
Task Parallel Programming on the HammerBlade Manycore

Max Ruttenberg

A dissertation

submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington
2025

Reading Committee:
Mark Oskin, Chair

Michael Taylor
Zachary Tatlock

Program Authorized to Offer Degree:
Computer Science and Engineering

© Copyright 2025

Max Ruttenberg

University of Washington

Abstract

Task Parallel Programming on the HammerBlade Manycore

Max Ruttenberg

Chair of the Supervisory Committee:

Mark Oskin

Paul G. Allen School of Computer Science and Engineering

Manycore architectures integrate hundreds of cores on a single chip by using simple cores and simple

memory systems usually based on software-managed scratchpad memories (SPMs). However, such architec-

tures are notoriously challenging to program, since the programmers need to manually manage all aspects of

data movement and synchronization for both correctness and performance. This manycore programmability

challenge is one of the key barriers to achieving the promise of manycore architectures.

Single program multiple data the de-facto standard parallel programming paradigm for manycore pro-

cessors, not because the programming model is simple, but because its overheads are low. By contrast, the

dynamic task parallel programming model has enjoyed considerable success in addressing the programmabil-

ity challenge of multi-core processors with tens of complex cores and robust and coherent cache memory

hierarchy.

In this thesis, I focus on the HammerBlade manycore, and demonstrate that a work-stealing runtime is

not just feasible on manycore architectures with SPMs, but such a runtime can also significantly improve

the performance of irregular workloads when executing on these architectures. I also explore optimizations

to leverage unused SPM space. This runtime framework achieves as much as 1.2–28.5× speedup on select

workloads, and only induces minimal overheads. I show this runtime remains scalable up to a thousand-core

system. Loss of locality can be mitigated by embedding locality-aware semantics to the scheduler scheduling

while adding a minimum burden on the programmer.

Acknowledgements

Pursuing a PhD can be a long, lonely process. The pandemic started in my second year of seven in this

program, making it even lonelier, if not longer. I probably would not have started this degree without the

mentorship and inspiration from a few special people. I am certain that I would have failed to complete it

without the support of my family, friends, and advisors.

First, and most importantly, I must thank my wife, Katie. You moved across the country with me so that I

could attend UW before we were even married. You gave me bottomless love and encouragement for all

seven years. You did all of this while starting a family with me and raising our two girls, Kelly and Sage.

I must also thank my daughters. I may have taught you both to walk and talk, but you taught me to be

a father. You inspired me to be a better man. Finally, you taught me that, while research and school are

important, time spent with family is as rewarding as life can be.

Thank you to my father and mother for pushing me to finish. It was tough love, but I needed to hear it.

Thank you to my advisors and mentors, Mark Oskin and Michael Taylor. I learned so much from both of

you. You both worked so hard to provide financial support to me and my labmates and ensured that we could

do the most impactful research that we could. You did this all during a period of unprecedented challenges

brought upon by the pandemic and societal unrest. Thank you both.

I must also thank Richard Lethin, Marty Deneroff, and Preston Briggs. You three were mentors to me

before I started my PhD in the first place. You all took a chance on me when I was young and did not even

know how little I knew. Then, you encouraged me to take a chance on myself and pursue this degree. I am

not sure what I would be doing now without you, but it certainly would not be as interesting.

Thank you to the folks at AMD Research, including my mentors Srikant Bharadwaj and Yasuko Eckert,

who guided me through the second chapter of this thesis, and collaborators Valerie Chen, Robin Knauerhase,

5

and Ganesh Dasika.

Thank you to all my BSG labmates. Special thanks to Paul Gao, without whom the final chapter of this

thesis would not have been possible, and Tommy Jung, the chief architect of HammerBlade. Many thanks to

Dustin Richmond, who practically served as my third advisor.

I would never have finished without the support of my friends. Thank you to Dan Petrisko, Jacob Van

Geffen, Pratyush Patel, Ellis Michael, and Gus Smith for all the days spent playing board games, playing

pickle ball, enjoying good beer, digging for shellfish, going on long runs, and skiing down the streets of

Capitol Hill. Thank you to Tal August and Kim Dacarogna, who Katie and I befriended our first week

in Seattle and who became parents just a month after us. Thank you to the folks in RCR who helped me

rediscover the joy of running with friends in the first two years of my PhD. Thank you to everyone who

played department Mafia, in particular Erin Wilson and Matt Johnson, who introduced me that scene.

Lastly, I would like to thank an absent friend, Connor Tait. You passed away while I was finishing this

dissertation. You became my friend when I needed one more than ever. I will miss hearing you perform your

music, talking to you about movies only you and I have ever watched, and making edgy jokes we would

never make in front of anyone else. Wherever you are, I hope there is a room with an open mic and a crowd

with a sense of humor.

6

DEDICATION

To Katie.

For the nights you did not see me, because I was under a deadline.

For the times you pushed me to seek victory, when I would have declared defeat.

This dissertation is written with your endless love and support.

7

Contents

1 Introduction 17

2 An Experimental Study of HBM2 21

2.1 Introduction . 21

2.2 Background . 24

2.2.1 DRAM Operation and AC Timings . 24

2.2.2 High Bandwidth Memory . 25

2.2.3 Dynamic Voltage and Frequency Scaling in Memory 27

2.3 Memory Parameter Sensitivity . 28

2.3.1 Memory Clock Frequency Scaling . 28

2.3.2 Performance Sensitivity to RCD . 30

2.3.3 Performance sensitivity to RP . 31

2.3.4 Power Trade-offs in Reconfiguring Memory Parameters 32

2.4 Analytical Model for Performance and Power . 33

2.4.1 Performance Model . 34

2.4.2 Power Model . 34

2.5 RAMP: Application-Aware Dynamic Reconfiguration of Memory 35

2.5.1 Application Profiling . 38

2.5.2 Memory System Reconfiguration . 38

2.6 Methodology . 39

2.6.1 Applications . 39

9

2.6.2 Baseline Policy . 39

2.6.3 Voltron for GPUs . 40

2.6.4 Oracle Policy . 41

2.7 Evaluation . 41

2.7.1 Performance-per-Watt . 41

2.7.2 Bandwidth-per-Watt . 43

2.7.3 Performance . 44

2.7.4 Power . 44

2.8 Related Work . 45

2.8.1 DVFS for Memory Systems . 45

2.8.2 DRAM Operation Latency Tuning . 45

2.8.3 Memory Systems for GPUs . 46

2.9 Summary . 46

3 The HammerBlade Manycore 49

3.1 Vanilla Tile . 50

3.2 Multi-Tiered Memory System . 51

3.2.1 Scratchpad Memory . 51

3.2.2 Tile Shared Memory . 53

3.2.3 Shared DRAM Memory . 53

3.2.4 Atomic Memory Operations . 54

3.3 On-Chip Network . 54

3.4 Pod Architecture . 55

3.5 Programming Model . 56

3.5.1 Related Manycore Architectures . 56

4 A Dynamic Task Parallel Library 59

4.1 Introduction . 59

4.2 Background . 63

10

4.2.1 Programming Models for Dynamic Task Parallelism 63

4.2.2 Manycore Architecture Programmability Challenge 64

4.3 Supporting Dynamic Task Parallelism on Manycore Architectures 64

4.3.1 Running Example . 66

4.3.2 A Naive Work-Stealing Runtime . 67

4.3.3 Scratchpad Enhanced Runtime . 68

4.4 Evaluation Methodology . 74

4.4.1 Simulated Hardware . 76

4.4.2 Runtimes . 76

4.4.3 Workloads . 76

4.5 Results . 77

4.6 Related Work . 81

4.7 Summary . 83

5 Work-Stealing on One Thousand Cores 85

5.1 Bigblade’s Memory System . 87

5.2 Addressing the Extended Address Space . 90

5.2.1 Discussion . 93

5.3 Runtime Library Design and Extensions . 94

5.3.1 Inclusive Linked List for the Task Queue vs a Ring Buffer 94

5.3.2 Spawning and Stealing Work . 96

5.3.3 Delegation . 96

5.3.4 Locking . 98

5.3.5 Removing Tail Recursion from Parallel Foreach . 99

5.3.6 Vector and Sparse Matrix Abstractions . 100

5.4 Evaluation . 101

5.4.1 Application Suite . 101

5.4.2 Overheads of Spawning and Delegating Tasks . 102

5.4.3 Optimizations . 104

11

5.4.4 Comparison to Single Program Multiple Data . 107

5.4.5 Scaling . 108

5.5 Related Work . 109

6 Conclusion 111

6.1 Future Research Directions . 111

12

List of Figures

2.1 RAMP policy diagram . 23

2.2 DRAM timing parameters . 26

2.3 High level block diagram of HBM . 27

2.4 HBM frequency scaling . 29

2.5 Sensitivity to HBM frequency with bandwidth consumption 29

2.6 Application speedup as RCD is reduced . 30

2.7 Sensitivity to RCD scaling with bandwidth consumption 31

2.8 High-bandwidth kernel sensitivity to RCD with the row buffer hit rate 31

2.9 Application speedup as RP is reduced . 32

2.10 Sensitivity to RP scaling with the HBM row buffer conflict rate 33

2.11 Performance per Watt improvement . 42

2.12 Performance-per-Watt improvement across kernels with varying bandwidth demands 42

2.13 Bandwidth-per-Watt improvement over the baseline system 43

2.14 Performance improvement by application over a baseline system 44

2.15 Power reduction by kernel over a baseline system . 45

3.1 A HammerBlade pod . 50

4.1 On Chip Memory Hierarchy in Manycore Architectures . 61

4.2 Task-Based Parallel Programs . 65

4.3 Work-Stealing Runtime Implementations . 69

4.4 Normalized Remote Scratchpad Load Latency . 72

13

4.5 Performance Impact of Read-Only Data Duplication . 72

4.6 Speedup from Optimizing Data-Placement with SPM in Work-Stealing Runtime 74

4.7 Anatomy of Workloads . 77

4.8 Work-stealing Runtime Evaluation . 78

4.9 Speedups of CilkSort and MatrixTranspose . 79

4.10 Workload Scaling . 80

5.1 BigBlade memory microbenchmarks . 89

5.2 Results from stride on BigBlade . 90

5.3 Classes to encapsulate the pod address . 92

5.4 Fat-pointer primitive . 93

5.5 Delegate operations . 95

5.6 Multi-pod vector and CSR example . 100

5.7 The costs of spawning . 103

5.8 Delegation costs . 105

5.9 Cumulative impacts of optimizations . 106

5.10 Comparison to SPMD on BigBlade . 106

5.11 Scaling on BigBlade . 108

14

List of Tables

2.1 RAMP’s classification of a workload’s bandwidth demands 36

2.2 RAMP’s detailed policy . 37

2.3 GPU workloads to evaluate RAMP . 39

4.1 Simulated Workload Results . 75

5.1 BigBlade and Simulation Cache Configuration Parameters 88

5.2 Six parallel benchmarks . 102

15

Chapter 1

Introduction

Writing efficient software for manycores is difficult. One major reason why is fundamental. The human brain

comes naturally to doing tasks one or, perhaps, two at a time, but not hundreds at once. Doing so is the essence

of writing parallel software for manycores. As if this hurdle was not big enough, the challenges of building

such hardware in a scalable manner compel architects to forgo optimizations that have made single-core and

multi-core systems highly performant, even with relatively little effort from software engineers.

The most impactful difference is in the memory system. Cache coherence protocols are notoriously

challenging to scale. But without these coherence protocals, any distribute cache system renders the memory

model almost impossible to reason about. By contrast, Scratchpad Memories (SPMs) provide key advantages

in parallel systems. Manycore architectures that adopt software-manage SPMs over a traditional cache

hierarchy have been proposed and fabricated by both academia and industry Davidson et al. [2018]; Ajayi

et al. [2017b]; Bohnenstiehl et al. [2017]; Olofsson [2016]; Brahmakshatriya et al. [2021]. They improve the

efficiency and scaling of the memory system by removing the need for a coherence protocol and associated

network traffic. When used effectively, SPMs can yield critical performance and energy savings by reducing

data movement, improving synchronization times, and eliminating overheads that can arise from false sharing.

However, SPMs are often hard to use effectively.

Replacing the traditional L1 caches in favor of SPMs comes at a cost to software productivity. Manycore

architectures that rely on SPMs are notoriously challenging to program. Such systems usually require

programmers to write applications in low-level C environments and/or directly in assembly. This places the

17

burden on the programmer to explicitly manage data coherence among private memories and adopt a more

restricted programming model (e.g., explicit task partitioning Kelm et al. [2009], message passing Olofsson

[2016], and remote store programming Davidson et al. [2018]). The cumbersome programming environment

coupled with the need for software optimizations to realize the performance promised by hardware is a critical

barrier to widespread adoption of most manycore architectures with software-managed SPMs.

In my thesis work, I focus on HammerBlade, a manycore architecture developed at the University of

Washington. As is the case with similar architectures, programming HammerBlade without loss of domain

generality requires using a low-level C runtime environment. Doing so demands that the programmer have

both an extensive domain knowledge for their application and for the underlying hardware. Concerns such as

data placement, synchronization, and load-balancing are left entirely to the programmer. Having to use a

low-level C runtime environment prevents easily reusing existing code written for multi-cores and requires

most applications to be completely rewritten.

A common approach to facilitate programming on manycores is by utilizing domain-specific frameworks.

This approach has had success in application spaces such as graph processing Brahmakshatriya et al.

[2021] and machine learning Cheng et al. [2022]. These frameworks express domain-specific workloads

effectively and achieve high performance. However, not every domain is covered. Extending and re-

purposing these frameworks for other domains requires non-trivial effort by programmers. General-purpose

parallel programming frameworks provide more flexibility than domain-specific ones. However, most such

frameworks (e.g., OpenCL ope [2011]) usually adopt a single program multiple data (SPMD) programming

model, in which native support for dynamic work scheduling and load balancing is highly limited, if provided

at all.

My thesis work approaches this problem by taking inspiration from the success of the dynamic task

parallel programming model in the multi-core era, and attempts to address the programmability challenge

of manycores with software-managed SPMs by offering a dynamic task parallel programming library that

is similar to those that are common on multi-core systems (e.g., Intel Cilk Plus int [2012], Intel Threading

Building Blocks (TBB) int [2019], and OpenMP Ayguadé et al. [2009]; ope [2013]). These programming

frameworks allow parallel tasks to be generated and mapped to hardware dynamically through a software

runtime. They can express a wide range of parallel patterns and provide automatic load balancing.

18

I begin in Chapter 2 with a detailed study into High Bandwidth Memory in its second generation. This

study was conducted in the summer of 2020, but the HammerBlade team planned to use HBM2 as its

main-memory technology. HammerBlade would not exist as a realized system for a few years more years.

As such, this study focused on the performance and power consumption of HBM2 for an AMD Radeon

VII graphics processor. I investigate workload sensitivity to HBM’s clock and its standard DRAM timing

parameters RCD and RP. Using real-system data I proposed a memory clocking and power policy based up

on application specific characteristics such as bandwidth consumption and row buffer hit rate.

Chapter 3 presents an overview of the HammerBlade architecture. I desribe HammerBlade’s Vanilla

Core, the basic compute fabric of HammerBlade. I also describe HammerBlade’s multi-tier memory system

including its scratchpad memories, its shared tile-memory, and its cached main-memory. The on-chip network

is also covered in brief. I explain the SPMD programming model that HammerBlade adopts as its default

programming environment. Lastly, I describe how HammerBlade is scaled up using its replicated pod

architecture.

