strategies. This includes optimizing tiling sizes for data movement across multiple memory
hierarchies (e.g., off-chip memory to L2 cache/global SRAM, L2 to L1 cache/local shared
memory, L1 to registers/LO), determining optimal loop ordering at different cache levels,
considering techniques like L2 double buffering, and selecting appropriate dataflows for spe-
cialized compute units like systolic arrays (e.g., weight-stationary, output-stationary). The
goal is to find the mapping that minimizes execution latency for each kernel on the specified

hardware.

Latency Interpolation

Even with optimized profiling, simulating every single dimensional variant of a kernel, es-
pecially those affected by continuous variables like context length (I, ), can be excessively
time-consuming. As noted in Table 4.3, context lengths can introduce a large number of
variations. To mitigate this, ReaLLM employs latency interpolation.

Instead of simulating every possible context length for affected kernels (e.g., q_k and
s_v MatMuls during prefill), ReaLLM samples a subset of key points (e.g., logarithmically
spaced context lengths). Full, detailed simulations are run for these sampled points. For
intermediate, unsampled context lengths, the latency is then interpolated from the nearest
simulated points. As demonstrated in Figure 4.4, linear interpolation between these log-
arithmically spaced points provides high accuracy (e.g., average errors of 0.90% to 3.63%

for MatMul dimension sweeps) while drastically reducing the number of full simulations
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required. This technique is particularly effective because kernel latency often exhibits pre-
dictable, piece-wise linear trends with respect to changes in a single dimension, once other

dimensions and mapping strategies are fixed.

Initial Performance Estimation (Optional Stand-in for Early Exploration)

While the precomputed kernel library provides detailed and accurate latency information,
its construction can still be a time-intensive prerequisite for full system simulation. For very
early-stage design exploration, or when a quick assessment of potential hardware bottle-
necks is needed without the full detail of micro-architectural simulation, ReaLLM can also
incorporate simpler, analytical roofline models.

The roofline model [207] is a well-established analytical tool that provides an insightful
visual representation of the achievable performance of a given hardware architecture based on
its peak computational throughput and peak memory bandwidth. ReaLLM uses the roofline
model to estimate the performance of individual kernels. By comparing a kernel’s operational
intensity (FLOPs per byte of data moved) against the hardware’s roofline, one can quickly
determine if the kernel is likely to be compute-bound or memory-bound. This model is
particularly advantageous during the initial phases of hardware design space exploration,
enabling designers to rapidly assess a massive design space and identify high-level bottlenecks
for a given workload before committing to more detailed simulations.

These initial estimation techniques serve as optional, faster stand-ins when the full detail
of the precomputed kernel library is not immediately required or available. They complement
the more detailed simulation capabilities, aligning with ReaLLLM’s multi-level fidelity design

philosophy.
4.4 System-level Modeling and Trace-Driven Simulation

Building upon the device-level kernel characterization and the precomputed kernel library
detailed in the previous section, ReaLLM employs a sophisticated system-level simulation
engine. This engine is designed to model the end-to-end execution of LLMs in a multi-device
environment, capturing the complexities of real-world workloads and system dynamics. This

section elaborates on ReaLLM’s approach to trace generation and utilization, its dynamic
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Figure 4.4: Comparison of MatMul latency interpolation methods. (Left) Simulated latency
data points (red dots) with linear and polynomial interpolation. (Right) Relative prediction
error for linear and polynomial interpolation. Linear interpolation generally achieves lower

error rates.
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task scheduler, the mechanisms for simulating hardware execution including inter-device

communication, and the generation of key performance results.

4.4.1  Capturing Realistic Workloads: Trace Generation and Utilization

The performance of an LLM inference system is heavily influenced by the characteristics of
the incoming workload. To ensure realistic and relevant evaluations, RealLLM incorporates
a robust trace-driven simulation methodology. Traces define the sequence of user requests,
their arrival patterns, and the specifics of each request, such as prompt length and the
number of tokens to be generated.

ReaLLM offers flexibility in how these traces are provided:

e User-Provided Traces: Users can supply their own custom traces, allowing them
to model specific, known workload patterns relevant to their applications or research

questions.

e Built-in Trace Generator: For users who may not have access to custom traces
or wish to explore standardized workload scenarios, RealLLM includes a built-in trace
generator. This generator can synthesize traces that mimic real-world applications.
To achieve this, it leverages insights from publicly available production trace datasets,
such as the Azure LLM Inference Dataset 2023 [126]. By analyzing such datasets,

RealLLM can model key workload characteristics, including;:

— Request Arrival Patterns: Simulating different request rates to stress-test the

system and evaluate its performance under varying loads.

— Context Length Distributions: Capturing the typical prompt lengths and
the number of generated tokens for different applications, such as conversational
AT versus code generation tasks. As observed in Figure 4.5, conversational tasks
often have shorter input prompts but require longer generated sequences (lower
input-to-output token ratio) compared to coding tasks, which might have longer

initial contexts but shorter completions.
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Figure 4.5: Distribution of context lengths and input-to-output token ratios for coding and

conversational tasks, derived from the Azure LLM Inference Dataset [126].

— Input-to-Output Token Ratios: Modeling the relationship between the length

of the input prompt and the expected length of the generated response.

By utilizing realistic traces, whether user-defined or synthesized, ReaLLM can simulate
system behavior under conditions that closely mirror production environments, leading to

more accurate and actionable performance insights.

4.4.2  Simulating System Dynamics and Ezecution

As shown in Figure 4.1, at the heart of RealLLM’s system-level simulation is a dynamic task
scheduler that interacts with a hardware simulation model. This combination allows for the
modeling of complex execution flows, parallelism strategies, and communication patterns.

The ReaLLM task scheduler is responsible for managing incoming user requests from
the processed trace and orchestrating their execution on the simulated hardware. Its key
functions include:

Request Queue Management: Incoming requests are initially placed into appropriate
queues (e.g., a prefill queue for new requests, a decode queue for ongoing generation tasks)

based on their arrival times and current processing state.
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Dynamic Batching Strategies: The scheduler implements various dynamic batch-
ing techniques (continuous batching, mixed continuous batching, etc) to optimize resource
utilization and throughput.

Execution Task Generation: Based on the selected batching algorithms, the scheduler
groups requests (or parts of requests, in the case of chunked prefill) into execution tasks. Each
execution task is typically represented by an integer prefill length (if any prefill operations
are part of the batch) and an array of integers denoting the current context lengths of all
decode tasks included in that batch.

Once an execution task is processed by the hardware simulator, the scheduler updates
the status of all associated requests. Unfinished requests (i.e., those requiring further token

generation) are placed back into the decode queue for subsequent iterations.

4.4.8  End-to-End System Performance Simulation and Result Output

The hardware simulator processes the execution tasks generated by the task scheduler. For
each task, which represents a batch of operations (prefill and /or decode) for one pass through

the relevant part of the LLM:

1. It traverses the LLM’s execution graph (or the relevant sub-graph for the current

pipeline stage).

2. For each computational kernel in the graph, it determines the effective dimensions

based on the current batch composition and parallelism strategy.

3. It queries the precomputed kernel library (Section 4.3.2) using these effective dimen-
sions to retrieve the pre-profiled execution latency for the target hardware. If an exact
match is not found (e.g., for an un-sampled context length), latency interpolation is

applied as described in Section 4.3.2.

4. It calculates the latency of any necessary inter-device communication operations associ-

ated with the current computational step (e.g., AllReduce after a distributed MatMul).
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5. The computation and communication latencies are summed to determine the total
time for the current step or layer. This process is repeated for all operations in the

execution task.

This cycle-accurate (for kernels) and model-based (for communication) approach allows Re-

aLLM to simulate the time progression of each request through the system.

Inter-Device Communication Modeling

In distributed LLM inference, inter-device communication can be a significant performance
factor. ReaLLM incorporates a detailed communication model to capture these overheads.
The time required to transmit an N-byte message between any two directly connected nodes
is modeled using the standard linear model: 1o = o+ N3, where «a represents the per-
message latency (independent of message size, capturing software overheads and network
interface delays) and 8 denotes the reciprocal of the bandwidth (i.e., per-byte transmission
time). These parameters (o and link bandwidth) are specified in the abstract hardware

description (Section 4.2.3).

For collective communication operations, which are common in parallelism strategies
like tensor parallelism (e.g., AllReduce for aggregating partial results) or pipeline paral-
lelism (e.g., point-to-point Send/Receive between stages), RealLLM supports several widely
adopted algorithms. The time complexity for these operations depends on the algorithm,
the number of participating nodes (p), message size (N), and the underlying point-to-point
communication parameters. Supported algorithms and their approximate time complexities

are listed in Table 4.4.3.

The choice of communication algorithm can be configured by the user or determined
by ReaLLM based on heuristics. The latencies calculated from these models are added to
the computation latencies to provide an end-to-end estimate for each step in the inference

process.
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Algorithm Approximate Time Complexity

Ring AllReduce (AR) 2(p — 1o+ Q%Nﬁ

2-D Ring AllReduce [215] A(/p— 1)+ 2 ‘/f;INB

Two Tree AllReduce [164] 4logy(p)ar + 2N B + 44/21og, (p)aN B

Two Tree Broadcast (BC) [164] 2logy(p)a + NS + 21/2logy(p)aNB

Hierarchical AllReduce [83] Time(LocalAR) + Time(GlobalAR) + Time(LocalBC)

Table 4.4: Supported collective communication algorithms in ReaLLM and their approxi-

mate time complexities for N-byte tensors among p nodes.

Outputting Performance Metrics and Service Level Objectives (SLOs)

Throughout the simulation, ReaLLM meticulously records the timing information for each
request, including its arrival time and the generation time of each output token. From
this raw data, it calculates and reports key performance metrics, particularly Service Level
Objectives (SLOs), which are critical for evaluating the quality of service of an LLM inference
system. The primary SLOs measured by RealLLM include:

Time-To-First-Token (TTFT): The latency from when a user request arrives at the
system until the first output token is generated and available. This is a crucial metric for
user-perceived responsiveness in interactive applications.

Time-Between-Tokens (TBT) (also known as Time Per Output Token - TPOT): The
average latency to generate each subsequent token after the first one. A low and consistent
TBT is important for a smooth user experience during streaming output.

End-to-End (E2E) Latency: The total time taken from the arrival of a request until
the complete response (or a specified number of tokens) has been generated.

RealLLM can report these SLOs as distributions or specific percentile values (e.g., P50
median, P90, P99) to capture the system’s performance consistency under varying conditions
and SLA (Service Level Agreement) thresholds.

In addition to these primary SLOs, the simulation results can be used to derive other

metrics like system throughput (e.g., tokens per second, requests per second). The detailed
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Figure 4.6: Validation of kernel latency predictions on A100. Each subfigure compares real

and simulated latencies for MatMul at different input sizes.

data generated by RealLLM, including kernel execution times and communication overheads,
also allows for in-depth bottleneck analysis. The framework aims to not only provide these
metrics but also to help identify the optimal chip-level kernel mappings (discovered during
kernel library construction) and the system-level scheduling and parallelism strategies that

lead to the best SLO performance for a given scenario.

4.5 Validation and Evaluation

4.5.1 Validation Against Real Hardware

To validate ReaLLM’s accuracy, we compare the predicted kernel latencies and end-to-end
request latencies against real measurements on NVIDIA A100 and H100 systems.
Kernel-Level Validation: To assess the accuracy of ReaLLM at the kernel level, we
compare predicted versus measured latencies for key LLM inference operations on a NVIDIA
A100 GPU. Figure 4.6 shows the latency of MatMul operations across different input sizes,
demonstrating that ReaLLM’s predictions align closely with real execution times.
This high fidelity ensures that kernel-level estimations in ReaLLM provide precise per-

formance insights, making it a reliable tool for evaluating large-scale LLM inference systems.
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End-to-End Latency Validation: Beyond kernel-level validation, we assess end-to-
end inference accuracy by comparing ReaLLM’s simulated latencies for LLaMA-70B running
on four H100 GPUs against real-world traces (Figure 4.7). The results indicate that Re-
aLLM predicts the end-to-end time (E2E) with an average error of 9.07% across 90 test
traces. Notably, most of the early differences arise from transient system warm-up effects
and variations in initial scheduling, while later traces have improved accuracy. This strong
alignment with real hardware confirms the robustness and reliability of ReaLLLM’s system-
level simulation. Furthermore, ReaLLM’s trace-driven scheduling and dynamic batching
models effectively adapt to fluctuating workloads, accurately reflecting real-world deploy-
ment scenarios. By incorporating execution-aware scheduling strategies, ReaLLM ensures

that its predictions remain highly relevant for large-scale LLM inference studies.

4.5.2  Bottleneck Analysis with Fixed Workloads

To better understand the limitations of serving LLLMs on modern platforms, we use ReaLLM
to simulate 64 TPU v5p chips running an LLM sized equivalently to GPT-3 [21]. Each v5p
chip achieves a peak BF16 performance of 459 TFLOPS, alongside 95 GB of HBM2 offering
a total 2765 GB/s bandwidth. Inter-chip communication bandwidth peaks at 300 GB/s per
direction. All 64 chips are connected by a 4 x 4 x 4 3-D torus network, as described in [84].

Figure 4.8 shows the latency breakdown for two tasks with different input and output
lengths. The left task is input-dominated, with 256 input tokens and 64 output tokens. The
right task is output-dominated, with 64 input tokens and 256 output tokens. We identified
some insights listed below.

I0-bound in the prefill stage - During prefill, as shown in the top row in Figure
4.8, 1/O accounts for the majority of the latency. Since all tokens in the prompt have to be
sent to the model at the same time, the activation tensors for the allreduce is large. Two
allreduce operations are required per layer, one in the self-attention network (SA) and one in
the feed-forward network (FFN). In GPT-3, the activation tensor size with 256 input tokens
is 5.86 MB in the SA and 23.44 MB in the FFN. Across 64 chips, the I/O time becomes much

longer than the compute time. Batch sizes do not affect the ratio of I/O time to computation
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Figure 4.7: Comparison of simulated and real end-to-end request latencies for LLaMA-70B

inference on a four-H100 system.



76

256 Input Tokens, 64 Output Tokens 64 Input Tokens, 256 Output Tokens
Prefill Latency Breakdown (%) Prefill Latency Breakdown (%)
N

100% N 100%
80% A 80% A
60% 60%

40% { =3 Memory 40% 4 K=2 Memory

\NN\\\\%

NNNNN\\\#%
SENNNNNNN7
NNNNNN

3 INNNNNNN/

SENNNNN\M
NN
TONNNNNY

B INNNNNNN

E=X1 Compute KX Compute

20%1 & 1o 20%1 g 1o

0% IIII III d VI/I f 0% L III III 1 IIIA I/ T
1 2 4 8 256 1 2 4 8 64 256

100% Decoding Latency Break n (%) 100% Decoding Latency Breakdown (%)
T N | | ™A N T K T T T
EZ1 Memory N Memory

80% 80%

" == Compute ° == Compute

60% 1 =23 1/0

40% A

20% A
0% T 7 T
1 2 4

60% 1 @23 1/0

40% A

20% A
0% 1 T T
1 2 4

N X g 2 NRSXXYA

NN\ AWAVEE NN\

NN\\\aAVaY,

NN

NNNZAWZAWA R NNNNNN

N\\\Yava

NK X X
NNNNNNZS
INNNNN\\#Z¥
DX XX
NN\
ANNNNNNA

8 16 32 64 12 8 16 32 64 12

©
N
w
(<))
©
N
u
(<))

Prefill vs. Decoding (%)

BN Decoding
B Prefill

Prefill vs. Decoding (%)

EENI Decoding
B Prefill

100% - 100% -

80% A 80% A
60% - 60% -
40% A 40% A

20% A 20% A

0% - 0% -

1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
Batch Size Batch Size

Figure 4.8: Latency breakdown of 64 TPU v5p chips. The system is IO-bound in prefill (top
row), and memory-bound for most batch sizes while decoding (second row). Decoding often
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time because both activation size and number of computations increase linearly with batch

sizes.

(Mostly) Memory-bound in the decoding stage: During decoding, the activation
becomes a 1D vector. The system becomes memory-bounded when the batch size is small,
as shown in the middle row of Figure 4.8. Due to the low operational intensity, the memory
access takes much longer time than the computation. As the batch size increases to hundreds,
the activation tensor becomes larger and the system is I/O-bound again, similar to the prefill

stage.

Decoding often has longer latency than prefill: The bottom row of Figure 4.8
shows the prefill versus decoding latency breakdown. Notably, the system only spends more
time in the prefill stage than the decode stage when the batch size is equal to or greater
than 16. This is because prefill only takes one iteration while decoding requires n iterations

to generate n tokens.

Hardware has excessive compute capacity: When operational intensity is high,
such as during the prefill or decoding stages with large batch sizes, communication over-
head starts to dominate making I/O the primary bottleneck. The best compute utilization
achieved by state-of-the-art GPU [9] and TPU [150] implementations are around 50% and
40%, respectively. This suggests a surplus of computing units on current hardware platforms

for serving LLMs.

Since the system is primarily memory-bound in the decoding stage, which has longer
latency than the prefill stage in most cases, the system favors memory architecture with
a higher bandwidth. With the latest HBM3E, NVIDIA’s B200 GPU [134] achieves a 8
TB/s of bandwidth per package. It also has a peak compute performance of 2250 TFLOPS.
Despite significant advancements in both memory and compute capabilities, the ratio of
peak bandwidth to compute performance remains relatively small. However, to improve
prefill latency, optimization should mainly focus on I/O. In summary, to optimize end-to-end
performance for serving LLMs on existing systems, we need memory with higher bandwidth,
potentially coupled with fewer compute units to enhance the bandwidth-to-compute ratio,

and optimized I/O mapping and communication strategies.
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Workload TTFT | TBT E2E

Code 400 ms | 50 ms | 12.9 s (250 tokens generated)

Conversation | 200 ms | 50 ms | 25.2 s (500 tokens generate)

Table 4.5: SLOs for evaluation. E2E is set to be TTFT plus the time to generate a number

of tokens while meeting TBT.

4.5.8 Performance Fvaluation with Real-World Traces

To identify performance bottlenecks and potential optimizations, we analyze two models:
Llama3-70B [122] on an 8-node system and DeepSeek v3 [45] on a 32-node system. The
baseline system models H100 style GPUs, while alternative configurations explore increased
DRAM bandwidth, greater systolic array (tensor core) height, and additional compute cores
(SMs). All configurations maintain consistent system-level settings, including node count,
interconnect links and topology, and the dynamic batching strategy. We specifically leverage
chunked mixed continuous batching with a prefill block size of 2048, which improves opera-
tional intensity for decode tasks. Llama3 employs tensor parallelism, whereas DeepSeek v3
uses expert parallelism.

As input loads to an LLM system fluctuate over time, a crucial metric is whether the
system can maintain SLOs under high request rates. To explore this, our trace generator
produced traces for both coding and conversation applications at various input request rates,
sampling from Figure 4.5.

Figure 4.9 presents P50 and P90 end-to-end latencies across different input loads for
LLaMA3-70B (left) and DeepSeek v3 (right) inference. The x-axis represents input load,
while the y-axis shows E2E latency normalized to the SLO thresholds in Table 4.5. Results
indicate that increasing tensor core height or core count significantly improves performance,
whereas boosting HBM bandwidth only provides limited benefits. This suggests that modern
LLM inference systems are increasingly compute-bound rather than memory-bandwidth-
bound, largely due to the effectiveness of advanced batching techniques.