Chapter 4 is drawn from work published in ASPLOS 2023. This work explored implementing a dynamic

task-parallel runtime system that used a work-stealing scheduler for load-balancing. It is the first work, to

my knowledge, to explore this on a system with no coherent L1 or L2 caches, only scratchpad memories. It

also proposes optimizations to best leverage the scratchpads to reduce runtime overhead. We evaluated this

runtime library on a 128-core HammerBlade system and compared its performance to one that uses a static

scheduler.

Chapter 5 extends this published work to run on a multi-thousand-core HammerBlade chip that was taped-

out in the Spring of 2021. This chip, christened as BigBlade, was made available in our lab after many years

of hard work from me and my fellow labmates who worked on HammerBlade. I detail the software extensions

that were required to adapt the runtime library to BigBlade and I propose more optimizations to improve

performance, preserve locality, and reduce overhead. I compare the performance of the parallel runtime

library to the SPMD model using benchmarks that were also used to evaluate HammerBlade holistically in an

ISCA 2024 publication Jung et al. [2024].

I conclude in chapter 6 with brief thoughts on HammerBlade and specifically the parallel programming

models explored in this thesis. I propose some ideas for future research directions for HammerBlade software.

19

Chapter 2

An Experimental Study of HBM2

I begin with a study of an HBM2 memory system on a Radeon VII GPU. This study was conducted early in

my PhD when this type of memory system was state-of-the-art. HammerBlade was still a young project at

that time, but we planned to adopt HBM2 as its memory system once we did have it in silicon. We would

model HammerBlade’s performance and energy efficiency using HBM2 for all publications relating to that

project during my PhD. At the time of this study, a GPU was the most practical platform from which I could

study HBM2 on real hardware.

I learned a lot from this study. First, I learned the impacts of memory frequency and timing parameters in

practice. Second, I learned a good deal about where energy is spent in the memory system. These lessons

would serve us well in designing HammerBlade’s on-chip memory hierarchy.

2.1 Introduction

Memory performance is critical to the overall performance of parallel computation Wulf and McKee [1995].

A key technology that has emerged to meet the memory demands of parallel compute fabrics is die-stacked

memory Li et al. [2018b]; O’Connor et al. [2017]. The most commercially successful of these technologies

is High Bandwidth Memory (HBM) which is currently in its second generation (HBM2) jed [2015, 2018,

2020]. HBM2 is commercially available on several parallel compute fabrics. Its primary advantage over other

DRAM substrates is its ability to deliver cutting edge memory bandwidth at significantly lower power than

other high bandwidth memories Villa et al. [2014]; Li et al. [2018b]; Balasubramonian [2019].

21

Nevertheless, energy consumed by such memory structures remains a significant fraction of the total

energy consumption of systems Kanev et al. [2015]; Chatterjee et al. [2017]. Consequently, the energy

efficiency of such systems, or performance-per-Watt, has become an important metric for measuring the

efficiency of commercial products AMD. Dynamic voltage and frequency scaling (DVFS) is one of the

major techniques used in devices to improve the energy efficiency of systems at a system level, and has been

studied in detail over the several decades Keramidas et al. [2010]; Miftakhutdinov et al. [2012]; Eyerman and

Eeckhout [2010]; Rountree et al. [2011]; Curtis-Maury et al. [2006]; Su et al. [2014]; Kaxiras and Martonosi

[2008]; Själander et al. [2014]. DVFS has also been applied to memory devices David et al. [2011]; Deng

et al. [2011, 2012]. In addition to frequency and voltage, recent work showed that increasing the latency of

certain DRAM operations can help in reducing the required operating voltage, and thus power, of memory

systems Chang et al. [2017].

With the increasing usage of HBM in commercial devices such as GPUs AMD [2019]; NVIDIA [2017,

2016], it has become important to study the power characteristics of this type of memory device for improving

the energy efficiency Villa et al. [2014]; Diniz et al. [2007]; Kanev et al. [2015]; Li et al. [2018b]; O’Connor

et al. [2017]. Consequently, the bandwidth and power characteristics of HBM2 has received a lot of research

attention O’Connor et al. [2017]; Li et al. [2020]. However, the performance and power effects of the HBM

voltage and frequency and the associated memory characteristics of GPU applications have not been studied

in detail. Further, considering that many GPU applications are memory intensive, the latencies of DRAM

operations heavily impact the overall performance of the system Chatterjee et al. [2014]. To our knowledge,

no previously published work has characterized GPU applications or attempted to modify HBM parameters

dynamically to suit the performance and power needs.

In this chapter, our goal is to (a) examine the memory access characteristics of GPU compute applications

and their behavior on HBM, (b) develop analytical models that can project the power and performance

of applications at different operating states of HBM including frequency, voltage, activation latency, and

precharge latency, and then (c) utilize the insights from these models to develop a dynamic HBM tuning policy

(RAMP) to improve the energy efficiency and/or performance of the overall system. For this objective, we

leverage performance counters and power profiling tools on commercially available hardware to profile GPU

compute applications. We explore the performance impact of HBM scaling and characterize applications

22

Figure 2.1: RAMP involves reconfiguring HBM to improve energy efficiency. Application characteristics
such as bandwidth consumption, row conflict rate, and row hit rate are taken into account to tune HBM
parameters such as activation latency (RCD), precharge latency (RP), and operating frequency (fHBM). This
reconfiguration is done while changing the supply voltage (V) for improving the overall energy efficiency.

based on memory demands and access behaviors.

We observe that applications show varying sensitivity to memory parameters depending on their access

volume and pattern. First, we find that applications with high bandwidth demands benefit most from scaling

the operating frequency of HBM. Second, we find that memory access behaviors of applications have a

significant effect on the extent to which DRAM timing parameters impact the overall application performance.

Applications with high bandwidth consumption typically benefit from reducing the activation latency, or RAS

to CAS time (RCD). In addition, among applications that are high bandwidth consumers, we observe that a

higher row buffer miss rate increases the sensitivity to RCD. Applications that are low bandwidth consumers

show little sensitivity to varying RCD. Finally, we find that performance is sensitive only to row precharge

latency (RP) if an application has a high row buffer conflict rate.

Based on our hardware measurements, we develop an analytical model to project the performance and

power consumption of applications as we scale HBM’s frequency, voltage, activation, and precharge latencies.

23

We then use the model to project the potential performance improvements from a dynamic overclocking,

overvolting, and overtiming technique based on the memory access patterns of the application. We build our

performance model by applying linear regressions on frequency and latency sweeps for each kernel in our

target workload set. For power, we utilize linear regression to forecast power as a function of bandwidth and

instruction throughput as we scale voltage and frequency.

Using these model projections we propose an Application aware dynamic Reconfiguration of Memory

for improving Power efficiency (RAMP) of the overall system. RAMP exploits application-specific behavior

to adjust HBM parameters dynamically. Using profiling data we assign a set of memory parameters for each

GPU kernel. High-bandwidth consuming kernels which have high row conflict rate are allocated higher

operating frequency, in addition to lower activation and precharge latencies. Low-bandwidth consuming

applications with low row hit rate are allocated lower frequency and low precharge latency only if the row

conflict rate is high. The overall policy is shown in Figure 2.1.

Our hardware-based evaluations show that RAMP, when applied at a GPU kernel level, can improve

the energy efficiency of the system by 4.3%. For memory-intensive applications, the performance-per-Watt

offered by the system improves by as much as 16%. Our per-kernel RAMP policy also improves the

performance of applications by up to 27%.

2.2 Background

In this section, we briefly summarize the necessary DRAM, HBM, and DVFS background with respect to

how it is used to control memory system power consumption.

2.2.1 DRAM Operation and AC Timings

The most basic building block of any DRAM memory chip is the single transistor-capacity bit cell. Cells are

organized into subarrays and addressed a full row at a time. Operations for opening and writing back a row

require a delay time to which the on-chip memory controller must adhere to ensure data integrity.

Activation and Precharge. Figure 2.2 (a) shows an example of this timing. An ACTIVATE (ACT)

command is issued with the bank address (BA) and row address (RA) over the command interface to open a

specific row and bank. The memory controller must then wait a set amount of time before sending a CAS

24

request to read or write a set of columns (CO) from that row. The wait time required after row activation

reflects the delay of the local wordlines and the wire capacitance of the bitlines Keeth et al. [2007]; Lee

et al. [2013]. This wait time is commonly denoted as the row to column (RCD) delay. Additionally, before

activating a new row in a bank the bitline must be precharged as shown in Figure 2.2 (b). Precharge can be

initiated by the memory controller sending a PRECHARGE (PRE) command with the bank address (BA) and

row address (RA). Although for certain high-speed DRAMs, including HBM, precharge can be implied with

activation by setting a control bit in a CAS request. The associated delay of this process is denoted as row

precharge (RP).

Row Hits, Conflicts, and Misses. Critically, for a given bank only one row can be opened at a time. The

best-case scenario, with respect to latency, is when a memory request can be serviced by accessing an already

opened row. This event is referred to as a row hit. By contrast, a row miss occurs when a request maps to an

unopened row thereby requiring an activation before reading or writing. Row misses incur the latency penalty

associated with RCD. The worst case scenario, from a latency perspective, is a row conflict. Row conflicts

occur when a memory request maps to a row in a bank with another row already opened. Completing this

requests requires the bank to be precharged first, then activated to open the necessary row. This causes the

request to incur both latencies associated with RCD and RP.

2.2.2 High Bandwidth Memory

High Bandwidth Memory is a die-stacked multi-channel DRAM technology for systems with high parallelism

and memory bandwidth demands. Figure 2.3 shows a high-level diagram of an HBM stack. Each die is

divided into two channels. The through-silicon vias (TSV) are centered around the middle of each die and

route the interface for each channel to its target die. Banks are groups of subarrays each with its own local

wordlines and sense amplifiers. Multiple banks share a channel which is used to transfer data and issue

commands such as ACT and PRE.

In GPU system we study, HBM is integrated into the same package and connects to the compute fabric

by use of a silicon interposer. The interface is multi-channel and each channel operates independently.

Each channel’s interface is a wide 128-bit data bus. Each HBM stack has eight channels which brings the

total width of HBM’s interface to 1024-bits per stack jed [2020, 2015]. HBM2 introduced pseudo-channel

25

Figure 2.2: (a) Bank activation(ACT) and RCD time (b) Bank precharge and subsequent activation: The
memory control issues a PRE with the bank address (BA) and row address (RA). Before the same bank can
be targeted with an ACT, time RP must elapse while the bitlines charge to half the supply voltage.

mode jed [2015, 2018, 2020]. Pseudo-channels split the physical channels into two semi-independent virtual

ones. The data-lines of each channel are bifurcated making each pseudo-channel’s data interface 64-bits wide.

The command lines are shared, hence "pseudo"-channel. The burst length in pseudo-channel mode is doubled

which means the number of bits per memory request remains the same as in legacy mode. HBM2E increases

the peak interface frequency of HBM from 1GHz to 1.2GHz. As with DDR, all generations of HBM to date

run data-lines at double-data rate so that effective bandwidth per data-line is 2x the frequency.

26

Figure 2.3: High level block diagram of HBM. Each die contains two legacy mode channels. TSVs route
per-channel interfaces to their respective die. Each channel is composed of banks which are built from
subarrays.

2.2.3 Dynamic Voltage and Frequency Scaling in Memory

Prior work has found significant energy savings from applying DVFS in the memory system David et al.

[2011]; Deng et al. [2011]. When applied to DRAM there is an added impact of increased voltage/frequency

scaling, whereby refresh rates must be increased due to increased bit-cell capacitance leakage. Few works

have studied the impact of DRAM operational latencies to the overall performance of applications.

Voltron. A recent work introduced Voltron Chang et al. [2017, 2018], a policy for a CPU memory system

in which the supply voltage for the internal DRAM array voltage is decoupled from the supply voltage

of the DRAM chip as a whole. They leverage this decoupling to increase the latencies of RCD and RP,

without reducing the memory frequency, in order to reduce the subarray voltage thereby conserving memory

system power. Voltron estimates expected performance loss by decreasing voltage, thereby increasing DRAM

operation latencies. As we will see later in this work, CPU traffic based policies, such as Voltron, cannot be

trivially adopted for GPU based applications accessing HBM.

A key insight in this chapter is that HBM operating frequency has varying performance impact depending

on the memory access patterns exhibited by applications. Further, GPU applications show distinct sensitivity

27

to DRAM operation latencies. In the next section, we show experimental measurements that illustrate this

phenomenon.

2.3 Memory Parameter Sensitivity

In this section, we report our observations from a comprehensive study of the impact of memory frequency

and timing parameters on GPU applications. We collect this data on an AMD Radeon VII with 16GB of

HBM2. To measure performance on real hardware, we utilize work from the overclocking community which

has made tools available to adjust component frequencies and memory timings Eliovp. The two memory

timing parameters we focus on are RCD and RP as these are the ones we found to have the greatest impact on

performance. Overall, our results show that the performance sensitivity of GPU applications towards memory

parameters is heavily dependent on their memory access patterns.

2.3.1 Memory Clock Frequency Scaling

Figure 2.4 shows the overall application performance sensitivity as HBM operating frequency is scaled.

Stream and Lulesh scale best with increased memory frequency. RNN, CNN, and Stride also see significant,

if lesser, performance variation. SGEMM scales to a small degree up until the interface speed reaches 2x its

minimum speed but then plateaus. The rest of the applications hardly scale with the interface speed at all.

Performance scaling with HBM frequency closely trends with an application’s bandwidth needs. Fig-

ure 2.5 shows the relationship between frequency scaling and consumed memory bandwidth at a GPU kernel

granularity. Each data point represents a unique GPU kernel from an application. Kernels that consume more

than 60% of the peak memory bandwidth see performance scales directly with the interface speed. Kernels

that consume 40-60% of the peak bandwidth scale reasonably well although there is a steep drop-off as

bandwidth demands lower. Finally, kernels that consume less than 40% of the peak bandwidth see little to no

correlation to memory frequency. The RNN and CNN kernels are apparent outliers from the overall trend,

as their memory demands occur in bursts. This lowers their average memory bandwidth, yet these kernels

are bandwidth sensitive. A notable point on this chart is our pointer-chasing Stride benchmark which scales

at 40% with the HBM frequency despite consuming the smallest fraction of the memory bandwidth of any

benchmark. This is a purely latency bound benchmark and its speedup relative to memory speed is due to

28

Figure 2.4: GPU Application speedup as HBM operating frequency is scaled. Stream and Lulesh scale at
nearly 1-1 ratio with frequency. RNN and Stride scale as well, but to a lesser extent. The other application do
not scale much with frequency.

Figure 2.5: Performance sensitivity to HBM speed in relation to the consumed bandwidth of each GPU
kernel. There is a strong correlation between consumed kernel bandwidth and its sensitivity to the HBM
frequency.

lower access latency and not increased bandwidth.

Overall this shows that high bandwidth-consuming applications deliver improved performance at higher

frequencies. This performance sensitivity towards HBM operating frequency can thus be used to reconfigure

memory depending on the application traffic.

29

Figure 2.6: Application speedup as RCD is reduced. The x-axis is the scaling factor by which the RCD delay
is reduced. Reducing RCD improves performance because it is directly reducing HBM access latency.