Additionally, we evaluate Llama3-70B on conversation workload in Figure 4.10. We ob-



Llama3-70B on 8 Nodes

DeepSeek v3 on 32 Nodes

79

2.0 2.0
—e— Baseline —e— Baseline
1.5 4 —®%— 2x HBM BW 1.5 4 —®%— 2x HBM BW
I(-I\‘J ——— 2x SA Height I(-I\‘J ——— 2x SA Height
Ll —&— 2x Cores Ll —&— 2% Cores
01.0-— fffffffffffffffffffffffffffffffffffffffff - 01.0-— ffffffffffffffffffffffffffffffffffffffffff
LN LN
o o
0.5 4 0.5 4
00 T T T T T 00 = T T T
3 4 5 6 7 8 9 1 2 3 4 5 6
Request/Sec Request/Sec
2.0 2.0
—e— Baseline —e— Baseline
154 —=— 2x HBM BW 154 —=— 2x HBM BW
ﬁ —o— 2x SA Height % —o— 2x SA Height
1] —&— 2% Cores 1] —&— 2x Cores
o 1.0 +- p 1.0 4-
o)) o))
o o
0.5 4
00 = T T T T T T 00 T T T T T T
3 4 5 6 7 8 9 1 2 3 4 5 6
Request/Sec Request/Sec

Figure 4.9: Latency metrics across input loads of Llama3-70B on 8 nodes (left) and DeepSeek

v3 on 32 nodes (right) systems with different architectures.
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Llama3-70B on Conversation Workload
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Figure 4.10: TTFT and E2E across input loads of Llama3-70B for conversation applications

on a 32-node system with different architectures.

serve that the conversation workload experiences an earlier latency increase as input request
rates grow. This is because conversation-based tasks typically require generating more tokens
per request, causing requests to remain in the system for longer durations. Consequently,
conversation applications may require greater hardware resources compared to coding ap-

plications to maintain similar SLOs.

4.5.4  Scalability and Efficiency Gains

We evaluate ReaLLM’s impact on simulation efficiency by comparing its performance against
a baseline approach that relies exclusively on a kernel simulator like LLMCompass. As shown
in Figure 4.11, simulating traces with hundreds of requests and context lengths extending
to thousands of tokens requires the baseline to perform approximately 10* MatMul simula-
tions, resulting in an estimated runtime of 4,570 minutes. In contrast, ReaLLM drastically
reduces this overhead by identifying 1,600 key kernels and precomputing their latencies in
729.6 minutes. Once the kernel library is constructed, trace-driven simulation takes only
27.9 minutes, leading to a 164X speedup in trace execution. Since kernel construction is a
one-time process, this optimization significantly accelerates design space exploration while

maintaining high fidelity in performance modeling.
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Figure 4.11: RealLLM achieves a 164x speedup in trace simulation time compared to the

baseline kernel simulator by leveraging precomputed kernel reuse.

By leveraging precomputed kernel latencies and an efficient trace-driven simulation method-
ology, ReaLLM transforms large-scale LLM system evaluation from an intractable computa-
tional problem into a practical and scalable process, enabling rapid architectural exploration

and optimization.

4.6 Discussion and Conclusion

The rapid evolution and increasing scale of Large Language Models (LLMs) have presented
significant challenges in designing and deploying efficient inference systems. Optimizing
these systems requires a deep understanding of the complex interplay between hardware
architectures, software strategies, and workload characteristics. This chapter has introduced
ReaLLLM, a holistic simulation framework developed to address these challenges by providing
a comprehensive platform for evaluating, analyzing, and gaining insights into LLM serving
performance and cost.

ReaLLLM distinguishes itself by integrating detailed, device-level kernel modeling with

system-wide, trace-driven simulation, bridging a critical gap in existing evaluation method-



82

ologies. Its core design philosophy emphasizes a holistic view, multi-level simulation fidelity,
and computational efficiency. Key contributions include its multi-level simulation approach
balancing accuracy and speed, the significant runtime reduction (up to 164x in trace execu-
tion) achieved via the hypothesis-driven precomputed kernel library, and its realistic system
behavior modeling using trace-driven simulation with advanced scheduling and batching.
Furthermore, ReaLLM incorporates comprehensive hardware parameterization, integrated
Total Cost of Ownership (TCO) modeling, and an intuitive interactive visualization GUI
to provide a well-rounded analysis platform. Validation against real NVIDIA A100 and
H100 GPU systems has demonstrated RealLLM’s accuracy, with an average end-to-end la-
tency prediction error of approximately 9.07% for complex workloads like LLaMA-70B on a
multi-GPU setup.

The application of ReaLLLM to analyze various LLM inference scenarios, as presented in
Section 4.5, has yielded several important insights. Simulations highlighted dynamic bottle-
neck shifts between I/O, memory bandwidth, and compute, depending on the workload phase
and batch size. Notably, evaluations of modern GPU-style systems with advanced batch-
ing suggest an increasing trend towards being compute-bound rather than purely memory-
bandwidth-bound at scale. RealLLM also underscored the significant impact of workload
characteristics (e.g., conversational Al vs. code generation) on system performance and
the efficacy of system-level optimizations like mixed continuous batching. These findings
reinforce the necessity of hardware-software co-design, for which ReaLLM provides a robust
analytical platform.

While ReaLLM provides a robust and versatile simulation framework, it also has lim-
itations that open avenues for future research. Currently, ReaLLM facilitates manual ex-
ploration of the design space; a significant future enhancement would be the integration of
automated Design Space Exploration (DSE) methodologies. Continuous expansion of model
and hardware support, alongside more detailed dynamic power modeling, also represent im-
portant future directions. Further enhancements to the GUI's analytical capabilities and
modeling of emerging hardware technologies and LLM serving techniques will continue to
increase ReaLLM’s utility.

The challenge of efficiently serving ever-larger LLMs demands sophisticated tools for
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deep performance and cost analysis. This chapter presented RealLLM as a holistic simu-
lation framework that successfully integrates detailed kernel analysis with comprehensive,
trace-driven system modeling. Its unique combination of multi-level fidelity, accelerated
simulation, TCO analysis, and interactive visualization empowers researchers and engineers
to navigate the intricate LLM inference landscape effectively.

Validation against real hardware underscores RealLLM’s accuracy, and its application
in case studies has proven its ability to reveal critical system bottlenecks and evaluate
diverse architectural and software strategies. The significant simulation speedup makes
ReaLLLM a practical tool for extensive design exploration. As LLMs continue to reshape
Al frameworks like RealLLM are instrumental for driving the co-design of powerful, cost-
effective, and sustainable next-generation systems. RealLLM is available as an open-source
project at (TODO: GitHub Link), aiming to further democratize research and development

in this critical domain and help realize the full potential of large language models.
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Chapter 5

CHIPLET CLOUD: A TCO-OPTIMIZED LLM HARDWARE
ARCHITECTURE

The discussion, figures, and tables related to the Chiplet Cloud architecture presented

in this chapter are based on and reprinted from our prior work published in [145].

5.1 Introduction

A major contributing factor to the increase in ML capabilities comes from the unprecedented
scale of the LLMs being deployed. Most LLMs used today have billions |21, 34, 197| or even
trillions of parameters [51]|. Serving modern generative LLMs on commodity hardware, like
GPUs, is already hitting a scalability wall. For example, Google Search is estimated to
process over 99,000 queries [129] per second while state-of-the-art GPT-3 throughput on
GPUs is 18 tokens/sec per A100 [9]. If GPT-3 is embedded into every query and each query
generates 500 tokens, Google would need 340,750 NVIDIA DGX servers (2,726,000 A100
GPUs) to keep up. Assuming every GPU was able to sustain 50% utilization, the average
power would be over 1 Gigawatt which is enough energy to power 750,000 homes [39]. To
address these scalability issues, we must design hardware systems that attain significantly
better total-cost-of-ownership (TCO) per token served.

This chapter proposes Chiplet Cloud, a highly parameterizable chiplet-based ASIC LLM-
supercomputer architecture which aims to reduce TCO per generated token [145]. The main
insights behind the Chiplet Cloud architecture are shown in Figure 5.1. To address the
potential bandwidth bottlenecks of LLM inference, the Chiplet Cloud architecture allows
for all model parameters and KV values to be stored in a memory system called CC-MEM,
a scalable on-chip memory system for Chiplet Cloud architectures. We use a finely tuned
replicated chiplet accelerator module to reduce the fabrication cost as we scale the system to
meet performance demands. To support models that leverage sparsity, we use a compression

decoder unit which lives within the CC-MEM network to implement a Store-as-Compressed,
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Figure 5.1: Compared to conventional systems, Chiplet Cloud (1) fits all model parameters
inside the on-chip CC-MEM, greatly improving the performance; (2) co-optimizes the chip
size with software mapping to reduce TCO/Perf; (3) exploits sparsity to reduce TCO and

support larger models.

Load-as-Dense mechanism. We show these design choices win in the competition of TCO
per token for serving generative LLMs but requires careful consideration with respect to the
chiplet die size, chiplet memory capacity and bandwidth, and total number of chiplets to
balance the fabrication cost and model performance.

To explore the massive hardware-software co-design space of Chiplet Cloud and find
TCO per token optimal parameterizations, we propose a two-phase design-search method-
ology that fine tunes the architecture across a collection of LLM workloads. The hardware
exploration phase conducts a bottom-up design space exploration of Chiplet Cloud hard-
ware architecture from a flexible accelerator architecture up to a 1U rack mounted server
architecture taking power budget, floorplan, and thermal constraints into account. The soft-
ware evaluation phase then performs a detailed performance and TCO analysis of the server
designs given a specific workloads while simultaneously searching for a software mapping
strategy that complements the server architecture. While software mapping strategies for
LLMs are now considered standard techniques for improving performance on existing hard-
ware platforms, our design methodology flips the order and allows us to explore mapping
strategies across all possible Chiplet Cloud hardware configurations for a software-hardware

co-design methodology.
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This chapter will first delve into the architectural details of Chiplet Cloud, followed by
case studies derived from the design methodology, an evaluation of its performance and

cost-effectiveness, and finally, concluding remarks.