2.3.2 Performance Sensitivity to RCD

As described earlier, RCD is a latency parameter so reducing its value should ideally benefit performance.

Figure 2.6 shows performance variation as RCD is changed. RCD latency values have been normalized to

the default value set by vendors. Lulesh and Stream benefit the most from reducing RCD due to their high

memory demands. Stride also benefits from RCD scaling due, but not due to bandwidth demands. Stride’s

performance is completely bound by the latency of a single memory request at a time and its page hit rate is

zero. As discussed in Section II, this means that RCD falls on the critical path of every memory request made

in Stride and thus directly impact Stride’s performance.

Effect of Bandwidth. Sensitivity is measured as the change in performance divided by the change in

RCD normalized to its default value. A higher sensitivity means that reducing RCD will have a higher

positive impact on performance. Figure 2.7 shows the relationship between RCD sensitivity and bandwidth.

The kernels with higher bandwidth requirements are the most sensitive to RCD changes. For example, Stream

benefits significantly as RCD varies for this reason.

Row Buffer Hit Rate. To understand the effect of application characteristics on the impact delivered by

memory parameters, we analyze the row buffer hit rate of kernels. Figure 2.8 charts the impact that the row

buffer hit rate has on the application’s sensitivity to RCD scaling for high-bandwidth kernels. Row buffer

hits do not incur the latency penalty of needing to activate a bank. Lulesh consumes less of the peak system

30

Figure 2.7: Kernel sensitivity to RCD scaling with bandwidth consumption. High bandwidth kernels are
most sensitive to changing RCD.

Figure 2.8: High-bandwidth kernel sensitivity to RCD with the row buffer hit rate. Kernels with high
bandwidth consumption and low buffer hit rates are most sensitive to RCD.

bandwidth than Stream but it has a significantly lower row buffer hit rate. Therefore, RCD latency is critical

to performance for kernels with high memory bandwidth and high row buffer conflict rates.

In summary, the data shows reduced RCD increases performance for applications with high memory

bandwidth utilization but poor row buffer locality.

2.3.3 Performance sensitivity to RP

Sensitivity to RP is measured as the performance change divided by the change in RP normalized to its default

value. If a workload has a high sensitivity to RP, this means that reducing RP impacts its performance more

31

Figure 2.9: Application speedup as RP is reduced. The X-axis is the RP scaling factor. Reducing improves
latency in the case of bank conflicts.

positively. Like RCD, RP is a latency parameter; reducing its value should positively impact performance.

We plot the performance variation of each application with changing values of RP in Figure 2.9. Just as with

RCD, the latencies plotted on the x-axis have been normalized to RP’s default value. RP has the greatest

impact on Lulesh RNN, and Stream.

Row Buffer Conflict Rate. Row buffer conflicts place row precharge directly on the critical path to

fulfilling a memory request. For this reason, we would expect that changing RP would have the greatest

performance impact on workloads with more memory requests resulting row buffer conflicts. Figure 2.10

plots the sensitivity to RP of each kernel compared to the row conflict rate of each benchmark. As expected,

kernels with higher row buffer conflicts are most sensitive to changing the row precharge delay time. Lulesh

benefits the most from scaling RP and it also has the highest rate of row conflicts, followed by RNN. Stream

sees more benefit than the rest of the benchmarks due to its high memory demands in general.

2.3.4 Power Trade-offs in Reconfiguring Memory Parameters

HBM frequency is the most significant factor driving application performance of the three parameters

explored, but raising the frequency comes at a significant power cost. Raising the frequency requires raising

the supply voltage as otherwise critical circuits would fail because of inability of meeting timing. There is

a large body of prior work that explores the balance of scaling frequency and voltage Deng et al. [2012];

Keramidas et al. [2010]; Miftakhutdinov et al. [2012], including in the memory system David et al. [2011];

32

Figure 2.10: Sensitivity to RP scaling with the HBM row buffer conflict rate. Kernels with higher rates of
row buffer conflicts are most sensitive to reducing RP.

Deng et al. [2011].

Voltage, and consequently power, is also a key consideration when scaling HBM latency. Voltage

controls the floor latency for RCD and RP; reducing the timing parameters below this floor will cause data

errors Chang et al. [2017]; Lee et al. [2015]. There can be an incentive to increase latency, at the cost of

performance, for the purpose of lowering voltage and reducing power Chang et al. [2018]. Conversely, for

workloads that are more sensitive to these timing parameters, raising voltage for the purpose of reducing

latency can significantly boost performance. Configuring memory for an ideal voltage and latency setting on

a per-application basis improves the performance and power-efficiency of the system.

In summary, the key insights we learned from this experimental study are: (1) interface frequency is

by far the most critical parameter impacting HBM performance, (2) RCD and RP for HBM can be tuned

depending on the workload memory access pattern to trade-off performance for power consumption, and (3)

applications with high bandwidth needs and low row buffer hit rates are most sensitive to RCD while those

with high rate of row buffer conflicts are most sensitive to RP.

2.4 Analytical Model for Performance and Power

We develop an analytical model to project the performance and power of workloads using a comprehensive

set of results obtained from hardware experiments. As described earlier, our objective is to develop a memory

system tuning policy that can dynamically balance performance and power by varying HBM frequency,

33

voltage, RCD, and RP. First, this policy needs to have a method by which it can project performance change

for any given workload leveraging available hardware counters. Second, we would like to evaluate this policy

on a system capable of frequency and parameter scaling beyond what is supported on currently available

GPUs. To do so, we need a performance model to project a workload’s sensitivity to these key HBM

parameters and we also need a power model to evaluate how a workload’s power consumption will change at

varying HBM configurations.

2.4.1 Performance Model

Utilizing the exhaustive results of our performance study on hardware, we build the analytical model to

project kernel speedup from HBM tuning based upon its bandwidth consumption and row buffer locality.

We apply a linear regression to find the marginal performance change when the interface speed is increased.

We use the R2 value, a commonly used metric, to measure how well the linear regression approximates our

observed results. We achieve a linear fit with R2 = 0.79. This lets us measure the consumed bandwidth of a

kernel, which we do using publicly available GPU profiling tools ROCMm-Developer-Tools, and model a

performance curve as the HBM interface is scaled.

2.4.2 Power Model

In addition to the performance model, we model the HBM power consumption of the kernel based on its

consumed memory bandwidth and interface frequency. The major components to dynamic HBM power

consumption are the clock frequency and data line activity. For each target HBM frequency, we apply a linear

regression to model power consumption as a function of clock frequency and kernel consumed bandwidth.

We use publicly available commercial GPU profiling tools to measure power consumption and application

memory bandwidth. Using the memory bandwidth data as a proxy for data-line switching activity, clock

frequency and voltage we derive an average HBM dynamic power on a per-kernel basis. We also model the

static power consumption of the system using the voltage data to obtain the total memory power. The R2

value for this modeling approach was found to be 0.93.

We also wish to model performance gains and power trade-offs for scaling HBM timing parameters.

Previous work has modeled the activation and precharge times for contemporary DRAM technologies as a

34

function of the supply voltage Chang et al. [2017]. We leverage these estimates and apply linear regression

models on our performance data from our study to model performance and power changes as these parameters

are scaled.

In addition, we model full GPU power by running linear regressions against performance and power

data from executing our benchmarks with a sweep of clock frequencies. We use instructions per second as a

measurement of GPU activity. Our linear fit for the power of our GPU computational units achieves an R2

value of 1, implying this very simple technique can estimate the power consumption of the commercial GPU

device with high accuracy for our objective.

2.5 RAMP: Application-Aware Dynamic Reconfiguration of Memory

Using the insights from Section III we build RAMP, a policy for reconfiguring GPU HBM memory timing

parameters depending on the memory access pattern of the application. Memory parameters such as frequency,

voltage, RCD, RP are tuned according to the sensitivity of the workload. RAMP utilizes memory system

hardware counters to select a configuration best balanced for performance and power delivering optimal

performance-per-Watt.

RAMP uses application memory access characteristics such as bandwidth, row buffer hits, and row buffer

conflicts to select from a settings matrix of HBM frequency, RCD, and RP. RAMP’s overall tuning strategy is

illustrated in Figure 2.1. After selecting a setting, RAMP scales HBM voltage to the minimum level required

to support both the target frequency and latency, as both are tied to the same voltage source. This, in turn,

determines the memory power consumed by the application.

Frequency Configuration. RAMP uses bandwidth demand to assign the HBM frequency. The higher

the bandwidth demand of the application, the higher the HBM frequency RAMP chooses. This is motivated

by our insight from Section III that applications which consume a higher fraction of the peak bandwidth have

the highest sensitivity to the HBM frequency. Such applications receive the most performance benefit from

running HBM at a higher clock rate. RAMP breaks bandwidth demand into tiers based on the fraction of peak

bandwidth consumed as shown in Table 2.1. These bandwidth tiers are low, midling, high, and extra-high.

RAMP then assigns a frequency based on which tier an application falls into. This policy helps improve the

performance of applications that are starved for memory bandwidth. On the other hand, it also conserves

35

Table 2.1: RAMP’s classification of a workload’s bandwidth demands. RAMP uses these classes to select
and HBM frequency.

Bandwidth Classification

< 20% Low

20% - 40% Mid

40% - 60% High

> 60% Extra-High

power while running compute-intensive workloads by running the memory system at a lower frequency and

voltage.

Activation Latency (RCD) Configuration. RAMP’s configuration for RCD is driven by both an

application’s bandwidth demand and its row buffer hit rate. Our performance study shows that RCD is most

critical in workloads which consume higher fractions of the peak bandwidth. It follows that applications which

fall into the high and extra-high tiers of bandwidth consumption benefit most from reducing latency, while

applications with lower bandwidth demands do not benefit much at all. Further, among these high-bandwidth

workloads, ones with fewer row buffer hits especially benefit from a lower RCD latency. Reducing RCD

latency requires a higher voltage thereby causing the memory system to consume more power. As a result of

this power cost, RAMP prioritizes reducing RCD only for workloads it identifies as both consuming a high

fraction of the peak bandwidth and having a low row buffer hit rate. This avoids overvolting HBM, and thus

drawing the additional power, for applications that will not benefit from the lower latency while allowing for

applications that incur penalties from the RCD delay most frequently to receive an extra performance boost.

Precharge Latency (RP) Configuration. An application’s row buffer conflict rate drives how RAMP

prioritizes reducing RP latency. Our analysis found that applications with more row buffer conflicts were the

ones that benefited most from scaling RP. Unlike with RCD, for which workload sensitivity also depended on

bandwidth consumption, sensitivity to RP had no correlation with bandwidth needs. However, as is the case

with RCD, reducing RP requires raising the supply voltage. Hence, RAMP will prioritize reducing RP for

applications with high row buffer conflict rates. This allows applications that benefit most from a low RP

latency, even those with low bandwidth demands, to tap into this performance gain.

Voltage Configuration. Because HBM voltage determines the minimum time for both latencies, RAMP

scales RCD and RP together. As far as we know, there is no performance or power benefit to only scaling one

36

Table 2.2: Summary of the RAMP policy used for evaluations. Voltage, frequency, and latencies are scaled
based upon the memory access patterns of the running application. The scaling factors are applied to the each
parameter’s default settings.

Bandwidth Conflict Hit HBM RCD RP HBM
Rate Rate Clock Scaling Scaling Vdd

Scaling

< 20% < 25% - 0.35 1.00 1.00 0.9

< 20% > 25% - 0.35 0.44 0.32 1.5

20% - 40% < 25% - 0.50 1.00 1.00 1.1

20% - 40% > 25% - 0.50 0.44 0.32 1.5

40% - 60% > 25% - 1.00 0.44 0.32 1.5

40% - 60% < 25% < 25% 1.00 0.44 0.32 1.5

40% - 60% < 25% > 25% 1.00 0.69 0.69 1.2

> 60% - - 1.20 0.44 0.32 1.5

but not the other. RAMP considers RCD and RP as a single parameter and scales them both based on the

combined criteria of bandwidth, row buffer conflict rate, and row buffer hit rate. Thus, if RAMP decides that

an application is will benefit greatly from reducing either RCD or RP, RAMP will elect to raise the HBM

voltage and reduce both parameters accordingly.

Finally, once RAMP has determined the required HBM voltage, it will reduce RCD and RP to their

minimum values possible given that voltage. An example of this situation can occur when RAMP raises the

HBM frequency to improve the performance of a bandwidth-starved workload. In such a situation, RAMP

must also increase voltage. As a convenient side effect, both timing parameters can then be reduced. In

situations where RAMP must already raise the HBM voltage for the sake of increasing the frequency, we

have found no extra power cost to reducing RCD and RP. For this reason, RAMP will reduce both latencies

appropriately for workload’s it has already decided should run with a higher HBM frequency.

In the rest of this section, we provide details on how RAMP profiles and classifies workloads to inform

its parameter configuration.

37

2.5.1 Application Profiling

As we saw, RAMP involves reconfiguring the memory depending on the profile of the workload. Note

that RAMP can be implemented at both software and hardware levels depending on the granularity of the

reconfiguration. We evaluate RAMP at a GPU-kernel level granularity where the reconfiguration of memory

happens for each kernel launch. For such a granularity, a software defined framework is sufficient to manage

the overall technique. RAMP first profiles the application to retrieve bandwidth and row buffer contention

data. This data is stored within the framework. When the application is run (e.g., in production), the GPU’s

HBM memory system is tuned for optimal performance and/or efficient power-performance.

2.5.2 Memory System Reconfiguration

RAMP reconfigures the memory system at the launch of each kernel based upon its profiled memory access

behavior. RAMP’s goal is to achieve the best performance improvement-per-Watt consumed. Our insights

from Section III inform us that performance can be improved by raising the HBM frequency and reducing

RCD and RP latency. However, the extent to which doing so improves the workload’s performance depends

on both its bandwidth demands and the row buffer contention of its memory traffic. This means that the

additional power consumption required to apply these high performance settings is not always justified.

To simplify RAMP’s policy, memory traffic is mapped to a discrete classification space for bandwidth,

row buffer conflict rate, and row buffer hit rate. As discussed previously, bandwidth demands are broken up

into tiers the criteria for which are shown in Table 2.1. RAMP uses a similar approach to classify a kernel’s

row buffer conflict and hit rates. A kernel is considered to have a low row buffer hit rate if less than 25% of

its memory requests result in a hit, otherwise it is considered to have a high hit rate. Similarly, a kernel is

classified as having a low conflict rate if less than 25% of its memory requests result in a conflict.

Upon selecting a voltage, clock, and parameter setting for the launched kernel, RAMP configures the

HBM memory system on the GPU and HBM timings Eliovp. The application then proceeds with kernel

invocation.

38

Table 2.3: GPU workloads used as benchmarks in this paper.

Workload Description Area

SGEMM Single precision Matrix Multiply ML

DGEMM Double precision Matrix Multiply ML

RNN Recurrent Neural Network ML

CNN Convolutional Neural Network ML

CoMD Molecular Dynamics Modeling HPC

XSBench Monte Carlo Neutron Transport HPC

Lulesh Hydrodynamics Modeling HPC

Stream Streaming Benchmark µBMK

Stride Single-Threaded Pointer Chasing µBMK

2.6 Methodology

We evaluate our performance and power results using frequency and latency scaling results on a AMD Radeon

VII with 16GB of of HBM2. Performance and power results for parameter and frequency scaling are acquired

using our data collected from hardware and leveraging our linear regression models described in Section IV.