5.2 Chiplet Cloud Architecture

Specialized chip designs often focus on raw hardware performance, however this is not always
aligned with cloud hardware designers whose systems are optimized for TCO per performance
[85]. TCO includes both the the capital expenditure (CapEz) plus the operation expenditure
(OpEz) over the lifetime expectancy of the system (Life), giving us the equation TCO =
CapEx+ Life x OpEz. Optimizing TCO is therefore a balance of how much you are willing
to pay for the additional performance. Aiming for improved TCO per performance, we
propose a chiplet-based cloud-scale system design for LLM inference, called Chiplet Cloud.
The architectural breakdown of Chiplet Cloud is shown in Figure 5.2, which includes the
high-level abstract architecture at different levels from the memory system up to the chiplet

module, server, and cloud.

Chiplet Cloud Memory Architecture

The heart of Chiplet Cloud is the Chiplet Cloud Memory architecture CC-MEM (Fig-
ure 5.2 (a)). CC-MEM is a scalable on-chip memory system with the ability to sustain
high-bandwidth, low-latency read and write operations. This is the main memory for each
chiplet in the chiplet-cloud system which stores the model parameters, KV cache and acti-
vations.

The CC-MEM is designed to act as a drop-in replacement for DRAM memory but lever-
ages SRAM to give us opportunities to take advantage of higher-bandwidth and lower-latency
memory access for significantly better performance for the low operational intensity kernels
of LLMs. SRAMs are clustered into bank groups with each bank group acting as a virtual
single-port memory. Each bank group also contains a compression decode unit including a
sparse tile memory.

Bank groups are interconnected using a pipelined crossbar switching network. The de-

cision to use a crossbar network comes from the low-latency and low-global communication
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power overhead while being able to achieve a 100% saturated throughput with reasonable
network scheduling. The biggest downside of utilizing a crossbar network comes from their
area scalability as the network scales quadratically with the radices of the network. As
with many networks, this area is routing dominated. The CC-MEM is mostly SRAM; thus,
there is an abundance of routing tracks available above the SRAM devices severely lessening
the area overhead of crossbar network, a concept known as NoC' symbiosis [149|. Crossbar
networks also have the benefits of being simple to model both in terms of latency (pipeline
depth) and congestion (bank conflicts). This allows our hardware-software co-design search
space to take into account memory scheduling to ensure that we can achieve the memory

access performance that is required in order to hit our target TCO /performance metrics.

The CC-MEM supports burst mode operations. Each bank group contains a simple con-
trol unit to facilitate in bursting multiple sequential read/write commands within a bank
group. This control unit is programmed using simple memory mapped control status reg-
isters. Due to the highly structured nature of GEMM kernels, burst mode operations will
make up a majority of the memory operations during moments of computation and will
greatly reduce the burden on the compute unit to keep the memory system bandwidth at

near-peak throughput.

CC-MEM for Sparsity

There is a growing interest in reducing LLM inference costs via model compression. Recent
work [52] has shown that large models are more compressible and have significantly less ac-
curacy drop off than small models under compression. OPT-175B [220], which has the same
model architecture as GPT-3, can reach 60% unstructured sparsity with negligible increase
in perplexity while requiring no fine-tuning effort. Supporting unstructured sparse model on
ASIC can be challenging since the highly irregular sparsity can lead to unpredictable data
assess and compute patterns. Simultaneously, sophisticated decoder and on-chip network
architecture for sparse data dispatching can add significant area overhead. To address these
issues, we implement a Store-as-Compressed, Load-as-Dense mechanism into the CC-MEM

architecture. Models are compressed using a tile-based compressed sparse row format [131]
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and stored in the CC-MEM in this sparse format. However, load access patterns and data
appear as if the data was stored dense. The methodology is based on the insight that
TCO/Token of our proposed system will be primarily limited by the on-chip memory size,
rather than memory bandwidth and compute unit utilization. Reducing the required mem-
ory size will be the first priority when supporting sparse models. Using this mechanism,
the compute units are sparsity-agnostic and do not require any special design, reducing area

overhead and increasing flexibility.

To support this methodology, each bank group within the CC-MEM contains a com-
pression decode unit. Data in CC-MEM can be in raw dense formats or sparse compressed
formats. The decode units are controlled using a simple set of memory mapped CSRs similar
to the burst mode CSRs. Data sent over the network is always in dense formats, allowing
any network attached compute units to be completely agnostic to the format the data is
stored in. Compressed data ultimately has a lower bandwidth than dense data. This is
because dense data and sparse data are both stored in the same SRAM banks which have

the same peak bandwidth but sparse data has additional bits per word.

Figure 5.3 shows an example design of the compression decoder unit. In this example, the
sparse matrix is divided into tiles of shape (32, 8). Like the standard compressed sparse row
format, non-zero values (NZV, 16 bits) in a tile are encoded using a 5-bit row index (r) and
a 3-bit column index (c), forming a 24-bit sparse word stored in data memory. Tile indexes
are stored in a separate index memory, which is placed together with crossbar routing tracks
to minimize area overhead. To read sparse data, the decoder sends a tile read request to
the index memory and receives the initial address and end address of the NZVs in a tile.
The decoder then reads data memory at a rate of up to 8 sparse words per cycle and writes
them to a double-buffer. Depending on the row index and column index, zeros are inserted
accordingly to form the original dense tile. The unit can constantly output 8 dense words

per cycle.
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Figure 5.3: Compression decoder unit in CC-MEM.

From Chiplet to Cloud

Figure 5.2 (b) shows a LLM accelerator chiplet module. Inside the chiplet, multiple SIMD
cores are attached to a CC-MEM. Compared to a fully custom compute units, the SIMD
cores are more flexible with very few limitations on the types of kernels that can be efficiently

supported, which is essential for supporting the various activation functions and embeddings

found in modern LLMs.

In Chiplet Cloud, a single chiplet module functions as a discrete package, with multi-
ple chiplets interlinked across the board. Advanced package-level solutions such the silicon
interposers [92] can provide higher signal density for high bandwidths in-package communi-
cation. However, it has a limited reach and adds more cost. In contrast, our Chiplet Cloud
design adopts a board-level organic substrate chiplet approach, aligning with specific com-
munication requirements. Given the large scale of modern LLMs, running the model within
a single package of chiplets is often impractical. Partitioning into multiple packages or even

across servers becomes a necessity. This partitioning mandates collective operations, such as
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all-reduce, to occur across packages. Since the conventional ring all-reduce implementation
is limited by the slowest link among nodes, the in-package high-speed links do not provide
much help in this case. Compared to conventional package-level chiplet, the board-level

chiplet architecture eliminates cost of advanced packaging.

Each Chiplet Cloud server (Figure 5.2 (¢)) contains a printed circuit board (PCB) with
multiple chiplets, a controller and an off-PCB network interface. The controller, which can
be an FPGA or a microcontroller, dispatches remote procedure calls from off-PCB interface
to all chiplets. Chiplets are connected together via a 2D torus on-PCB network, which is able
to accommodate the many different mapping strategies that we might need to implement
to efficiently run different models. Candidates for chip-to-chip interfaces can be custom-
designed links such as NVIDIA ground-referenced signaling GRS links [198, 151], Google
TPU’s Inter-Core Interconnect [86], Graphcore’s IPU-links [102], or high-speed PCI-e which
has been widely used as interconnects for many deep learning chips [172, 152, 121]. Off-PCB
interfaces could be 10/100 Gigbit Ethernet or InfiniBand, enabling communication between

adjacent servers.

Design Space Discussion

The design space of Chiplet Cloud is a balancing act that includes many different archi-
tectural parameters across the entire system that greatly impact the resulting TCO/Token.
Some aspects include (1) Chiplet Module Size: small chips benefit from higher yields while
incurring more per-chip overhead; (2) Per Chiplet Memory Size: more memory on chips
means few chips required but few FLOPS per chip; (3) Per Chiplet FLOPS: more FLOPS
increases performance while requiring higher memory bandwidth, resulting in a larger mem-
ory crossbar; and (4) Software Mapping: the trade-off between different parallelisms affects
utilization and interconnect data communication. Since all of these aspects are tightly cou-
pled, a comprehensive design methodology is critical to optimize the end-to-end performance

and TCO.
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5.3 Case Studies

To evaluate Chiplet Cloud, we performed a case study on eight language models, including
GPT-2 [153], Megatron-LM [170], GPT-3 [21], Gopher [154], MT-NLG [173], BLOOM [19],
PaLM [34] and Llama-2 [197|. Details about these models are shown in Table 5.3. All studies
were conducted on publicly released data, such as model architecture hyper-parameters, and

do not use actual weights.

Design Space Exploration

We performed a thorough design exploration under 3 different context length scenarios (1024,
2048 and 4096) and on batch sizes from 1 to 1024. This exploration results in over 2
million valid design points for each model. Each design point combines the result from both
hardware exploration and software evaluation, which includes hardware design (chip and
server), software mapping (tensor parallelism size, pipeline parallelism size, batch size and
micro-batch size), cost (OpEx and CapEx) and performance (latency and throughput), etc.

Table 5.3 shows the TCO/Token optimal Chiplet Cloud designs for each model in our
case study. We found that all TCO-optimal designs are targeting batch sizes greater than or
equal to 32. Large batch sizes are good for utilization in FC layers but will require additional
silicon for memory to account for a larger KV cache. This means we either need bigger chips
which greatly increase CapEx, or more chips which generate more inter-node traffic and hurt
throughput. This will either results in larger chips which will sharply increase the CapEx
as our silicon per chip gets larger and yield gets worse, or it will generate systems with a
larger number of chips increasing the amount of inter-chip communication and diminishing
the end-to-end performance. Finding batch sizes that balance each factor is essential to
achieve good TCO/Token but is challenging to find. Each optimal design points across our
8 models all have different chip, server designs, and mapping strategies demonstrating the
importance of our design methodology—every aspect of the system affects performance and
cost and are sensitive to the requirements of the workload.

While the workload does impact the optimal Chiplet Cloud configuration, this doesn’t

mean that a Chiplet Cloud instance can only run a single model. Additional discussion on
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Figure 5.4: Proper chip size can reduce the fabrication costs (CapEx) without compromising
performance as much. Left: For a given throughput requirement, chips with a size of less
then 200 mm? have lowest TCO. Right: For a given TCO budget, chips with a size between

100 mm? to 200 mm? achieve the best throughput.

the impact of running non-optimized models and how a multi-model objective optimization

perform can be found in the next section.

Design Insights

How chip size affects TCO and performance. Figure 5.4 shows the results of GPT-3
in two different scenarios. On the left is how we should choose the die size to lower TCO
for a given minimum throughput requirement. Compared to chips over 700 mm?, which is
the size of many traditional large monolithic chips, a chip around 200 mm? reduces TCO by
about 2.2x and still meets the throughput constraint. We also find the CapEx exceeds 80%
of TCO for most designs. The right side of Figure 5.4 shows chips with a size between 200
mm2 to 300 mm2 achieve the best throughput for a given TCO budget. This shows that
proper chip sizing can effectively reduce TCO without compromising performance.

How the batch size affects TCO/Token. Figure 5.5 shows the TCO/1K Tokens
versus batch size across 4 models and 3 context lengths. When the batch size is increased
from 1, TCO/Tokens improves due to increases in compute utilization by providing more
opportunities to exploit pipeline parallelism. As the batch size continues to increase, the

utilization will reach a peak. For the traditional multi-head model, more silicon is required
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Figure 5.5: The optimal TCO/Token under different batch sizes. Small batch requires less
silicon, and large batch benefits weight reuse. The optimal batch size for multi-head models
is between 32 to 256, while the multi-query and grouped-query models are able to maintain

a near-optimal TCO /Token at batch size 1024.

for KV cache in large batch size and long contexts, which significantly increases TCO /Token.
Chiplet Cloud supports batch sizes up to 128 with near-optimal TCO /Token for these mod-
els. PaLM adopts multi-query attention [167] and Llama-2 adopts grouped-query atten-
tion [6], where key and value are shared across all or some groups of attention heads, which
reduces the size of the KV cache by a factor of number of heads. For these models, Chiplet
Cloud supports batch sizes up to 1024 with near-optimal TCO/Token. The cost of longer

contexts is negligible, especially when the batch size is not too large.

How the mapping strategy affects TCO/Token for a given batch size. Figure 5.6
shows that when the number of pipeline stages p (i.e. the pipeline parallelism size) is close
to the batch size, the system utilization is the largest and TCO/Token is optimal. When
these two numbers are similar, the system can take full advantage of pipeline parallelism

with a micro-batch size of 1, so the number of micro-batches is also close (if not equal)
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97

to the pipeline stage [9]. This helps balance the latency of micro-batches passing through
all pipeline stages and pipeline stages completing all micro-batches. Specifically, when p is
too small, performance is hindered by pipeline stage latency, whereas an excessively large p

results in limitation by microbatch latency.

5.4 Evaluation

In this section, we evaluate the performance and cost of Chiplet Cloud for serving large
language models. The key metric we are targeting is 7CO/Token. TCO /Token is measured
as cost per token generated and is the key factor in the ability to democratize LLMs. One
of the most popular business models for generative LLMs is also to charge users per gener-
ated token. Lower TCO/Token not only adds more profit margins, but also makes LLMs
more approachable. We compare Chiplet Cloud to state-of-the-art GPU and TPU cloud
implementations. We also evaluate the sparsity support and flexibility of Chiplet Cloud

architectures.

Comparison with GPUs and TPUs.

We compare optimal Chiplet Cloud designs from the previous section to state-of-the-art
A100 GPU [9] and TPUv4 [150] implementations. Neither work is specifically optimized
for TCO/Token. For our comparison, we choose the throughput optimal result for GPU,
and the utilization optimal result for TPU, which are key indicators that you are close
to TCO/Token optimal. Compared to GPU and TPU clouds, our design achieves up to
106.0x and 19.9x TCO/Token improvement on GPT-3 and PaLLM 540B respectively. TCO
for GPUs and TPUs are based on the best cloud rental price we could find [37, 113].
Adding the NRE of Chiplet Cloud ($35M, estimated based on the NRE model from
Moonwalk [98]), we show the actual cost improvement in Figure 5.7. As the number of
tokens expected to be generated (x-axis) grow, NRE is greatly amortized and Chiplet Cloud
gains more improvement over GPU and TPU. Compared to A100 GPU and TPUv4 clouds,
at the scale of Google search (99,000 queries per second [129], and assuming 500 tokens
per query), Chiplet Cloud achieves 97x and 18x improvement on (TCO-+NRE)/Token,

respectively. We also add variance to 2 inputs that are difficult to accurately estimate,
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Figure 5.7: Compared to A100 GPU and TPUv4, Chiplet Cloud can achieve over 97x and
18x improvement in (NRE+TCO)/Token on GPT-3 and PaLM 540B, respectively. The

light and dark shaded regions represent the results under +30% and +15% input variance.

those being the TCO of GPU and TPU clouds, and the NRE of Chiplet Cloud. With a
+30% variance of these inputs, Chiplet Cloud is still expected to maintain a 66x to 129x
improvement over GPU, and 12X to 24x improvement over TPU.

Figure 5.8 shows the breakdown of TCO/Token of Chiplet Cloud over GPU and TPU.
Some of the improvement in TCO comes from building the silicon instead of renting it. To
analyze the impact of owning a chip, we feed the chip and server specifications of A100 and
TPU v4 into our TCO model. The results show that owing the chip saves 12.7x and 12.4x
in TCO/Token. Note that the actual savings should be less than this, as our model does
not include the cost of liquid cooling and advanced packaging, which are critical for TPUs
and GPUs but not required for Chiplet Cloud. We see that our specialized memory system
improves TCO/Token by 5.1x and 1.5x over GPUs and TPUs, while die sizing improves
it by an additional 1.3x and 1.1x. Compared to GPUs, the 2D weight-stationary layout

in feed-forward network and the larger batch sizes lead to a 1.1x and 1.2x improvement
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Figure 5.8: TCO/Token improvement breakdown over GPU and TPU.

respectively. Both of these optimizations are supported in the TPU implementation.

In Figure 5.9, we compare the architectural benefits of Chiplet Cloud versus TPU v4 [150]
using our model for the TPU’s TCO. Chiplet Cloud is more efficient at most batch sizes and
achieves a TCO/Token improvement of up to 3.7x at batch size 4 as the high-bandwidth
CC-MEM benefits from low operational intensity.

Sparse Models Evaluation

We evaluate the sparse models in Figure 5.10. The top plot compares TCO and perplex-
ity of OPT-175B [220] under different weight sparsities. The perplexity values are from
SparseGPT [52]. The blue bars show the change in TCO/Token compared to using the non-
compressed dense model. At low sparsity (such as 10% and 20%), TCO/Token increases
because it requires more memory to store compressed format encoding overhead. 60% spar-
sity represents a sweet spot where the perplexity of the model is only marginally above
that of the dense model while attaining a 7.4% improvement in TCO/Token. Additional
sparsity continues to give additional improvements in TCO but the model perplexity starts
to increase rapidly. Chiplet Cloud also supports larger models with sparsity. The bottom
of Figure 5.10 shows that under the same system configuration, Chiplet Cloud is able to
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Figure 5.10: Top: TCO/Token and perplexity (from SparseGPT [52], lower is better) of
OPT-175B under different sparsity. Chiplet Cloud can further reduce 7.4% of TCO/Token
at 60% sparsity with negligible increase in perplexity. Bottom: Chiplet Cloud supports a

1.7x larger model with a sparsity of 60%.



101

support models with 1.7x parameters at a sparsity of 60%.

Chiplet Cloud Flexibility

Flexibility is one of the main limiting factors for large-scale deployment of ASIC supercom-
puters. ASIC designs with higher flexibility are believed to have longer lifetimes and thus
easier to amortize the NRE costs. The main flexibility of Chiplet Cloud depends on the flex-
ibility of chip design, which usually dominates in NRE. It is feasible to redesign servers and
software mapping for different generative language models using the same chip. Since LLM
scaling changes the number of parameters, while the operational intensity usually remains
the same, Chiplet Cloud is able to support LLMs of larger sizes by adding chips. LLMs
may also have different element-wise operations, such as different activation functions and
positional embeddings, our highly programmable SIMD cores are able to support all of these
variations.

By adjusting the number of chips and optimizing the server and mapping, one chip design
can to run models of different sizes without sacrificing too much TCO /Token. In Figure 5.11,
we show the impact on TCO /Token when mapping a chip to different models. We first show
3 model-optimized chip designs in blue, orange and green bars for Llama2, Gopher, and
GPT-3, respectively. When running different models, it only increases TCO/Token by 1.1x
to 1.5x compared to the corresponding model-optimized design. When flexibility comes
as the first priority, one can also set a multi-model optimization for the chip design. The
red dashed box shows a design optimized for the geometric mean of TCO/Token on all
8 models, achieving an average overhead of only 0.16x compared to the 8 single-model
optimized designs. The red dots represent the number of chips used for each model. This

demonstrates Chiplet Cloud has the flexibility to support various LLMs.

5.5 Conclusion

This chapter presented Chiplet Cloud [145], a chiplet-based ASIC LLM-supercomputer archi-
tecture designed to achieve unprecedented TCO/Token for serving large generative language
models. The architecture’s core tenets include the CC-MEM on-chip memory system to elim-

inate memory bandwidth limitations, an integrated compression decoder supporting sparse
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Figure 5.11: A Chiplet Cloud chip design is flexible to run models of different sizes via
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models via a Store-as-Compressed, Load-as-Dense mechanism, and careful moderation of
chiplet die size to optimize system costs.

Case studies on eight diverse LLMs demonstrated the effectiveness of this approach. The
resulting Chiplet Cloud systems achieved remarkable TCO/Token improvements, up to 97x
better than rented GPU clouds and 18x better than rented TPU clouds for comparable
workloads. The architecture also showcased robust support for sparse models and inherent
flexibility to run various LLMs efficiently with a single chiplet design.