HBM core voltage levels required for different latency settings are modeled using measurement taken in prior

work Chang et al. [2017].

2.6.1 Applications

Table 2.3 shows the benchmarks used for this study Richards et al. [2020]; Karlin et al. [2013]; Tramm

et al. [2014]; Deakin et al. [2017]; Villa et al. [2014]; baidu-research. We use a selection of HPC proxy

applications, machine learning workloads, and microbenchmarks. In all experiments, input data is sized to

ensure significant (several seconds to minutes) runtime. For all benchmarks except Stride, which is designed

to be single-threaded, all GPU compute units are utilized.

2.6.2 Baseline Policy

As a baseline we use a configuration which does not perform any tuning of the HBM frequency or its timing

parameters. The HBM frequency is left at its default value of 1000 MHz jed [2020]. RCD and RP remain at

their default settings. Voltage is left at its default level of 1.2V.

39

2.6.3 Voltron for GPUs

Voltron Chang et al. [2018] attempts to minimize DRAM power subject to a performance constraint. To

estimate the expected performance loss by increasing DRAM latency, Voltron applies a linear model based on

(1) the LLC misses per kilo-instruction (MPKI) of the application and (2) the fraction of program execution in

which the CPU is stalled waiting on memory requests. Voltron then selects the minimum voltage, and hence

maximum latency, for which the expected performance does not rise above an input performance threshold.

In this way, Voltron seeks to control power consumption and leaves it to the system administrator to dictate

the performance demands.

As a comparison to RAMP, we modify Voltron for use in GPU. Voltron in its original implementation

cannot be directly applied to a GPU memory system because of several reasons. First, the key metrics that

drive Voltron’s policy do not translate well to a GPU. For example, MPKI for a GPU may be a significantly

inflated number from its CPU counterpart. The number of cache misses generated by a single instruction is

heavily dependent on the thread divergence, address coalescing, and locality within the threads of wavefront

(or warp). For this reason, the number of concurrently outstanding memory requests a GPU workload can

generate without stalling is much higher and is not comparable across workloads. Second, Voltron uses

processor time spent stalling on memory requests as a program characteristic. This is a hard metric to

define in GPUs given the massive levels of parallelism. Wavefronts within a Compute Unit(CU) execute

in a lock-step manner, and defining stall time at a CU-level is not trivial. Nonetheless, we estimate these

application characteristics with existing GPU hardware counters such as cache misses, vector instructions,

and the utilization of various functional units. We utilize an aggregating method to determine the stall time

spent by applications. Third, Voltron assumes that the voltage sourced by internal DRAM cell arrays is

decoupled from the IO. This would allow it to vary latency and voltage without changing the frequency

of the memory interface. This assumption does not completely hold for HBM in GPU systems due to the

tighter integration between the processor and memory. We allow Voltron to reduce the voltage as much as the

hardware allows at the specific settings.

Unlike the policy introduced in this chapter, Voltron does not consider memory frequency or bandwidth

demands in its cost model. This is a key difference between our policy and Voltron’s as we have identified

the HBM frequency as a crucial memory system configuration driving the performance of GPU workloads.

40

We refer to our ported Voltron policy as Voltron-GPU from this point forward. We use a performance loss

threshold of 25% for defining this policy letting us obtain the maximum performance-per-Watt.

2.6.4 Oracle Policy

For our evaluation, we define performance as the speedup of the application from its runtime on the baseline

system described. Performance-per-Watt is measured as the overall speedup of the GPU kernels over the

baseline divided by the total GPU power (Memory power + GPU core power). We compare against an oracle

policy that always selects a configuration for HBM frequency, latency, and voltage resulting in the best

performance-per-Watt. This policy should be interpreted as a ceiling on the effectiveness of our design space

with respect to tuning for performance-per-Watt.

2.7 Evaluation

We compare the overall performance, power, and efficiency of RAMP against the three memory system

tuning policies described in Section VI.

2.7.1 Performance-per-Watt

Figure 2.11 shows the improvement in performance-per-Watt for different kernels of the GPU applications.

RAMP achieves the best performance-power balance for high-bandwidth kernels. Figure 2.12 shows

RAMP’s performance-per-Watt improvement across kernels with varying bandwidth consumption. RAMP’s

performance-per-Watt improvement begins to break the 5% threshold for kernels that consume more than 40%.

This is due to RAMP finding more opportunities to boost performance from scaling latency and frequency

for the more memory-intensive workloads. Overall, RAMP achieves an impressive 4.3% performance-per-

Watt improvement over the baseline which is within 3% of the oracle. Note that the performance-per-Watt

calculated here is for the total system, whereas RAMP is only being applied on the HBM. RAMP outperforms

Voltron-GPU for high-bandwidth applications. It achieves an average performance-per-Watt improvement

of 6.2% for Lulesh, 5.7% improvement for RNN, and 2% for Stream over baseline compared to a (-)1.7%

degradation by Voltron-GPU.

41

Figure 2.11: Performance per Watt improvement by kernel over a baseline system with no parameter tuning
or frequency scaling. High bandwidth kernels can have a performance-per-Watt improvement of over 16%
and a mean improvement of 4.3%.

Figure 2.12: Performance-per-Watt improvement across kernels with varying bandwidth demands. RAMP
finds the best balance between performance and power for high-bandwidth kernels.

Nonetheless, the oracle achieves a higher performance-per-Watt than RAMP on certain kernels. The

most notable application for which RAMP and the oracle deviate is Stream, which has the highest bandwidth

consumption of all of our benchmarks. Each Stream kernel consumes more than 80% of the peak HBM

bandwidth which meets RAMP’s criteria for overclocking. However, when performance and power are of

equal concern, the oracle finds that a low-power configuration balances out the performance loss for these

kernels. This is in contrast to Lulesh and RNN, the other high-bandwidth applications, for which the oracle

and RAMP align more closely.

A critical distinction between these high-bandwidth applications is the extent to which they benefit from

reducing RCD and RP. As we show in Figure 2.8, Lulesh and RNN kernels have a sensitivity to RCD as

much as twice that of Stream kernels. Additionally, Figure 2.10 shows that RNN and Lulesh kernels can

42

Figure 2.13: Bandwidth-per-Watt improvement over the baseline system.

benefit more from reducing RP due to their high row buffer conflict rates. This additional performance benefit

helps balance the increased power costs from the high voltage needed to aggressively clock HBM. However,

as is previously noted, Stream does not benefit from reduced latency to the same extent and the performance

improvement from raising the frequency alone does not make up for the increased power.

Voltron-GPU does not improve performance-per-Watt for any kernel and results in a mean degradation of

1.3%. Voltron-GPU does not adjust the frequency as part of its policy. Without frequency scaling, the lack

of voltage source decoupling makes Voltron-GPU’s power reduction approach ineffective. For this reason,

Voltron is an impractical solution for performance and power tuning in GPU’s with HBM.

2.7.2 Bandwidth-per-Watt

In addition to evaluating the performance-per-Watt improvement, we also examine the improvement in

bandwidth-per-Watt which takes into account just the memory system performance and power. These

results are shown in Figure 2.13. RAMP improves the bandwidth-per-Watt by an average of 31% across all

applications, falling within 7% of the oracle. For the reasons previously described, Voltron has hardly any

impact on bandwidth-per-Watt, degrading it by less than 1%.

43

Figure 2.14: Performance improvement by application over a baseline system.

2.7.3 Performance

The performance results for each application are shown in Figure 2.14. On average, RAMP only degrades

application performance by 1%. Among the three memory-intensive applications (Stream, Lulesh, and RNN)

RAMP improves performance by 12% on average and by as much as 27%. By contrast, the oracle policy

degrades performance by 5.9% and among the three memory-intensive workloads it degrades performance by

9.6%. This suggests that RAMP strikes a nice balance between performance and power-efficiency.

RAMP’s improvement for Stream and Lulesh is attributable to HBM overclocking and reduced timing

latency for the highest bandwidth-consuming applications.

2.7.4 Power

The power results are shown in Figure 2.15. RAMP reduces overall system power by 2.4% and by as high as

27% from underclocking and undervolting low-bandwidth applications. RAMP increases power consumption

for the bandwidth-heavy workloads by 7.4% from overclocking HBM to improve performance.

44

Figure 2.15: Power reduction by kernel over a baseline system. RAMP applies a high power setting for
memory-intensive workloads to improve performance.

2.8 Related Work

2.8.1 DVFS for Memory Systems

Several prior works have proposed DVFS for memory system and power management David et al. [2011];

Deng et al. [2011, 2012]. However, they mainly focus on CPU systems with DDR3 memory. Some work also

base their policies on the bandwidth demands of the running application David et al. [2011]. Recent studies

also proposes DVFS and they use the row buffer hit rate as a key metric to model mean memory latency,

which informs their policy Deng et al. [2011, 2012]. This work differs from theirs mainly because we focus

on GPU systems with HBM DRAM. However, their approach focuses on scaling frequency and they do not

discuss reducing timing parameters based on row buffer contention. In addition to bandwidth-based frequency

scaling, we propose scaling voltage and timing parameters based on row buffer hit rate and contention rate.

2.8.2 DRAM Operation Latency Tuning

The overclocking community has examined the performance benefits and power costs of lowering DRAM

latencies, including for HBM Burke; Eliovp; Liu. As far as we are aware, this community has primarily

focused on statically setting frequency, voltage, and latency. By contrast, we focus on how a workload’s

dynamic memory access behavior drives the power and performance tradeoffs of reconfiguring HBM.

Previous work shows that the true latency of accessing closed DRAM rows is in fact lower than what

45

is stated on their data sheets when operating at lower temperatures Lee et al. [2015]. They exploit this by

tuning RCD and RP based on ambient temperatures but do not consider tuning them based on memory traffic

characterization. Some works observe that the true latency of row activation varies depending on how recently

the cells have been refreshed Hassan et al. [2016]; Shin et al. [2014]; Hassan et al. [2019]; Wang et al. [2018].

They propose techniques to reduce DRAM latency including assigning priorities to memory requests based

on how recently their target cells have been written back.

There are other bodies of work that propose microarchitectural changes to reduce DRAM latency Keeth

et al. [2007]; Seongil et al. [2014]. While these policies might change the tuning parameters, RAMP’s core

idea of reconfiguration will still be applicable on such architectures.

2.8.3 Memory Systems for GPUs

Another body of work addresses the power management in GPU memory systems by proposing changes to

die-stacked DRAM microarchitectures to reduce the energy overhead of data movement within memory chips

and to reduce the activation energy O’Connor et al. [2017]; Chatterjee et al. [2017]. Such optimizations are

orthogonal to the idea presented by RAMP, where the activation latency is tuned according to the application

requirements.

Another previous work observes that memory latency divergence can be a major bottleneck in GPUs Chat-

terjee et al. [2014]. They explore the benefits of changing the memory scheduling policy from one which

optimizes for row-buffer locality to a policy in which requests from the same SIMT group are scheduled

together. The policies in this work could synergize with their approach by improving tolerance to request

streams with high row-buffer contention.

2.9 Summary

In this chapter, we performed a thorough memory-side performance study with HBM on a set of GPU

workloads from the HPC and ML application domains. We found that workloads which consume more

than 60% of the peak bandwidth benefit enormously from frequency scaling. Further, we found that key

DRAM timing parameters can heavily impact performance for applications with irregular DRAM row buffer

access patterns. Our insights into memory behavior and performance led us to develop RAMP, a memory

46

system reconfiguration policy for HBM power, frequency, and latency. We developed an analytical model

for GPU-HBM performance and power based on measurements collected from real hardware to evaluate

this policy. Our evaluations show that RAMP can provide a mean performance improvement of 12% for

memory-intensive workloads and an overall performance-per-Watt improvement of 4.3% from our policy over

a baseline HBM system outperforming state-of-art techniques. These results strongly show that application

aware reconfiguration of HBM is a promising technique for building power efficient GPU systems.

47

Chapter 3

The HammerBlade Manycore

HammerBlade is a tiled compute fabric in the mold of predecessors such as RAW Taylor et al. [2004];

Gordon et al. [2006], Tilera Wentzlaff et al. [2007]; Bell et al. [2008]; Ramey [2011], and Celerity Ajayi et al.

[2017b]; Rovinski et al. [2019b,a]; Ajayi et al. [2017a]; Davidson et al. [2018]. It is composed of processing

elements, or tiles, that operate in parallel and can communicate over an on-chip network using a shared

memory space. Having been taped-out and silicon-verified in a 14 nm process node, HammerBlade surpasses

these predecessors in scale reaching a threshold of more than 2000 tiles on a single die.

HammerBlade’s mission as a fabric is to be (1) scalable, (2) build-able, and (3) programmable. Scalable

in that it can achieve linear performance gains as core counts expand. Build-able as in the design is silicon-

verified and the system as a whole could be made into a physical chip on which parallel programs can be run

"as is." Finally, programmable as in HammerBlade is designed to accelerate a broad range of application

domains using established programming languages and frameworks, making it a highly flexible substrate.

At a high level, the HammerBlade architecture is a configurable-sized array of scalar RISC-V cores

supporting the floating-point and AMO extensions. Each core owns a 4 KB region of low-latency scratchpad.

Cores communicate with a load/store interface over a 2-D mesh-with-ruching on chip network (OCN) Jung

et al. [2020]; Ou et al. [2020]. Figure 3.1 presents an architectural diagram of a small-scale (i.e., 128-

core) HammerBlade system. There are three levels of the memory hierarchy: a core-local scratchpad;

inter-core scratchpad(s); and DRAM which is backed with a banked last-level cache (LLC). The core-local

scratchpad, remote scratchpads, caches, and other network locations are mapped to non-intersecting regions

49

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

L

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

CCCC

LLLLLLL LLLLLLLL

LLLLLLLL LLLLLLLL

DRAM Memory Controller

FPURV32 IMUL

4KB Instruction
Cache

4KB Scratchpad Mem

Mesh
Network
Router

DRAM Memory Controller

Figure 3.1: A HammerBlade pod with 128 vanilla tiles (C) and 32 last-level cache (L) banks interconnected
via mesh-based on-chip network.

of a core’s address space. Consequently, the architecture exposes a partitioned global address space (PGAS)

programming model.

I will spend the rest of this chapter diving deeper on the specifics of HammerBlade’s cores, memory

system, and network. I will also describe how the system scales to chip-size using its pod architecture. I will

conclude this chapter with description of the CUDA-Lite programming framework as well as the simulation

and testing infrastructure we have used to develop HammerBlade over the years.

3.1 Vanilla Tile

At the heart of HammerBlade lies the vanilla tile. A tile is composed of a core, a 4 KB data memory, a

4 KB instruction-cache, and a network router that serves as a gateway between the tile and the rest of the

system. The Vanilla tile’s core implements the open-source RISC-V Instruction Set Architecture (ISA). It

implements the 32-bit instruction set and includes the multiply (M) and floating-point (F) extensions as well

as a non-standard subset of the atomic memory operations (A).

The core, and the entire tile, is designed to maximize system-wide thread-level parallelism. The vanilla

tile is designed to be area-efficient so that more of them can fit on one chip. Thus the core forgoes many

optimizations in its pipeline that would be preferred for single-threaded performance such as multiple-issue,

out-of-order execution, or advanced branch prediction. The instruction-cache is compact; It has a capacity for

50

just one thousand instructions and it is direct mapped. There is no data cache on the tile at all, only the 4 KB

data memory.

The vanilla core features select optimizations that improve overall throughput by a margin that justifies

the area. It features a 5-stage pipeline that balances performance with area efficiency. It includes an additional

5-stage FPU. It also has a scoreboard to support long-latency instructions such as integer division. Critically,

this scoreboard enables non-blocking remote memory operations with which programs can efficiently utilize

off-tile memory such as with remote store programming Hoffmann et al. [2010].

3.2 Multi-Tiered Memory System

HammerBlade implements a partitioned global address space (PGAS) to provide a shared memory interface.

This address space scheme exposes the multi-tiered memory system to software. The first tier is each tile’s

local scratchpad memory, the address subspace for which is replicated, meaning that each core can access its

4 KB of fast data storage with a 12-bit offset from zero. The next tier is tile shared-memory, or rather the

scratchpad memory of other tiles. Through this tier, tiles can read and write each other’s local data storage

directly with scalar loads and stores. Addresses in this tier encode the target tile’s network location (its X and

Y coordinates on the mesh) into the address. The final tier is DRAM memory which uses a shared LLC to

reduce latency and exploit locality when fetching. There is also a special tier for IO which is reserved for

communication with a host co-processor. HammerBlade uses a 2-bit encoding to distinguish between these

tiers.

3.2.1 Scratchpad Memory

The fastest data store for the HammerBlade tile is its 4 KB scratchpad memory. The latency for accessing

the scratchpad memory is 2 cycles, which is the minimum memory latency on HammerBlade. This tiny

memory is ideal for data that will be accessed often and will be reused frequently. It is also ideal for data

that only needs to be accessed by one core. This reduces pollution in the on-chip network and the rest of the

shared-memory system. From a scalability perspective, this tile-local scratchpad is the only memory type on

HammerBlade whose capacity and bandwidth scales with the number of cores.

The most common use case for the scratchpad is for stack memory. This type of data fits into the second

51

category mentioned above; Stack memory is generally only accessed by the core who owns the stack. Placing

every single core’s stack in shared memory places pressure on the shared network and cache. Thus, for

performance purposes, the scratchpad is often the best place for it. It must be said that 4 KB of memory is

not very much. A stack placed in scratchpad memory is easily overflowed making deep call stacks perilous.

This limitation is a topic of discussion in chapters 4 and 5.

A second common use case for scratchpad memory is as a software managed data cache. An application

might perform many operations on a small working set before committing it back to main memory. Workloads

that can leverage scratchpad for this purpose often enjoy sizable speedups over reading it from the shared

memory system over and over. This data-management pattern is used in several applications implemented to

evaluate HammerBlade in Jung et al. [2024]. Example applications written for HammerBlade that do this

include matrix multiplication, 2D-FFT, Smith-Waterman DNA alignment, and AES encryption.

The third common use is for statically allocated core-local storage. Because HammerBlade’s hardware

implements a PGAS that replicates the 12-bit address space for scratchpad memory, it is possible to access

statically allocated scratchpad data with no overhead. A 12-bit literal offset from zero can be accessed with a

single instruction using an offset-load/store and the zero register. A consequence of this is that a copy of

these static variables exist for every single core. Often this third use is leveraged to implement the second

mentioned above. It can be used for other purposes such as replicating frequently accessed read-only data

such as small lookup tables.

The adoption of software-managed scratchpad memories is a practical necessity for a scalable shared-

memory architecture like HammerBlade. An alternative would be to implement a standard cache hierarchy

with a scalable coherence protocol. Constructing such systems scalably is a well-explored subject of previous

study Fu and Wentzlaff [2015]; Singh et al. [2013]; Power et al. [2013]. What can be said for certain on

this subject is that hardware implementations of coherent cache hierarchies quickly become complex and

expensive at scale. At the same time, the common case, or at least the best one, for parallel applications is that

threads synchronize rarely. Thus, implementing a cache-coherence system entirely in hardware would amount

to a large investment in a feature that, in the ideal case, will not be heavily used. By eschewing a coherent

cache system, HammerBlade leaves it to software to manage data placement and memory consistency during

synchronization. This buys area at the cost of higher software complexity.

52

3.2.2 Tile Shared Memory

Tiles can read and write each other’s scratchpad memories. The latency associated with doing so depends on

the sender and receivers distance relative to the on-chip network. This second tier of the memory system is

similar to the first in that it refers to the same physical scratchpad memories. However, the manner in which

it is used differs significantly.

This memory tier is most commonly used for scalable synchronization and polling. HammerBlade’s

shared memory can be a poor choice for a polling location, particularly if a significant number cores are

involved. Even if each core polls its own location, as is the case for scalable mutual exclusion locks or

barriers, the memory traffic pollutes the network and LLC, and deteriorates performance over all. Using

tile shared memory, each core can poll its own scratchpad memory until some other core writes to it. This

contains memory traffic caused by polling to within the poller’s tile and avoids network and cache pollution.

Another use of this tier is for data sharing at scales larger than what will fit in a single 4 KB bank. The

best example of this can be seen in an implementation of Jacobi stencil written for HammerBlade in Jung

et al. [2024] Stencils are particularly advantaged from this use case since they have a high degree of spatial

locality that HammerBlade’s tile-grid structure can exploit. In this case, HammerBlade tiles access data

stored in their direct neighbors’ scratchpad memories, incurring a minimal network latency.

There are other known uses for tile-shared memory. Chapters 4 and 5 explore using this memory tier to

implement shared work queues and a work-stealing scheduler. This memory tier is versatile and can provide

a scalable means for inter-core communication without placing pressure on the shared off-chip memory.

3.2.3 Shared DRAM Memory

The final tier of HammerBlade’s memory system is shared DRAM memory. It is the highest capacity tier

with a 2 GB address range per HammerBlade pod. This makes this tier ideal for large data sets or any other

data structure whose spatial complexity is unbounded by the number of cores. It is also the last-level storage

for instruction memory.

It is the slowest tier of the memory hierarchy. DRAM fetches are time-intensive and can range from tens

to hundreds of cycles. The data path to DRAM is by way of a multi-banked last-level cache. These caches

are illustrated in Figure 3.1 with each bank denoted with an L. While the cache amortizes latency associated

53

with DRAM fetches, the individual bank can service just one scalar memory request per cycle. This can

drive latency higher since the cache banks are outnumbered by the vanilla tiles. 1. A final factor that can

increase latency is that, as of the time of this writing, the cache banks block on a miss and cannot service hits.

This means that a single miss can significantly increase the latency to access even cache-resident data. These

caches are used for both data and instructions, meaning that L1 instruction cache misses can put additional

pressure on this memory tier.

The work in this Thesis studies HammerBlade instances with an HBM2 memory system. The system

is configured to map each HammerBlade pod’s DRAM address space to a single pseudo-channel. In order

to mitigate the restriction that each HammerBlade cache bank blocks on a miss, banks are assigned to

non-overlapping regions of main memory, each of which maps to a distinct DRAM bank. This means that,

even though only one outstanding fetch per cache bank is allowed, DRAM bank-level parallelism can still be

saturated.

3.2.4 Atomic Memory Operations

HammerBlade implements a subset of the RISC-V extension for atomic memory operations. These operations

are implemented in the LLC. As a result, atomic memory operations are only supported on memory addresses

mapping to shared DRAM. This makes DRAM the only option for many lock-free data structures.

An important exception is single-bit atomic read-modify-writes. amoswap operations targeting tile

scratchpad memories are remapped to a single one-bit register, of which each tile has one. This is sufficient

to implement correct spin-lock semantics for a lock whose value is either zero or one. It is limiting, however,

in that all data structures using scratchpad memories to hold a lock share this register. This operation is best

thought of as a lock on the entire tile.

3.3 On-Chip Network

As shown in Figure 3.1, the tiles and caches in a HammerBlade pod are connected in a mesh network topology.

The network is single-flit and each packet contains 32-bit scalar payloads. Dimension order routing is used as

1Note that the ratio of vanilla tiles to cache-memory banks is not a fixed value in HammerBlade’s architecture, but that ratio is 4:1
for all research in this Thesis. All data presented in chapters 4 and chapters 5 are collected from HammerBlade pods configured as
shown in Figure 3.1

54

it is simple, low cost, and it ensures the network is deadlock free. HammerBlade’s network is in fact two

distinct mesh networks, one for request packets and another for responses. Using separate networks for the

two packet types also prevents deadlock. Additional flow control is enforced at the endpoints using credit

counters. Endpoint routers restrict its tile’s total number of outstanding requests. This functionally caps

the total number of packets in the network and mitigates starvation and congestion. This also the means by

which software enforces memory ordering semantics. Waiting for all memory requests to complete can be

accomplished at the endpoints by waiting until its credit count returns to its full value. For the vanilla tiles,

this is accomplished with a fetch instruction.

HammerBlade’s network on-chip has been a major subject of research in the group. Work has been done

to extend the network design to have "rouche links" to increase the bisection bandwidth and reduce hop count

at low cost in terms of the extra wiring. I believe that I have given a description of the network here that is

necessary and sufficient context for this thesis. If the reader is interested in learning more, I encourage them

to read any of Jung et al. [2020, 2024].

3.4 Pod Architecture

The HammerBlade systems is organized into pods. Each pod is a submesh of vanilla tiles and its own cache

array at the north and south end. Figure 3.1 illustrates a HammerBlade pod with 128 tiles, denoted with C,

and 32 LLC banks marked with L. A pod’s address space is a 32-bit PGAS described above in Section 3.2.

Multiple pods connect together over a unified mesh network. This preserves bisection bandwidth across the

chip and preserves the simplicity of the mesh design.

HammerBlade’s pods can address each other’s memory using a 4-bit extension to the address space

by indicating a pod coordinate to whom memory operations should be rerouted. This 4-bit extension is

implemented with a control and status register (CSR) instantiated on each core. When the core dispatches a

memory operation to a remote endpoint, not to its own local memory, the 4-bit register is checked and the pod

coordinates that it encodes are used to format the network packet. This enables parallel software targeting

one large data set to which all pods can collectively share access.

55

3.5 Programming Model

HammerBlade adheres to the single program multiple data (SPMD) model for parallel programs. The basic

model of SPMD is that control is transferred to the programmer by way of some entry point or kernel, and

that entry point is instantiated once per thread. This means that all threads are running the same program, but

can use identifiers or other control variables to operate on separate data. Synchronization between threads

in the SPMD model are, in the ideal case, extremely rare. Typically, the key synchronization primitive in a

SPMD program are barriers in which a large set of threads participate.

SPMD has advantages as a parallel programming paradigm. It assumes that every processing element,

be it a thread, core, or processor, exists as an isolated instance and can potentially run its program from

start to finish without any communication with its co-processing elements whatsoever. In other words,

the SPMD model assumes that the program is parallel by default, and the programmer must dictate when

serialization and synchronization must occur. The result is that a SPMD program that is embarrassingly

parallel can run with hardly any overhead at all. Thus, a SPMD runtime can be implemented minimally and

allow highly parallel programs to scale up to the limits of the hardware without being weighed down by

communication bottlenecks. This is a key reason why SPMD has been adopted by commonly used parallel

software frameworks such as cuda and mpi.

We call HammerBlade’s primary programming framework CUDA-Lite, named as such since it is meant

to mirror CUDA’s API and programming model. CUDA-Lite’s mission is to provide a SPMD programming

environment for HammerBlade at minimal overhead. Additionally, on the host side it provides key services

that are necessary to run HammerBlade kernels. These services include program loading, address translation,

ELF symbol table decoding, shared buffer allocation, and kernel invocation and scheduling. Thus, there are

two core parts of a CUDA-Lite program: the host software making API calls and managing kernel invocations,

and the SPMD style parallel code that is meant to run on the accelerator itself.

3.5.1 Related Manycore Architectures

Early manycore research prototypes integrated 16–110 cores on a single die Taylor et al. [2003]; McKeown

et al. [2017]; Howard et al. [2010]; Hoskote et al. [2007]; Lis et al. [2013]; Vivet et al. [2020]; Tan et al.

[2008]. The industry has adopted the manycore approach as well and products available typically include

56

64–256 cores Bell et al. [2008]; Ramey [2011]; Kanter [2015]; Wheeler [2020]; Halfhill [2020]; Wentzlaff

et al. [2007]; Li et al. [2018a]; Kalray. Recent research prototypes have scaled core counts by an order-

of-magnitude to over a thousand cores (e.g., 1000-core KiloCore Bohnenstiehl et al. [2017], 1024-core

Epiphany-V Olofsson [2016], and 4096-core Manticore Zaruba et al. [2021])

Raw implements a 16-core, general-purpose, 32-bit manycore architecture with a RISC ISA Taylor et al.

[2004]. Raw was one of the first manycore architecures. Although Raw supported a global address space, it

did not support load and store instructions that could access other core’s memory spaces; instead explicit

dynamic messages had to be sent in software, and the receiving core either serviced this request by triggering

an interrupt or by explicitly receiving the memory request.

Tilera’s TILE64 Bell et al. [2008] is a commercial, 64-core Linux-capable manycore that evolved

from Taylor et al. [2004]. Several features in HammerBlade are inspired by TILE64, including its PGAS

memory space accessible via light-weight remote load and stores, and efficient support for the remote store

programming model Hoffmann et al. [2010]. Unlike TILE64, HammerBlade does not run an operating

system on each core. TILE64 also lacked a floating point unit and its synchronization primitives relied on

static and dynamic networks. By contrast, HammerBlade relies mostly on its PGAS and atomic memory

operations for synchronization.

Adapteva Epiphany V Olofsson [2016] is a manycore that supports PGAS and lightweight loads and

stores. Epiphany lacked an L2 and external memory system and focused on a generalized systolic-array

style communication, where computation is explicitly placed and communication only happens between

nodes and I/O. Epiphany’s strong support for remote stores made it suitable for streaming or remote store

programming Hoffmann et al. [2010].

Celerity is a direct predecessor of HammerBlade , designed to run streaming and remote store program-

ming applications Rovinski et al. [2019a]. Like in HammerBlade , all scratchpads in the Celerity architecture

are globally addressable on the 2-D mesh, providing a PGAS for communication; however Celerity only

supports remote stores and not remote loads.

57

Chapter 4

A Dynamic Task Parallel Library

In this chapter, I explore the implementation of a task-parallel runtime for HammerBlade. This runtime

supports dynamic fork-join parallelism, allowing for greater flexibility than single program multiple data

(SPMD). Additionally, the runtime presented in this chapter implements a work-stealing scheduling policy

and discusses optimizations that leverage HammerBlade’s scratchpad memories to reduce the overhead. This

work was published in ASPLOS and the original paper can be found here: https://dl.acm.org/doi/

10.1145/3582016.3582020.

4.1 Introduction

Scratchpad memories (SPMs) provide key advantages in single-chip parallel architectures. Most crucially,

they improve the efficiency and scaling of the memory system by removing the need for a coherence protocol

and associated network traffic. When used effectively, SPMs can yield critical performance and energy

savings by reducing data movement, improving synchronization times, and eliminating overheads that

can arise from false sharing. As a result, academic and industry chip-makers have increasingly favored

these software-managed fast memories over L1 caches as core counts scale from the tens to hundreds

and thousands Davidson et al. [2018]; Ajayi et al. [2017b]; Bohnenstiehl et al. [2017]; Olofsson [2016];

Brahmakshatriya et al. [2021], a trend illustrated in Figure 4.1.