The significant NRE associated with ASIC development is shown to be justifiable given
the enormous scale and operational costs of current LLM deployments. By substantially
reducing the TCO per generated token, Chiplet Cloud offers a viable path towards making
advanced Al capabilities more accessible and economically sustainable. We believe architec-
tures like Chiplet Cloud, born from a holistic TCO-driven design philosophy, represent the

future for democratizing modern and future large generative language models.
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Chapter 6

CHRONOSTACK: A 3D-MEMORY ARCHITECTURE FOR
LONG-CONTEXT LLM

6.1 Introduction

The ability of Large Language Models (LLMs) to process increasingly long context lengths,
now reaching up to 1 million tokens in models like Google’s Gemini 1.5 [195], is crucial
for tasks requiring deep contextual understanding. However, extending context length sig-
nificantly strains hardware due to the attention mechanism’s computational and memory
demands. Beyond context length, the ratio of input to output tokens also critically affects
hardware efficiency. High-ratio prompts (large input, small output, e.g., summarization)
are generally more compute-bound, while low-ratio prompts (small input, large output, e.g.,
content generation) become more memory-bandwidth-bound as more tokens are generated.
Traditional GPU architectures, with 2.5D integrated High Bandwidth Memory (HBM) [133],
face the memory wall: compute throughput (FLOPs) outpaces memory bandwidth growth,
making them inherently more efficient for high-ratio requests. To better serve memory-
bound low-ratio workloads, alternative architectures are needed. SRAM-only systems like
Chiplet Cloud [145], Groq LPU [1], and Taalas [48] offer higher bandwidth by keeping pa-
rameters and KV-cache on-chip. However, SRAM’s lower density necessitates many nodes
for large LLMs, leading to significant inter-node communication overheads and concerns

about long-term scalability as LLM and context sizes grow against slowing SRAM scaling.

Vertically stacked 3D memory, particularly with direct bond interconnects (hybrid bond-
ing) |54, presents a promising path to overcome the memory wall by offering substantially
higher bandwidth through wider parallel data lines between stacked memory and logic dies.
Nevertheless, integrating 3D memory introduces challenges: limited stack capacity, increased
power density leading to thermal concerns, and area overhead from Through-Silicon Vias

(TSVs).
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We argue that despite these obstacles, 3D DRAM can be effectively exploited in LLM
inference accelerators to enhance the end-to-end latency of long-context, low-ratio workloads
without compromising the performance of short-context or high-ratio tasks. This chapter will
first introduce Time-Multiplexed KV-Prefetching, a novel KV-cache prefetching technique
designed to maximize the utility of 3D memory bandwidth, especially in capacity-constrained
scenarios, by time-multiplexing the 3D memory. It then proposes ChronoStack, a hybrid-
bonded 3D memory integrated architecture tailored for LLM inference. Last, it evaluates
ChronoStack employing Time-Multiplexed KV-Prefetching across a diverse range of context

lengths and workload ratios.

6.2 KV-Prefetching to Address Memory Bottlenecks

Generative large language models (LLMs) have been pushing the high performance comput-
ing (HPC) community in many directions. The amount of computation, memory capacity,
and memory bandwidth requirements are continuously being pushed by ever growing models.
Various batching techniques, such as mixed continuous batching, have improved system uti-
lization, often making inference systems compute-bound during most operations. However,
certain operations, such as the attention mechanism in decode tasks, exhibit low operational
intensity and rely heavily on memory bandwidth. This dependency grows more pronounced
as context lengths increase, significantly impacting overall performance. With the emer-
gence of 3D die stacking in commercial products, vertically integrated memory systems,
such as 3D-stacked DRAM, present a promising solution to address these memory bottle-
necks, particularly for workloads with longer context lengths. However, adopting 3D-stacked
architectures introduces trade-offs that may limit their effectiveness in certain scenarios. The
remainder of this section examines the memory bottlenecks in LLM inference systems utiliz-
ing mixed continuous batching and outlines our approach to leveraging 3D-stacked memory

with Time-Multiplexed KV-Prefetching to enhance performance.

6.2.1 Bandwidth Bottleneck: Batching Does Not Help Attention, Bandwidth Does

The idea of batching is to group multiple requests together and compute them simulta-

neously while keeping their results separate. This allows systems to exploit data reuse,
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Figure 6.1: The normalized latency and breakdown of a chunked mixed continuous batching
kernel. Prefill chunk size set to 512. Left: As the context length increases, benefits of
batching decode tasks diminishes even with a prefill chunk helping the operational intensity
of linear operations. Right: Breakdown for 32 decode tasks. As the context length grows

the attention layer.

particularly with the learned model parameters since all requests use the same weights in-
creasing the operational intensity of the computation and making the system more compute
bounded during the lznear operations. However, this advantage does not extend to attention
operations, where the query, key, and value matrices in attention are unique for each user,

preventing data sharing across batches.

Figure 6.1 shows the latency of an LLM inference iteration using chunked mixed con-
tinuous batching with a prefill chunk of 512 and various number of simultaneous decoding
tasks. During the linear layers, the prefill chunk size acts as additional batching thus we are
simultaneously computing 512 + D tokens where D is the current number of active decode
tasks being processed. We can see that as the context length grows, the amount of time we
spend in the attention operations starts to completely dominate the computation latency.
This is why batching has little to impact on the throughput of the machine (doubling the
batch size nearly doubles the latency).

This motivates the need for higher bandwidth memory solutions. Currently, systems
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improve their memory bandwidth by scaling out the number of devices working on the same
operation, sharding the workload and then combining the results through all-reduction or
all-gather operations. While effective, there are limitations to how far a system can scale-
out a single operation without the data communication of the all-reduction or all-gather
operations starting to dominate the runtime. Furthermore, scaling-out has a massive capital
cost.

Insight 1: While faster memory bandwidth will not eliminate the need for scaling-out,
there is always going to be a want for faster single device memory bandwidth to address the

attention operator overheads.

6.2.2 Capacity Bottleneck: KV Cache Grows Super Linear With Context Length

Thanks to chunked mixed continuous batching (C-MCB, refer to Section 2.3.2), the system
is typically compute-bound during linear operations when the request rate is sufficiently
high. This is because we can mix a prefill chunk with the current decode tasks. As a result,
we focus on using 3D die-stacked memory specifically for the KV cache. In LLMs, the KV
cache size for a given user scales linearly with the current context length. The following

equation calculates the size of the KV cache for a given user:

K‘/tokens =2x Nlayers * Dhead * Nkvhead * Lctx (61)

Where Dj,eqq is the dimension per head, Niypeqq is the number of KV heads, and Nigyers
is the number of layers all of which are model specific parameters. L. is the current context
length of the user.

As shown by the equation, the number of tokens in the KV cache is linear with respect to
Ltz However, Figure 6.2 presents a different trend. The left side of Figure 6.2 demonstrates
that, for a constant request rate, the peak number of active requests being processed increases
as the context length grows. This occurs because requests with longer context lengths require
more iterations to complete. The right side of Figure 6.2 illustrates that this phenomenon,
combined with the larger KV cache size needed to support these longer context lengths,

results in a rapid increase in KV cache size as the context length expands.
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Figure 6.2: Left: For a constant request rate, as the context length grows so does the peak
number of active requests being processed, because longer request it takes more iterations
to finish. Right: KV Cache grows super linear with context length since there more active

requests and each request is longer.

Currently, products that use memory-on-compute vertically stacked memories [209] only
use a single memory layer on top of the compute die. Using a memory density of 11.7
MB/mm? [217] a near full reticle chip of approximately 800 mm? has a max capacity of 9.3
GB. Ideally, the KV cache can simply reside in this 3D memory, however this can be very
limiting. Take a system running OPT-175B on 24 chips each with a 9 GB 3D memory for
the KV cache. If there are 64 users mapped to this system each user can have an average
context length of just 768 tokens before running out of that 9 GB memory.

This motivates the need for larger memory capacity for the KV cache. Especially since in
practice, the KV cache size grows super linearly with respect to the context length. But the
capacity of 3D memory systems is currently limited as only single die layer for memory on top
of compute are currently commercially available, and exceeding that capacity is relatively
simple.

Inisght 2: The benefits that we get from the improved bandwidth of 3D memory is limited
by its maz capacity, leading to a relatively small number of workload scenarios where we can

take advantage of the improved bandwidth..
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Figure 6.3: In linear operations, LLM inference is often compute-bound and underutilizes
memory bandwidth, while in attention operations, it is memory-bound and underutilizes
compute cores. As the context length increases, attention operations take longer time.

Figure generated based on roofline model with a chunk size of 512.

6.2.3 Time-Multiplexed KV-Prefetching

Figure 6.3 shows a roofline analysis of the memory and compute utilization during linear
and attention operations for different context lengths on a H100 GPUs system. We can
see quite clearly that during the linear operations, we are fully compute bound with the
memory utilization sitting around 57%, while during attention operations we are fully mem-
ory bound. In order to leverage both the improved bandwidth that 3D memory systems
promise, while overcoming the max capacity limitation, we propose a new technique called
Time-Multiplexed KV-Prefetching. Time-Multiplexed KV-Prefetching attempts to in-
crease the memory utilization during linear operations by simultaneously prefetching the
upcoming KV cache for the next attention layer into a faster, though potentially smaller,
memory system (e.g., 3D memory).

Figure 6.4 shows an overview for Time-Multiplexed KV-Prefetching. In LLMs, there

are generally 4 linear operations, QKV-Projection, O-Projection, and 2 layers in the Feed-
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Figure 6.4: Time-Multiplexed KV-Prefetching overview. While performing compute
bounded linear operations, we opportunistically move the KV cache of the next attention
operation to a faster memory. The attention operation operates entirely out of the faster
memory reduce the overall latency with only a small update for new KV cache values back

to main memory.