Replacing the traditional L1 caches in favor of SPMs comes at a cost to software productivity. Manycore

architectures (i.e., those with more than a hundred cores) that rely heavily on SPMs are notoriously challenging

59

https://dl.acm.org/doi/10.1145/3582016.3582020
https://dl.acm.org/doi/10.1145/3582016.3582020

to program. Such systems usually require programmers to write applications in low-level C environments

and/or directly in assembly. This places the burden on the programmer to explicitly manage data coherence

among private memories and adopt a more restricted programming model (e.g., explicit task partitioning Kelm

et al. [2009], message passing Olofsson [2016], and remote store programming Davidson et al. [2018]).

The cumbersome programming environment coupled with the need for software optimizations to realize the

performance promised by hardware is a critical barrier to widespread adoption of most manycore architectures

with software-managed SPMs.

One common method to facilitate programming on such architectures is by providing domain-specific

frameworks. This approach has had success in application spaces such as graph processing Brahmakshatriya

et al. [2021] and deep learning Cheng et al. [2022]. These frameworks express domain-specific workloads

effectively and achieve high performance. However, not every domain is covered. Extending and re-

purposing these frameworks for another domain requires non-trivial effort by programmers. General-purpose

parallel programming frameworks provide more flexibility than domain-specific ones. However, most such

frameworks (e.g., OpenCL ope [2011]) usually adopt a single-program-multiple-data (SPMD) programming

model, in which native support for dynamic work scheduling and load balancing is highly limited, if provided

at all.

In this work, we take inspiration from the success of the dynamic task parallel programming model in

the multi-core era, and attempt to address the programmability challenge of manycore architectures with

software-managed SPMs by offering a dynamic task parallel programming framework that is similar to those

that are common on multi-core systems (e.g., Intel Cilk Plus int [2012], Intel Threading Building Blocks

(TBB) int [2019], and OpenMP Ayguadé et al. [2009]; ope [2013]). These programming frameworks allow

parallel tasks to be generated and mapped to hardware dynamically through a software runtime. They can

express a wide range of parallel patterns, provide automatic load balancing, and improve portability McCool

et al. [2012].

We demonstrate our ideas by implementing the proposed dynamic task parallel programming framework

on an open source manycore. Our approach allows dynamic task parallel applications written for traditional

hardware-based cache coherence multi-cores to work on manycore architectures with only minimal changes

to the software. In Section 4.2, we provide a general background on our target open-source manycore archi-

60

1999 1994 1919 1914 1919
199

191

191

192

M
tl

ad
qn

eB
nq
dr

GV/Aardc Bngdqdms Babgd
RV/Bdmsqhb Bngdqdms Babgd
Rnesvaqd Lamafdc Rbqasbgoac

HammerBlade
KiloCore

Epiphany-V
Celerity

big.TINY

SW26010
Teraflops

Godson-T

Figure 4.1: On Chip Memory Hierarchy in Manycore Architectures – SPM is needed for manycore architec-
tures to reach very high core counts. Filled marker = real chip; unfilled marker = proposal/simulator only.
Data is in part from CPU DB Danowitz et al. [2012].

61

tecture, work-stealing runtimes, and the manycore architecture programmability challenge. In Section 4.3, we

describe in detail how to implement a work-stealing runtime, which is the core component of dynamic task

parallel frameworks, on manycore architectures with software-managed SPMs. In Section 4.3.3, we discuss

three optimizations for enabling the runtime to leverage SPMs and achieve high performance. In Section 4.4

and Section 4.5, we use a cycle-accurate RTL evaluation methodology to demonstrate the potential of our

approach with four categories of workloads: static-balanced, static-unbalanced, dynamic-balanced, and

dynamic-unbalanced. While conventional wisdom believes implementing a work-stealing runtime is either

not viable or not beneficial on systems that do not have caches Zakkak and Pratikakis [2016]; Wang et al.

[2020], our evaluation demonstrates that our proposed task parallel programming framework can achieve

1.2×–28.5× speedup for workloads that benefit from our techniques, and only induce minimal overhead for

workloads that do not.

The contributions of this work are: (1) we provide, to the best of our knowledge, the first work that

describes the implementation of a work-stealing runtime on manycore architectures with software-managed

SPMs; (2) we summarize three optimizations which enable the runtime to leverage scratchpad memories to

achieve high performance; and (3) we provide a detailed cycle-accurate evaluation using a silicon-validated

RTL design of an open source manycore architecture.

62

4.2 Background

In this section, we give a brief introduction on dynamic task parallelism and the programmability challenge

of manycore architectures. Note that HammerBlade , the specific manycore architecture targeted by this wor,

is described in Chapter 3.

4.2.1 Programming Models for Dynamic Task Parallelism

Task parallelism is a style of parallel programming where the workload is divided into tasks (i.e., units of

computation that can execute in parallel). Dynamic task parallelism is a subset of task parallelism in which

tasks and dependencies among tasks are generated at runtime. Dynamically generated tasks are assigned to

available worker threads based on a certain scheduling algorithm. The most common computation model for

dynamic task parallelism is the fork-join model. It was popularized by MIT Cilk Blumofe et al. [1995] and

then adopted by various parallel programming frameworks Leiserson [2009]; int [2012]; Reinders [2007]; int

[2019]; Charles et al. [2005]; Schardl et al. [2017]. In a task parallel programming framework that adopts the

fork-join model, the process in which a task forks two or more parallel tasks is also referred to as spawning

tasks. The newly created tasks are called the child tasks and the original task is called the parent. The parent

task can continue until it reaches the point where the join (also commonly referred to as wait) primitive is

called. The parent task blocks until all of its child tasks have finished. The fork-join model has the following

properties: (1) a task can only wait for its children to join (e.g. no waiting on locks); and (2) a task cannot

complete until all of its children complete and join it. This set of properties is called fully-strict in Cilk

literature Blumofe et al. [1996b]; Frigo et al. [1998].

Work-stealing is likely the most widely-adopted scheduling algorithm for task parallel programming

frameworks Blumofe and Leiserson [1999]. In a typical work-stealing runtime, each thread is associated

with a task queue to store tasks that are ready for execution. The task queue is usually implemented with a

double-ended queue (deque). When a task spawns a child task, it enqueues the child on to the task queue of

the executing thread. When a thread becomes idle, either because a parent task is waiting for its child tasks to

return or the thread has no active task running, it attempts to dequeue a task from its own task queue from the

tail (i.e., in last-in-first-out (LIFO) order). If the task queue is empty, the thread then attempts to steal a task

from the head of the task queue of another thread (i.e., in first-in-first-out (FIFO) order). The stealing thread

63

becomes a thief, and the thread whose tasks are stolen becomes a victim. Stealing in FIFO order allows the

thief to steal a task that is located higher in the task graph, which typically contains more work. The stealing

mechanism automatically balances the workload across threads, leads to better locality, and helps establish

time and space bounds Blumofe and Leiserson [1999]; Frigo et al. [1998].

4.2.2 Manycore Architecture Programmability Challenge

Manycore architectures that have high core counts (i.e., more than a hundred cores) and adopt software-

manage scratchpad memories have been proposed and fabricated by both academia and industry Davidson

et al. [2018]; Ajayi et al. [2017b]; Bohnenstiehl et al. [2017]; Olofsson [2016]; Brahmakshatriya et al. [2021].

While the hardware has gained most of the attention, the software stack of such architectures is less explored.

As is the case with similar architectures, programming HammerBlade without loss of domain generality

requires using a low-level C runtime environment. This demands that the programmer have both an extensive

domain knowledge for their application and for the underlying hardware. Concerns such as data placement,

synchronization, and load-balancing are left entirely to the programmer. Having to use a low-level C runtime

environment prevents easily reusing existing code written for multi-cores and requires most applications to

be completely rewritten for such manycore architectures.

Prior works propose leveraging a domain-specific framework approach to address the manycore pro-

grammability challenge (e.g., machine learning frameworks based on adapting PyTorch Cheng et al. [2022]

and graph processing frameworks based on porting GraphIt Brahmakshatriya et al. [2021]). A domain-specific

framework approach has three main drawbacks: (1) programmers need to rewrite their applications to use the

constructs provided by the framework; (2) the framework is designed for a specific domain, meaning it is

difficult to express computation from other domains; and (3) there is no easy way for a programmer who has

little knowledge about the underlying manycore hardware to extend the framework.

4.3 Supporting Dynamic Task Parallelism on Manycore Architectures

In this work, we propose resolving the manycore architecture programmability challenge by implementing

a TBB/Cilk-like dynamic task parallel programming framework on such systems. Compared to the typical

low-level C runtimes provided by these architectures which usually adopt the SPMD programming model,

64

1 template <typename Func>
2 class FibTask : public Task {
3 public:
4 FibTask(int n_, int* sum_,
5 Task* parent_) :
6 n(n_), sum(sum_),
7 parent(parent_);
8 Task* execute() {
9 if (n < 2) {

10 *sum = n;
11 return;
12 }
13
14 int x, y;
15 FibTask a(n - 1, &x, this);
16 FibTask b(n - 2, &y, this);
17 this->set_ready_count(1);
18
19 task::spawn(b);
20 a.execute();
21
22 task::wait();
23 *sum = x + y;
24 return nullptr;
25 }
26 private:
27 int n;
28 int* sum;
29 Task* parent;
30 };

(a) fib using spawn and wait

1 class Task {
2 public:
3 Task();
4 virtual Task* execute();
5 void set_ready_count(
6 int ready_count);
7 private:
8 int ready_count;
9 };

(b) Task base class

1 int fib(int n) {
2 if (n < 2) {
3 return n;
4 }
5 int x, y;
6 parallel_invoke(
7 [&]{ x = fib(n - 1); },
8 [&]{ y = fib(n - 2); }
9);

10 return x + y;
11 }

(c) fib using parallel_invoke

1 void vvadd(int a[], int b[],
2 int dst[], int n) {
3 parallel_for(0, n,
4 [&](int i) {
5 dst[i] = a[i] + b[i];
6 });
7 }

(d) vvadd using parallel_for

1 void sum(int a[], int n) {
2 int ident = 0;
3 parallel_reduce(0, n, ident,
4 [&](int i) {
5 return a[i];
6 },
7 [](int x, int y) {
8 return x + y;
9 });

10 }

(e) sum using parallel_reduce

Figure 4.2: Task-Based Parallel Programs – Examples for calculating the Fibonacci number using (a) a
low-level API with explicit calls to spawn() and wait() , the implementations of which are shown in Figure
4.3; and (c) a high-level API with templated parallel_invoke () pattern. (b) shows the Task based class from
which the FibTask class inherits in (a). (d) and (e) show alternative templated patterns parallel_for () and
parallel_reduce () respectively.

65

the proposed framework supports parallel patterns beyond simple static parallel loops, allows parallel

patterns to be arbitrarily nested, and provides dynamic load balancing. Compared to prior work on resolving

the programmability challenge through domain-specific frameworks, our framework is general-purpose.

Furthermore, it provides an interface with which programmers that have used Cilk/TBB or OpenMP are

familiar, making it possible to port legacy code to manycore architectures.

The core component of the proposed TBB/Cilk-like dynamic task parallel programming framework is a

work-stealing runtime. While how to implement work-stealing runtimes on systems with hardware-based

coherence Blumofe et al. [1995], software-centric coherence Long et al. [2008]; Wang et al. [2020]; Tagliavini

et al. [2018], and distributed memory Dinan et al. [2009]; Pezzi et al. [2007]; Saraswat et al. [2011] has been

studied extensively in the literature, conventional wisdom claims that implementing such a runtime is either

not viable or not beneficial on systems with software-managed scratchpad memories Zakkak and Pratikakis

[2016]; Wang et al. [2020].

In this section, we first demonstrate our programming model using running examples. We give details

on how we implement a low-level API for spawning and synchronizing with new tasks. We also give a

description of a higher-level API for expressing common parallel programming patterns. Lastly, We describe

a naive implementation of a work-stealing runtime on the HammerBlade manycore, before discussing key

optimizations in Section 4.3.3.

4.3.1 Running Example

We use an application programming interface (API) similar to Intel TBB to illustrate our programming model

(see Figure 4.2). Each task is described by a C++ class derived from the Task base class (Figure 4.2 (b))

which contains an execute() method and a metadata variable ready_count , also known as the reference

counter. This metadata tracks a task’s unfinished children. After a task finishes execution, it checks if it

has a parent task. If so, the child will decrement the ready_count variable of its parent task to signal its

completion. A task in wait will be blocked until its ready_count reaches 0 (i.e., all children have completed

their execution). This mechanism enforces the ordering between parent and children: a task cannot complete

until all of its children complete and join it (see Section 4.2.1). Programmers override the virtual execute()

function to hold the logic of the concrete task. In this example (Figure 4.2 (a)), after creating two child tasks

66

a and b, one for fib (n−1) and one for fib (n−2) , the parent task (i.e., fib (n)) puts fib (n−2) onto the task

queue and executes fib (n−1) locally, before calling wait() , which blocks its execution until task fib (n−2)

returns. The parent task then calculates fib (n) by adding the partial results from both tasks and returns.

Besides the low-level APIs, our framework also provides templated functions that support various parallel

patterns. This includes parallel_invoke () for divide-and-conquer (Figure 4.2 (c)), parallel_for () for parallel

loops (Figure 4.2 (d)), and parallel_reduce () for parallel reduction (Figure 4.2 (e)).

4.3.2 A Naive Work-Stealing Runtime

The key challenge of implementing a work-stealing runtime on a system like HammerBlade is to cope with

the lack of data coherence mechanisms. Typical work-stealing runtimes are built upon various shared data

structures (e.g., task queues and reference counters). Where to allocate them and how to keep them coherent

is critical to both correctness and performance. While possible if carefully implemented, programmers usually

avoid keeping copies of shared data in software-managed scratchpads. Instead, they tend to allocate them in

the last shared level of the memory hierarchy. While doing so causes longer memory latency when accessing

this shared data, allocating it in SPM would require software to keep it coherent, introducing significant

software complexity. By allocating all data in the shared memory space, we can easily implement a naive

work-stealing runtime that runs on the HammerBlade manycore architecture. Namely, the runtime does not

utilize the scratchpads at all: all data lives in the DRAM address space (recall that HammerBlade adopts a

PGAS memory model, and DRAM has an address space that is separated from the scratchpads).

Figure 4.3 (a) shows an implementation of the spawn() and wait() functions for this naive work-stealing

runtime. spawn enqueues a task pointer onto the current thread’s task queue, and wait puts the current thread

into a scheduling loop. Within the scheduling loop, a thread first checks if all of its child tasks have returned

(i.e., ready_count has a non-zero value). If so, the thread exits from the scheduling loop and resumes the

execution of the parent task (line 8). Otherwise, the thread first attempts to pop a task from the end of its

own task queue (i.e., LIFO order, lines 9–15). If there is no task left in the local queue, the current thread

becomes a thief and attempts to steal tasks from the queue of another thread, a victim. Tasks are stolen from

the victim’s head (i.e., FIFO order, lines 17–24). The victim is selected randomly (line 17). When a task is

executed, its parent’s reference counter is atomically decremented (lines 14 and 23).