Forward Network (FFN) in each transformer layer. Before starting the O-projection, an
asynchronous DMA engine is programmed to start start prefetching KV cache data from
the main memory to the 3D memory system. These memory requests are arbitrated at a
lower priority with memory requests from the cores. If there is sufficient amount of work to
be done during the 4 linear operations, then the data movement from main memory to the
3D memory system can be completely hidden. This technique allows us use the capacity of
the main memory system while leveraging the bandwidth of the 3D memory system during

the memory bounded attention operations.
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6.3 Hybrid Bonding 3D DRAM Accelerator

This section introduces ChronoStack, an LLM inference accelerator integrating 3D hybrid-
bonded die-stacked memory. While this technology offers substantial bandwidth and power
advantages, its adoption necessitates addressing challenges like heat dissipation, Through-
Silicon Via (TSV) overhead, and memory controller integration. We detail the architecture
and key design considerations, including area and thermal analyses, that inform our evalu-

ation target.

6.3.1 Architectural Overview

The ChronoStack architecture, depicted in Figure 6.5, modifies a baseline GPU-like structure
by incorporating a 3D DRAM memory controller and a DRAM-to-DRAM DMA (D2D-
DMA) unit. This D2D-DMA facilitates asynchronous data movement between the existing
2.5D HBM (High Bandwidth Memory) and the new 3D stacked DRAM. The 3D memory
operates in a separate address space, with L2 cache slices managing portions of both memory

types.

Compute is handled by multiple SIMD cores, each equipped with local shared memory,
vector processing units, and tensor processing units. These cores access the L2 cache via
a hierarchical crossbar Network-on-Chip (NoC). The 3D memory die itself comprises an
array of independent memory banks. Each bank, providing 32MB of capacity, features 1024
data pins operating at 500 MHz, delivering a peak bandwidth of 64 GB/s per bank. These

characteristics are based on prior hybrid bonding memory work [217].

Integrating the 3D memory via face-to-face (F2F) hybrid bonding with 3pm pitch Di-
rect Bond Interconnects (DBI) introduces specific overheads. Notably, TSVs with a 25pm
pitch are required for power and off-chip signals to bypass the logic die’s Front-End-of-Line
(FEOL), which now abuts the interposer. While communication between the logic die and
the 3D DRAM die uses DBI, area penalties for PHY and ESD protection are considered,

though these are less prohibitive than for off-chip interfaces.
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Figure 6.5: Architectural overview of ChronoStack. The logic die sits below the memory
die. The logic die is composed of SIMD cores that use both vector and tensor processing
units for the computation. These cores talk with the L2 cache over an on-chip network.
The L2 cache is organized as slices with each slice containing a portion of the L2 cache, a
DRAM-to-DRAM DMA controller, as well as 3D memory controller. The memory die is
organized into slices with multiple memory vaults per slice corresponding to the 3D memory

controllers per L2 slice.
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Logic Die Specification
Area 29mm x 28mm (TSMC 4N)
Core 95 Active Cores (110 Cores @ 87% yield)

4 Lanes / Core
64x FP16 Vector Core / Lane
512x FP16 PE Tensor Core / Lane

L2 Cache 48 MB
96x 0.5MB Slices

Other 6 HBM3 Dies

18 Off-chip Communication Channels

Memory Die | Specification

Area 29mm x 28mm (17nm DRAM Technology)

Capacity 9 GB, 288 Channels, 32 MB/ch

Bandwidth 18 TB/sec, 64 GB/sec/vault

Freq. 500 MHz

Table 6.1: Modified H100 [133] design specification with 3D hybrid bonded memory for
ChronoStack.

6.3.2 Design Specification

Table 6.1 summarizes the ChronoStack design specification, which is benchmarked against
an NVIDIA H100 GPU [133] due to its state-of-the-art status for LLM inference.

To derive these specifications, an analysis based on NVIDIA A100 die photos was used
to estimate silicon area allocation for Streaming Multiprocessors (SMs) and L2 cache, which
then informed H100 SM area estimates. The H100 L2 cache was assumed to use 0.5MB
slices similar to the A100. To accommodate the overheads of the 3D die-stacked memory
(memory controllers and D2D-DMA engines), the number of SMs was reduced from the
H100’s physical count of 144 to 110 (resulting in 95 active SMs at an 87% yield, compared
to H100’s 132 active out of 144). Similarly, the L2 cache was reduced from 100 slices (50MB)
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to 96 slices (48MB). Each L2 slice interfaces with three 3D DRAM banks, modeled after
the memory in [217]. The area for the additional 3D memory controllers and D2D-DMA
engines was estimated by scaling 12nm process implementations (using Synopsys tools for
synthesis and layout of the DMA) to a target 4N /bnm-class process node, using the ratio of
Minimum Metal Pitch (MMP) times Contacted Polysilicon Pitch (CPP). These additional

components account for approximately 7.1% of the final logic die area.

6.4 Evaluation

Our evaluation is conducted on two systems. The baseline system is an H100 GPU-based
configuration, employing the state-of-the-art chunked mixed continuous batching (C-MCB)
mechanism [74, 4]. The second system, ChronoStack, is the proposed 3D hybrid-bonded
memory enhanced architecture, which leverages Time-Multiplexed KV-Prefetching to ac-
celerate attention operations. Both systems share identical system-level configurations,
such as the number of nodes and node interconnects (4th generation NVLink and NVLink
Switch [135]). The number of nodes utilized varies depending on the model and maximum
context length, as detailed in Table 6.3. Both systems adopt NVIDIA’s TensorRT-LLM
MultiShot [103] for inter-node communication, ensuring identical communication overheads.
It is important to note that the chosen node count does not represent the minimum re-
quirement for running these models. Instead, increasing the number of nodes enhances SLO
performance, as mixed continuous batching benefits from scaling. This is a widely adopted
practice in real-world LLM inference studies [143]. The latest NVLink Switch [135] supports
up to 576 GPUs in direct connection, while TPU-based clusters [38] scale up to 4,096 nodes,
making configurations in the range of 64 to 96 nodes well within practical deployment lim-
its. This simulator employs chunked mixed continuous batching as the baseline batching

methodology, allowing us to evaluate the impact of different chunk sizes on SLOs.

6.4.1 Main Insights

We first evaluate the two systems on different models, tasks, and maximum context lengths.
The 8K code-based and conversation-based traces are generated directly from real product

traces [143, 126]. We linearly scale both the input and output to generate the 32K and 128K
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Figure 6.6: E2E comparison of proposed and baseline system across input request rates.
Different columns of the graph represent different models and maximum context lengths.

Dashed red lines indicate E2E SLO.

traces, preserving the input-output ratio. To stress-test the systems, Figure 6.6 presents
the P50, P90, and P99 end-to-end (E2E) latencies at varying input request rates. These
latencies are normalized to the SLOs set in Table 6.2.

Following the trace generation methodology in Splitwise [143], we use exponential distri-
butions to model the arrival times of requests based on expected request rates. Each column
in Figure 6.6 represents a combination of model and maximum context length, with the
input load (requests per second) increasing from left to right. Upon analyzing the figure, we
observed the following insights:

In most cases, ChronoStack effectively reduces the E2E latency. In the major-
ity of figures, the proposed system (ChronoStack, blue lines) consistently shows similar or
significantly lower end-to-end (E2E) latency compared to the baseline system (brown lines)
at any given input load. For instance, in the conversation task with Llama3-70B at an 8K
context, when the input load is 20 requests per second, our system reduces the P50, P90,

and P99 E2E latencies by 66.8%, 49.4%, and 44.8%, respectively. This also means that
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Context | TTFT | TBT E2E

8K 400 ms | 100 ms | 25.4 s (250 tokens generated)
16K 800 ms | 100 ms | 50.8 s (500 tokens generate)

32K 1600 ms | 100 ms | 101.6 s (1000 tokens generate)
64K 3200 ms | 100 ms | 203.2 s (2000 tokens generate)
128K 6400 ms | 100 ms | 406.4 s (4000 tokens generate)

Table 6.2: SLOs for evaluation. E2E is set to be TTFT plus the time to generate a number

of tokens while meeting TBT.

8K | 16K-32K | 64K-128K

Llama3-70B | 16 32 64

OPT-175B 24 48 96

Table 6.3: Number of nodes used in different models and maximum context lengths.

our system can handle higher input loads while still meeting SLOs. Figure 6.7 illustrates
the throughput improvement over the baseline, defined as the maximum input load that
the system can handle while still meeting the E2E SLO. Our system achieves up to a 2x
improvement in throughput. Additionally, both models exhibit performance gains, high-
lighting the versatility of the proposed system for different LLMs, regardless of their scale

or attention mechanisms.

ChronoStack is more advantageous in conversation-based tasks than in code-based
tasks. The latency reduction in code-based tasks (dashed lines) is less pronounced com-
pared to conversation tasks (solid lines). In some instances, such as Llama3-70B with an
8K context (first column), the proposed system exhibits higher latency than the baseline.
This is due to the fact that code tasks typically have a much larger input-output ratio, as
shown in Figure 4.5. Consequently, code tasks involve more prefill tokens and fewer de-

code tasks, making the system compute-bound for a longer duration. Since ChronoStack
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Figure 6.7: End-to-end throughput improvement. Throughput is measured as the maximum

input request rate while the system still meets the E2E SLO.

experiences thermal throttling, it has lower peak performance, which results in the baseline
system outperforming ChronoStack for these compute-intensive workloads. However, Fig-
ure 6.7 demonstrates that our system still improves throughput for code-based tasks by up

to 1.2x, though this improvement is smaller than that observed for conversation tasks.

ChronoStack becomes more beneficial as the context length increases. As the
context length increases (from columns 1 to 3 or 4 to 6 in Figure 6.6), the proposed system
reduces latency more significantly across a range of input loads. This trend is also reflected
in the throughput comparison in Figure 6.7. For Llama3-70B conversation tasks, through-
put improves by 1.1x, 1.5x, and 2.0x for 8K, 32K, and 128K contexts, respectively. A
more detailed analysis of the relationship between context length and input-output ratio is

provided in the next section.