67

Readers familiar with Intel TBB-like work-stealing runtimes may notice that this implementation is

similar to the implementation on traditional hardware coherent multi-cores. On hardware coherent multi-

cores, hardware cache coherence protocols keep multiple copies of shared data coherent. On HammerBlade ,

as all data is allocated in DRAM, there is exactly one copy of every shared data. All cores access the same

copy. Note that the atomics used for reference counter decrement have release semantics associated. This is

to ensure that writes by child tasks complete before the parent task can exit from the scheduling loop (i.e.,

reference counter reaches 0).

4.3.3 Scratchpad Enhanced Runtime

Prior work has shown that leveraging the scratchpad memory is critical to achieving peak performance on

manycore architectures Cheng et al. [2022]. However, SPMs are often underutilized due to the high demand

they put on programmers, in addition to the fact that not every workload is able to benefit from leveraging

them (e.g., streaming workloads that do not have any reuse of input data). The naive work-stealing runtime

we introduced in Section 4.3 allocates all data, including both the stack and runtime data structures, such

as the task queues, in DRAM. While this naive implementation yields a functionally correct work-stealing

runtime, it is likely to have sub-optimal performance due to high memory latency and contention at the LLC

for applications that have frequent stack operations, task queue operations, or both. Instead of leaving the

SPMs unused, we introduce three optimizations which enable work-stealing runtimes to efficiently leverage

scratchpads if they are not claimed by programmers. To the best of our knowledge, this is the first work

that describes the implementation of a work-stealing runtime that automatically utilizes SPMs on manycore

architectures.

Scratchpad-Allocated Stack

Allocating the stack in SPM has been mentioned and explored by various prior work in the literature Cheng

et al. [2022]. However, there are two main concerns on doing the same in the context of a work-stealing

runtime: (1) user data can become shared variables when tasks are stolen; and (2) the stack can easily overflow

the size of the scratchpad (e.g., recursively called runtime functions such as wait() and divide-and-conquer

algorithms with deep recursion depth).

68

1 void task::spawn(task* t) {
2 tq[tid].lock_aq()
3 tq[tid].enq(t)
4 tq[tid].lock_rl()
5 }
6
7 void task::wait(task* p) {
8 while (p->rc > 0) {
9 tq[tid].lock_aq()

10 task* t = tq[tid].deq()
11 tq[tid].lock_rl()
12 if (t) {
13 t->execute()
14 amo_sub_lr(t->p->rc, 1)
15 }
16 else {
17 int vid = choose_victim()
18 tq[vid].lock_aq()
19 t = tq[vid].steal()
20 tq[vid].lock_rl()
21 if (t) {
22 t->execute()
23 amo_sub_lr(t->p->rc, 1)
24 }
25 }
26 }
27 }

(a) Runtime Data in DRAM

1 void task::spawn(task* t) {
2 spm_lock.lock_aq()
3 spm_tq.enq(t)
4 spm_lock.lock_rl()
5 }
6
7 void task::wait(task* p) {
8 while (p->rc > 0) {
9 spm_lock.lock_aq()

10 task* t = spm_tq.deq()
11 spm_lock.lock_rl()
12 if (t) {
13 t->execute()
14 amo_sub_lr(t->p->rc, 1)
15 }
16 else {
17 int vid = choose_victim()
18 TaskQ* remote_tq =
19 get_remote_ptr(vid, &spm_tq)
20 QLock* remote_lock =
21 get_remote_ptr(vid, &spm_lock)
22 remote_lock->lock_aq()
23 t = remote_tq->steal()
24 remote_lock->lock_rl()
25 if (t) {
26 t->execute()
27 amo_sub_lr(t->p->rc, 1)
28 }
29 }
30 }
31 }

(b) Runtime Data in Scratchpad

Figure 4.3: Work-Stealing Runtime Implementations – Pseudo-code of spawn and wait functions for:
(a) having runtime data in DRAM; and (b) having runtime data in scratchpads. tq = array of task queues;
tid = thread id; lock_aq = acquire lock; lock_lr = release lock; rc = ready count; deq = dequeue
from the tail of the task queue; enq = enqueue to the tail of the task queue; steal = dequeue from the head
of the task queue; choose_victim = random victim selection; amo_sub_lr atomic fetch-and-sub with
release semantics; spm_lock = task queue lock allocated in scratchpad; spm_tq = task queue allocated in
scratchpad; get_remote_pointer = calculate the address of a piece of data in another core’s scratchpad.

69

Data in the user code (e.g., y in line 14 of Figure 4.2 (a)) includes potential shared variables that can be

accessed by more than one core if the corresponding task b in line 16 is stolen. However, this is not an issue

for manycore architectures which adopt the PGAS memory model (e.g., HammerBlade). The PGAS memory

model allows every core to read and write any other core’s scratchpad (see Chapter 3), and it enables us to

keep unique copies of shared data in a core’s SPM. For example, assume y mentioned above is allocated in

core_0’s scratchpad, and the corresponding task (i.e., b) is stolen by core_1. When core_1 accesses y

through the address taken at line 16 while creating the task, it performs a direct remote scratchpad access.

The y in the scratchpad of the parent task’s core remains as the only copy of y . The fully-strict properties of

dynamic task parallelism (see Section 4.2.1) guarantees that reads and writes by core_0 and core_1 to y

will not result in any data-race.

Manycore architectures like HammerBlade usually have limited per core scratchpad space (e.g., each core

in HammerBlade has a 4 KB SPM). Applications running recursive algorithms (e.g., divide-and-conquer) can

easily create deep call stacks, which cannot fit in the SPM. When the stack does not fit, ideally we would like

to keep the active and more recent frames (i.e., top frames) in scratchpad memory, since these frames are

more likely to be accessed than older ones. To achieve this, one can either put the base of the stack in DRAM,

and only start allocating in the scratchpad when the stack reaches a certain depth, or one can spill the older

stack frames to DRAM when the scratchpad becomes full. However, both approaches have their caveats:

starting in DRAM requires determining an ideal switching depth which can vary from workload to workload,

while stack spilling cannot be realized without implementing complex hardware/software mechanisms. In

this work, we opt for a simpler but less ideal solution: rather than keeping the top frames in scratchpads, we

keep the bottom frames. When the stack overflows available SPM space, it automatically goes to DRAM,

and we refer to this as overflowing to DRAM. While overflowing does happen, it only happens in applications

with deep recursion depth. We optimize for the common case in which the stack can fit in scratchpads.

We leveraged a software/hardware co-design approach and extended each core with a light-weight

hardware extension that snoops on the stack pointer register. We added two new control and status registers

(CSRs). One for storing the DRAM overflow threshold (i.e., lowest address of the stack space in scratchpad),

and the other for storing the pointer to the DRAM overflow buffer. When a new frame is pushed onto the

stack and the stack pointer is modified, we check if the stack is overflowed (i.e., new stack pointer has become

70

smaller than the DRAM overflow threshold). If so, we replace the stack pointer with the pointer to the

core’s DRAM overflow buffer and allocate the new frame in DRAM. Similar checks and replacements are

performed when a frame is popped off the stack. By default, the runtime allocates a 256 KB stack space for

each core to enable deep recursion calls that can produce many stack frames. The runtime calculates available

stack space using the information given by the programmer at compile-time. It then allocate a buffer with

proper size for each core in DRAM, and writes both the pointer of the DRAM allocated buffer and overflow

threshold address to corresponding CSRs.

Scratchpad-Allocated Task Queue

A common goal of various parallel programming frameworks is to reduce the overhead of their runtimes. Our

framework is not an exception. In the naive runtime implementation, all runtime data structures, including the

core local task queues, are allocated in DRAM. Applications with fine-grained tasks tend to induce frequent

task queue operations as they generate more tasks than coarse-grained ones. For these applications, being

able to manipulate the local task queue efficiently is key to achieving high performance. The local scratchpad

has a 2-cycle access latency where the DRAM has an access latency of tens to hundreds of cycles. Therefore,

instead of going to DRAM for runtime data, we would like to keep them in the SPMs for faster accesses.

Similar to what we have mentioned in Section 4.3.3, data coherence is not an issue as we keep only one

copy of data and perform remote scratchpad accesses if the data is located in another core’s SPM. However,

unlike the user data, to which a pointer is passed around dynamically, a core must know before run-time

where other cores’ task queues are located in order to conduct stealing without first accessing a DRAM

allocated centralized data structure, such as the array of pointers to task queues (i.e., tg [] in Figure 4.3 (a)).

Having such a DRAM allocated data structure diminishes the benefit of keeping stealing traffic away from

DRAM. To achieve this, we reserve, by default, the top 512 B of the scratchpad for the core local task queue.

The task queue is allocated at a fixed offset from the scratchpad base pointer across all cores. Therefore, if we

have a pointer to the local task queue, we can easily calculate the pointer of the task queue of any other core.

Figure 4.3 (b) shows an implementation of spawn() and wait() for our runtime which has both the stack and

runtime data structures in the SPMs. The first noticeable difference is instead of loading the victim’s queue

from an array (line 18 in Figure 4.3 (a)), we calculate the address of victim’s queue using the address of the

71

0 2 4 6 8 10 12 14

0
1

2
3

4
5

6
7

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.3

0.1 0.2 0.3 0.4 0.2 0.4 0.5 0.2 0.4 0.4 0.3 0.4 0.4 0.3 0.4 0.5

0.2 0.4 0.5 0.5 0.4 0.5 0.6 0.3 0.5 0.6 0.4 0.6 0.6 0.4 0.5 0.6

0.4 0.6 0.7 0.8 0.5 0.7 0.8 0.5 0.8 0.7 0.5 0.6 0.8 0.5 0.7 0.7

0.6 0.8 0.8 0.9 0.6 0.8 0.9 0.6 0.8 0.9 0.7 0.8 0.8 0.6 0.9 1.0

0.8 0.9 1.0 1.0 0.8 0.9 0.9 0.7 0.9 0.9 0.8 0.8 0.9 0.8 0.8 1.0

Figure 4.4: Normalized Remote Scratchpad Load Latency – Remote scratchpad load latency of 128 cores
arranged in 16 rows and 8 columns, normalized to the core which has the highest latency.

0 250 500 750 1000 1250 1500 1750 2000
Execution Time (K Cycles)

w/ RD

w/o RD

K1 K2 K3 K4 K5 K6

Figure 4.5: Performance Impact of Read-Only Data Duplication – Execution time of six parallel kernels (K1
to K6) in one iteration of PageRank with and without read-only data duplication optimization.

local queue (lines 18–19 in Figure 4.3 (b)). We also separate the spin lock protecting the task queue from the

queue itself (lines 2–4 in Figure 4.3 (b)). Doing so allows us to directly calculate the address of the remote

spin lock (lines 20–21 in Figure 4.3 (b)): we do not need the remote scratchpad access for loading the pointer

of the lock as in the case where the lock is a member of the task queue.

Read-Only Data Duplication

After implementing the two optimizations described above, profiling data collected from the one of the apps

(i.e., PageRank) shows an unexpected pattern. Figure 4.4 shows a heat map of normalized remote scratchpad

access latency measured on each core in the 16 × 8 mesh. From the plot we can observe a clear pattern:

72

cores that are located farther away from core_0 (upper left corner) generally have longer remote scratchpad

access latency. Note that, the distance in Y-direction has a more significant impact than the distance in

X-direction. This is because HammerBlade adopts X-Y routing and when all other cores are accessing

core_0, the bandwidth in the Y-direction is much scarcer. The difference of latency within the same row

is caused by the network topology of the 2-D mesh-with-ruching OCN Jung et al. [2020]; Ou et al. [2020].

Our work-stealing runtime selects victims randomly, and thus we expect cores read and write their peers’

scratchpads uniformly and there should not be any hot spots.

A closer look at the profiling data revealed the causes: (1) when we implement the high-level templated

functions, such as parallel_for () , we keep a pointer to the user defined lambda function in the customized

task class; and (2) in the user code, we write the lambda functions using reference capture (&), including

for read-only values (e.g., pointers dst in line 5 of Figure 4.2 (d)). On systems with hardware-base or

software-centric coherence, this read-only data can be cached and reused. However, in our case, these values

are all allocated on the scratchpad of core_0, and thus other cores repeatedly load from core_0. This

traffic to core_0 causes congestion in the OCN. We resolve this issue by changing both the runtime and

user code to duplicate read-only data that is allocated in the scratchpad (e.g., capture dst in Figure 4.2 (d)

by value). We show the performance impact of the read-only data duplication optimization on PageRank in

Figure 4.5. Each iteration of PageRank is composed by six parallel kernels. The proposed optimization is

able to reduce execution time of all but one kernel, and achieve an overall speedup of 1.57×. Read-only data

duplication applies to the case where the stack is DRAM allocated as well. It helps eliminate the hot spot in

LLC in a similar manner as it eliminates the hot spot in core_0’s SPM. We enable this optimization for all

work-stealing runtime configurations.

Micro-Benchmarking

We use Fib, a widely adopted micro-benchmark for demonstrating work-stealing runtimes in the literature, to

illustrate the benefits of having the runtime leveraging the scratchpads. Figure 4.2 (c) shows its implementa-

tion, and Section 4.4.1 provides details on the simulated hardware. Fib is known for generating many tasks

each of which only contains a minimal amount of compute. It yields both frequent stack operations (both

runtime function calls and user-defined functor calls) and frequent task queue operations. We evaluate Fib

73

0.0 0.5 1.0 1.5 2.0
Speedup

Fib

Both stack and task queue in DRAM
Stack in DRAM and task queue in SPM
Stack in SPM and task queue in DRAM
Both stack and task queue in SPM

Figure 4.6: Speedup from Optimizing Data-Placement with SPM in Work-Stealing Runtime – Fib = measured
speedups with the proposed SW/HW co-design scheme.

on four variants of the runtime: both stack and task queue in DRAM which is the naive implementation we

introduced in Section 4.3, stack in DRAM and task queue in scratchpad, stack in scratchpad and task queue

in DRAM, and both stack and task queue in scratchpad. Results are summarized in Figure 4.6. From the

plot we can observe that, as we expected, the naive runtime implementation has the worst performance. As

we add optimizations and migrate either the stack or the task queue to scratchpad memories, we observe

improved performance due to reduced access latency. Compared with task queue in SPM, stack in SPM

shows better performance and it illustrates that having low latency access to the stack is more important for

Fib. This is caused by: (1) the task queue is protected by a spin lock and the time spent on getting the lock,

instead of accessing the task queue itself, dominates the execution time of pushing/popping task queues; and

(2) stack operations (e.g., register spilling and saving/restoring saved registers) generate more traffic than task

queue operations. Best performance is achieved when both optimizations are applied (i.e., both task queue

and stack in SPM).

4.4 Evaluation Methodology

In this section, we describe our RTL-level cycle-accurate performance modeling methodology. We used

this to quantitatively evaluate the proposed work-stealing runtime. We also give a brief introduction on the

workloads we used in the evaluation.

74

Table 4.1: Simulated Workloads – Cat = workload category; SB = static-balanced; SU = static-unbalanced;
DB = dynamic-balanced; DU = dynamic-unbalanced; PM = parallelization methods; pf = parallel_for , npf
= nested or recursive parallel_for and ss = recursive spawn and sync; Input = input dataset; DI = dynamic
instruction count in millions; C = simulated cycles in thousands.