6.4.2 Impact of context length and ratio

Both context length and input-output ratio are important characteristics of a workload. To

study how these factors impact performance, we generate synthetic traces with maximum
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Figure 6.8: Llama3-70B P90 TTFT and E2E latency for 32K and 128K context lengths and

different input-output ratios.

context lengths ranging from 16K to 128K and input-output ratios from 16:1 to 256:1.

Figure 6.8 plots the P90 TTFT and E2E latency for different synthetic traces. In each
column, the input-output ratio decreases from bottom to top, with performance improve-
ments in TTFT and E2E becoming more significant (evidenced by larger gaps between the
lines). For each row, our system shows more substantial E2E latency reduction for the 128K
context compared to the 32K context.

Figure 6.9 shows the E2E throughput improvement of ChronoStack at various context
lengths and input-output ratios. The value X indicates that the system can sustain an input

request rate X times higher than the baseline while still meeting the E2E SLO. A smaller
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input-output ratio results in more decode tasks, increasing the memory-bound attention op-
erations. Similarly, longer context lengths require reading more KV cache during the atten-
tion operation, making the entire workload more memory-intensive. Therefore, the greatest
improvements are observed at longer context lengths and smaller input-output ratios. For
example, with 128K contexts and an input-output ratio of 16, ChronoStack improves the

E2E throughput by 2.10x and 1.62x for Llama3-70B and OPT-175B, respectively.

6.4.3 FEwvaluation on Models with Optimized KV-Cache

Recently, models like the DeepSeek family [46, 47, 45] have adopted Multi-head Latent
Attention (MLA) to reduce KV-cache size and optimize memory bandwidth usage. While
MLA helps lower the overall memory footprint, memory bandwidth can still be a bottleneck
in certain scenarios.

To evaluate whether ChronoStack continues to provide benefits for models with optimized

KV-cache, we compare DeepSeck V3 [47] inference latency across two systems, both using
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mixed continuous batching with a prefill block size of 2048. Each system consists of 64 nodes
and employs 64-way expert parallelism, following the original DeepSeek setup. Figure 6.10
presents latency comparisons across two dimensions. The left plot shows latency vs. average
context length per decode task where ChronoStack consistently outperforms GPU, though
the gap remains nearly constant across different context lengths. This suggests that while
MLA reduces KV-cache pressure, Time-Multiplexed KV-Prefetching still improves overall
efficiency. The right plot illustrates latency vs. the number of concurrent decoding tasks
in mixed continuous batching, showing that ChronoStack becomes increasingly beneficial as
concurrency grows, leading to larger latency reductions (17%) compared to GPUs. This is
mainly because there are some Matmul kernels with low computational intensity in MLA
decode tasks, which indicates that it still requires high memory bandwidth for efficient
large-scale serving. Overall, while MLA reduces KV-cache overhead, ChronoStack ensures
efficient data movement for memory-bound kernels, making it particularly valuable in large-

scale nference scenarios.

Other techniques, such as sliding window attention [16], trade accuracy for efficiency
by discarding earlier tokens, limiting their adoption in frontier models like DeepSeek R1
[45], GPT-40 [137], and Gemini 2.0 [44]. ChronoStack provides a more scalable KV-cache

management approach, maintaining both efficiency and accuracy for long-context workloads.

0.4.4 Chunk Size and 8D Memory Usage

One important parameter to set in both the baseline and our systems is the prefill chunk size.
Figure 6.11 demonstrates how the chunk size impacts all latency metrics for Llama3-70B at
an 8K context. Smaller prefill chunk sizes reduce TTFT but increase TBT, affecting the
overall E2E latency. Selecting the optimal prefill chunk size is critical for meeting SLOs. In
the case shown, we choose a chunk size of 512 to minimize ETE latency. It’s also important
to note that smaller chunk sizes reduce the time required to prefetch data from HBM to 3D.
Typically, larger chunk sizes are preferred for longer context lengths since more KV values
need to be prefetched. For workloads with context lengths greater than 16K, we set the
chunk size to 2048.
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Figure 6.12: 3D memory usage in the system. 3D memory usage in the system. Higher
input loads use more 3D memory due to more concurrent tasks. Multi-head models require

more memory than grouped-query model.

Figure 6.12 illustrates the total 3D DRAM used by the system, representing the KV
cache data prefetched from HBM. Larger input workloads involve more concurrent tasks
and, consequently, require more 3D memory. The multi-head model, OPT-175B, demands
more memory than the grouped-query model, Llama3-70B, as it provides a distinct KV
cache for each attention head. Regardless of the model, the memory usage remains well
below the total 3D memory capacity in the system.

It’s also important to note that the Time-Multiplexed KV-Prefetching mechanism is
not limited to hybrid bonding 3D memory. The concept can be applied to any memory
architecture that is faster than the main memory and has sufficient capacity to accommodate

one layer of KV.

6.5 Conclusion

In this chapter, we introduce ChronoStack, a hybrid bonded 3D-DRAM integrated architec-
ture for LLM inference optimized for improved context length scalability in low-ratio work-

loads and end-to-end latency service level objects. To overcome limitations in the memory
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capacity of the 3D-DRAM, we propose Time-Multiplexed KV-Prefetching as a technique
to utilize the improved 3D-DRAM bandwidth despite capacity limitations when scaling up
the context length by time-multiplexing the 3D-DRAM through prefetching. We show that
ChronoStack with Time-Multiplexed KV-Prefetching is able to improve the end-to-end la-
tency of Llama3-70B by 2.1x and OPT-175B by 1.62x in low-ratio, large context length

workloads with minimal degradation to high-ratio, small context length workloads.



124

Chapter 7
CONCLUSION

The continued advancement of Artificial Intelligence, particularly the development of
Large Language Models, has led to a significant demand for specialized and efficient hard-
ware. General-purpose architectures, while foundational, face challenges in meeting the
performance, efficiency, and scalability needs of these complex models. This dissertation
has addressed these challenges by investigating, designing, and evaluating ASIC accelerator
architectures and supporting methodologies, with a primary focus on Al inference, especially
for LLMs. This chapter summarizes the main contributions of this research and explores

potential avenues for future work.

7.1 Summary of Research and Contributions

This doctoral research aimed to design and evaluate high-performance and efficient ASIC
accelerator architectures and supporting methodologies for diverse and evolving Al applica-
tions, with a primary focus on Large Language Models. The work presented has made several
contributions towards this objective:

The research began with foundational explorations into accelerating earlier Al paradigms
(Chapter 3). Contributions in this area included involvement in the development of iIFPNA|
a flexible processor architecture adaptable to various neural network models, and the design
of DRLP with the F|B|C dataflow for Deep Q-Learning. These studies provided insights
into architectural adaptability, dataflow optimization, and hardware-software co-design.

Recognizing the complexities of contemporary LLM inference, ReaLLM was developed
as a holistic, multi-level hardware system simulation framework (Chapter 4) [146]. ReaLLM
facilitates the evaluation of LLM inference systems by bridging detailed accelerator-level
analysis with system-wide performance considerations, utilizing a precomputed kernel library

and trace-driven simulation.
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To address the economic and scalability aspects of large-scale LLM deployment, Chiplet
Cloud was proposed as a TCO-optimized, chiplet-based ASIC architecture (Chapter 5)
[145]. This architecture features an on-chip memory system (CC-MEM) for model parame-
ters, a methodology for co-optimizing chiplet die size with software mapping, and support
for model sparsity to enhance TCO.

Finally, to manage the memory bandwidth demands of long-context LLMs, ChronoS-
tack, a 3D-memory integrated architecture, was investigated as part of a collaborative effort
(Chapter 6). This work introduced the Time-Multiplexed KV-Prefetching technique,
aiming to leverage the high bandwidth of hybrid-bonded 3D DRAM to accelerate attention
mechanisms.

These contributions, taken together, address the research objective by providing both
specific architectural solutions and supporting methodologies for Al inference. The focus on
LLMs in the latter contributions directly targets the challenges posed by these large-scale
models. The work aims to contribute to the development of more capable and efficient Al
systems, and the methodologies developed offer tools for researchers and practitioners in Al

hardware.
7.2 Future Work

While this dissertation presents several advancements, the field of Al hardware continues to

evolve, suggesting numerous avenues for future investigation:

e Advancing Simulation and Modeling Capabilities: Future work on simula-
tion tools like ReaLLM could involve integrating automated Design Space Explo-
ration (DSE) algorithms, incorporating more detailed power and thermal modeling,
and extending support for emerging LLM architectures and novel hardware technolo-
gies. Specifically, for architectures like Mixture-of-Experts (MoE) models, ReaLLM
can be enhanced to model the dynamic activation of experts, simulate complex com-
munication patterns arising from expert parallelism, evaluate various load balancing
strategies among experts, and analyze the performance implications of different token

routing mechanisms. Expanding simulation to cover distributed LLM training and
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other emerging model types like multimodal models would also be beneficial.

¢ Evolving Disaggregated and Cost-Optimized Architectures: For architectures
such as Chiplet Cloud, further research could focus on heterogeneous chiplet integra-
tion, advanced dynamic resource management for large-scale disaggregated systems,

and continued co-optimization of interconnects.

e Innovations in Advanced Memory Systems for AI: Regarding 3D-integrated
memory systems like ChronoStack, future investigations could explore multi-layered
3D stacking of DRAM or heterogeneous memory types. Developing more intelligent
prefetching and caching algorithms for techniques, and exploring near-memory pro-

cessing within 3D stacks, are also promising directions.

e Addressing Overarching Themes in AI Hardware: Broader research areas in-
clude ongoing algorithm-hardware co-design for model compression techniques like
sparsity and quantization. A continued focus on sustainable Al hardware, addressing
energy efficiency across the stack, is important. Furthermore, contributions to stan-
dardization and open ecosystems for Al hardware can foster wider collaboration and

innovation.

The research presented in this dissertation aims to provide a foundation for these and

other future explorations in the dynamic field of Al inference hardware.
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