Static Runtime Work-Stealing Runtime

DRAM Stack SPM Stack DRAM Stack DRAM Stack SPM Stack SPM Stack
DRAM Queue SPM Queue DRAM Queue SPM Queue

Cat Name PM Input DI(M) C(K) DI(M) C(K) DI(M) C(K) DI(M) C(K) DI(M) C(K) DI(M) C(K)

SB MatMul pf 256 37 543 37 512 38 527 39 556 39 573 38 509
512 289 6914 289 6579 293 5049 295 5333 294 5321 297 5260

SU PageRank npf g14k16 11 1586 11 1685 23 1649 24 1451 23 1425 25 1343
email 11 5679 11 5384 27 1786 29 1638 24 1471 28 1358
c-58 15 5136 15 5136 32 2257 40 2257 33 2044 38 1961

SU BFS npf g14k16 3 1114 3 1062 22 1149 27 1102 21 914 26 871
bundle1 6 1988 6 2065 30 1881 40 1892 29 1604 39 1561
c-58 7 1943 7 1881 27 1852 35 1806 26 1495 33 1440

SU SpMV pf bundle1 4 1483 4 1476 6 1005 7 995 6 1007 8 978
email 2 4144 2 4129 95 4046 132 3820 87 3657 142 4060
c-58 3 3442 3 3444 10 1047 14 1012 11 1019 15 1009

SU SpMatrix pf bundle1 42 50850 42 50718 183 12877 281 13409 189 12911 279 12992
Transpose email 22 47310 22 47343 1112 45864 1569 44351 1112 45456 1622 45391

c-58 24 16570 24 16655 91 7568 123 7325 89 7222 129 7177

DB Matrix ss 512 – – – – 3 496 3 502 3 416 3 421
Transpose 1024 – – – – 8 2238 9 2240 8 2031 8 1969

DU CilkSort ss 16384 – – – – 7 304 9 279 6 264 8 253
131072 – – – – 30 1799 31 1658 29 1305 32 1264

DU NQueens npf 8 4 1094 4 513 8 545 9 546 8 140 8 151
9 19 5371 19 2522 36 2478 37 2508 37 910 37 1026
10 100 24820 100 11691 177 11089 182 11381 181 6695 181 7367

DU UTS npf small-t1 11 90684 11 90228 53 3266 71 3236 55 3280 71 3156
small-t3 13 127199 13 126594 468 21028 663 21209 480 20878 680 20770

75

4.4.1 Simulated Hardware

We model the HammerBlade manycore architecture using cycle-accurate RTL simulation. We leverage

an RTL simulator to model a silicon-validated small-scale early version of the HammerBlade manycore

system running at 1.5 GHz with 16 columns and 8 rows (i.e., 128-cores in total). The RTL of this design has

been validated in silicon. The DRAM timing is modeled with the timing-accurate open-source DRAMSim3

simulator Li et al. [2020]. We model a single 1.0 GHz HBM2 channel with a bus width of 64 and a burst

length of 4, yielding a theoretical peak bandwidth of 16 GB/s. We model one HBM2 channel because, through

experimentation, we found that 128 cores is required to saturate a single channel’s bandwidth. Performance

counters are implemented with nonsynthesizable SystemVerilog bind statements. This allows us to conduct

performance analysis without introducing any overhead to the workloads or modifying the digital logic

design.

4.4.2 Runtimes

We conduct evaluation on both a traditional static runtime which supports only statically scheduled parallel

loops and the proposed work-stealing runtime. We implement two variants of the static runtime, one variant

has stacks allocated in DRAM and the other has stacks allocated in the SPM. We evaluate all four variants of

the work-stealing runtime as in Section 4.3.3.

4.4.3 Workloads

We use a group of nine workloads to evaluate our proposed parallel programming framework, and the

applications are summarized in Table 4.1. We select workloads with varied parallelization methods. MatMul,

SpMV, and SpMatrixTranspose are dense matrix multiplication, sparse matrix dense vector multiplication,

and sparse matrix transpose, respectively. All three workloads are implemented in-house and leverage a

single parallel loop. PageRank and BFS implement pull-based PageRank and pull/push hybrid breadth-first

search with the the Ligra graph processing framework Shun and Blelloch [2013]. Both mainly use a pair

of nested parallel loops: The outer loop iterates over vertices in the active vertex set while the inner loop

iterates over a particular vertex’s neighbors. Both MatrixTranspose and CilkSort mainly use recursive

spawn-and-sync parallelization (i.e, parallel_invoke ()). MatrixTranspose is dense matrix transpose and

76

Balanced

D
yn
am

ic

PageRank

UTS

SpMVMatMul

SpMatrixTranspose

NQueens
MatrixTranspose

BFS

CilkSort
St
at
ic

Unbalanced

Figure 4.7: Anatomy of Workloads – we categorize workloads into four categories based on if he workload
leverages dynamic parallelism and if the tasks have load imbalance

CilkSort performs parallel mergesort. Both do not have static baseline implementations as spawn-and-sync

parallelization starts with a single task. Without a dynamic runtime, their execution is serialized on a single

core. NQueens uses bactracking to solve the N-queens problem. It is parallelized over the potential positions

of the next queen to be placed on the board and contains recursive parallel loops. UTS is the Unbalanced

Tree Search benchmark introduced by Olivier et al. Olivier et al. [2006], which contains recursive parallel

loops to enumerate an unbalanced tree. Among these nine workloads, only MatMul, which allocates a

3 KB buffer, utilizes SPM in user code. We characterize these nine workloads into four categories (i.e.,

static-balanced, static-unbalanced, dynamic-balanced, and dynamic-unbalanced) by two metrics: (1) if the

workload leverages dynamic parallelism; and (2) if the tasks have load imbalance (see Figure 4.7).

4.5 Results

Table 4.1 summarizes the cycles and dynamic instruction counts of simulated configurations. Figure 4.8

shows speedup of workloads over a static runtime with stack in SPM. We plot MatrixTranspose and CilkSort

separately in Figure 4.9, as they do not have static baselines. Comparing the left-most two bars in Figure 4.8,

we can see that in the context of the static runtime, allocating the stack in SPM does not provide significant

improvement over allocating the stack in DRAM, except in the case of NQueens. Workloads other than

NQueens do not have frequent stack operations when running with the static runtime, and thus leaving the

77

MatMul-256

MatMul-512
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

Static scheduler, stack in DRAM
Static scheduler, stack in SPM
Work-stealing, both stack and task queue in DRAM

Work-stealing, stack in DRAM and task queue in SPM
Work-stealing, stack in SPM and task queue in DRAM
Work-stealing, both stack and task queue in SPM

PR-g14k16
PR-email

PR-c-58

BFS-g14k16

BFS-bundle1
BFS-c-58

NQ-8
NQ-9

NQ-10
0

1

2

3

4

SpMV-bundle1

SpMV-c-58

SpMV-email

SpMT-bundle1

SpMT-email

SpMT-c-58
0

1

2

3

4

UTS-t1
UTS-t3

0

5

10

15

20

25

30

Figure 4.8: Work-stealing runtime provides a speedup between 1.2 - 28× and a slowdown of no more than
10% – PR = PageRank, NQ = NQueens, SpMT = SpMatrixTranspose. Applying data-placement optimizations
to leverage the SPM provides an additional benefit of as much as 25% and compensates for any slowdown
observed from work-stealing overhead.

stack in DRAM does not incur significant overheads. NQueens has heavy reads and writes to the stack

as it frequently copies stack allocated arrays. Allocating the stack in DRAM leads to severe performance

degradation.

Comparing the static scheduler that places stack in SPM to our baseline work-stealing runtime that has

both the stack and the task queue in DRAM, we can observe that we either only incur minimal overheads

over a traditional static runtime (e.g., in the cases of MatMul-256 and NQueens-8) or achieve non-trivial

performance improvement (e.g., PR-email and UTS-t1 are able to achieve 3× and 25× better performance,

respectively). This demonstrates the benefit of running irregular workloads with a work-stealing runtime

on manycores. As expected, PageRank, SpMV, and SpMatrixTranspose show input dependent behavior and

achieve different speedups on different inputs (e.g., PageRank shows only moderate speedup on the synthetic

graph g14k16, but achieves 3× speedup on real-world graph email). MatMul with 512× 512 input matrices

shows an unexpected 25% performance improvement over the static baseline. This is because while there is

no inherent load imbalance in our tiled implementation, cores experience non-uniform memory latency due

to their locations in the 2-D mesh OCN. Dynamic load-balancing helps mitigate this difference by scheduling

more compute to cores with lower memory latency.

Different workloads show varied benefit from our optimization techniques that leverage the SPM space

not claimed by the programmer. PageRank is able to benefit from both optimizations and achieves best

78

0.6 0.8 1.0 1.2 1.4
Speedup

MatTrans
512

MatTrans
1024

CilkSort
16384

CilkSort
131072

Work-stealing, both stack and task queue in DRAM
Work-stealing, stack in DRAM and task queue in SPM
Work-stealing, stack in SPM and task queue in DRAM
Work-stealing, both stack and task queue in SPM

Figure 4.9: Performance of CilkSort and MatrixTranspose – normalized to having both stack and task queue
in SPM; MatTrans = MatrixTranspose. Note that the X-axis starts at 0.5.

performance when both the stack and the task queue are in SPM. BFS can only outperform the static baseline

with optimizations enabled, and SPM-allocated stack has a higher impact on BFS than SPM-allocated task

queue. NQueens utilizes the stack heavily and achieves the best performance when the SPM is reserved solely

for the stack. In this configuration, fewer stack frames are overflowed to DRAM. We also observe that as the

input size increases from 8 to 10, more moderate speedup is achieved by our work-stealing runtime compared

to the static baseline. This is because larger inputs incur deeper stacks and thus more stack frame overflows

to DRAM, NQueens becomes more DRAM bandwidth bound. MatrixTranspose and CilkSort are also able

to benefit from having the stack in SPM (see Figure 4.9). SpMV, SpMatrixTranspose, and UTS do not have

either frequent stack or frequent task queue operations. Moreover, both SpMV and SpMatrixTranspose are

already DRAM bandwidth bounded. Extra traffic to DRAM incurred by allocating both stack and task queue

in DRAM has only insignificant impact. As a result, our optimizations do not yield better performance on

these three workloads.

Across all workloads, we observe an increase in the number of dynamic instructions on work-stealing

runtimes vs. on static runtimes (see Table 4.1). This is expected as it is well-known that work-stealing

runtimes add overheads from various sources (e.g., task creation and scheduling), especially when working

with very fine-grained tasks. We also observe an increase in the number of dynamic instructions when the

79

24 8 16 32 64 128
Number of Active Cores

0

20

40

60

80

100

120
Sp

ee
du

p
O

ve
rO

ne
C

or
e

Ideal
NQueens
MatMul

CilkSort
PageRank
SpMV

BFS
MatrixTranspose
SpMatrixTranspose

Figure 4.10: Workload Scaling – inputs: MatMul = 256; PageRank = g14k16; MatrixTranspose = 512;
NQueens = 8; BFS = g18k8; CilkSort = 131072; SpMV = u16k32; SpMatrixTranspose = c-58. Data collected
on work-stealing runtime with both task and task queue in SPM.

SPM-allocated task queue optimization is enabled. This is because with reduced task queue access latency,

cores can perform stealing attempts faster and fail more when there is no task to steal. These instructions are

executed by idle cores that cannot find ready tasks and they are not part of the critical path.

We also conduct a scalability study with all workloads except UTS. We did not include UTS due to its

extensively long simulation time. Results are shown in Figure 4.10. NQueens scales the best since, with more

cores, more stack allocated data can be kept in SPM. CilkSort, as the name suggests, is an algorithm well

suited to a dynamic task parallel runtime and is also well balanced, minimizing the overhead from stealing.

MatMul is another balanced workload that scales well; it has high arithmetic intensity and loads from DRAM

infrequently. MatrixTranspose is memory intensive and its scalability is limited by memory bandwidth. BFS,

PageRank, SpMV, and SpMatrixTranspose are similarly bounded by memory, and in addition they can suffer

from severe imbalance. While our runtime is a major boon to these workloads (static scheduling fairs much

worse), task stealing becomes more frequent on unbalanced inputs as the core count increases.

80

To summarize, the proposed work-stealing runtime: (1) either improves performance of static-balanced

workloads by migrating tasks away from cores that have long memory latency or induces only minimal

overheads; (2) improves performance of irregular workloads which show input dependent behavior when

there is input induced load imbalance; (3) efficiently supports dynamic-balanced and dynamic-unbalanced

workloads to achieve high performance, and (4) provides high scalability. Our proposed optimization

techniques which automatically leverage SPM are able to improve performance of applications that have

frequent stack and/or frequent task queue operations (i.e., NQueens, MatrixTranspose, PageRank, and BFS)

and incur only minimal overheads on workloads that cannot benefit from them.

4.6 Related Work

Early manycore research prototypes integrated 16–110 cores on a single die Taylor et al. [2003]; McKeown

et al. [2017]; Howard et al. [2010]; Hoskote et al. [2007]; Lis et al. [2013]; Vivet et al. [2020]; Tan et al.

[2008]. The industry has adopted the manycore approach as well and products available typically include

64–256 cores Bell et al. [2008]; Ramey [2011]; Kanter [2015]; Wheeler [2020]; Halfhill [2020]; Wentzlaff

et al. [2007]; Li et al. [2018a]; Kalray. Recent research prototypes have scaled core counts by an order-

of-magnitude to over a thousand cores (e.g., 1000-core KiloCore Bohnenstiehl et al. [2017], 1024-core

Epiphany-V Olofsson [2016], and 4096-core Manticore Zaruba et al. [2021])

A number of prior works explored work-stealing runtimes on manycore architectures that provide

software-centric cache coherence. Long et al. Long et al. [2008] implemented a Cilk-like runtime on a

64-core manycore architecture with a shared L2 cache and non-coherent private L1 caches. They attacked

the shared data coherence issue by leveraging a bloom filter based hardware mechanism, Coherence Vector,

to identify memory locations that should not be cached in non-coherent private L1 caches. The proposed

runtime stores all runtime-related shared data (e.g., task queues) into the Coherence Vector. For user data with

parent-child dependency, they exploit the DAG-consistency Blumofe et al. [1996a] and insert L1 invalidate

and write-back instructions in the runtime. Similarly, Wang et al. Wang et al. [2020] worked on a similar

system (i.e., big.TINY) and also proposed inserting L1 cache invalidation and write-back instructions at proper

locations in their Cilk-like runtime. Unlike Long et al. who identified runtime shared data as non-cachable

locations, Wang et al. proposed to leverage the same self-invalidation and self-flush mechanism for keeping

81

runtime shared data coherent. For example, after locking a task queue, a core performs a L1 cache invalidation

to avoid reading stale data when accessing the task queue. To mitigate the frequent L1 cache invalidation and

write-back induced by task queue operations, Wang et al. proposed a hardware-based mechanism, direct task

stealing, which makes task queue a private data structure. Stealing is made possible by having the thief send

a user-level interrupt to the victim. The victim then pops a task from its task queue on behalf of the thief.

Tagliavini et al. Tagliavini et al. [2018] implemented an OpenMP runtime on a manycore architecture that

has non-coherent private L1 caches. Similar to both works mentioned above, the private L1 caches need to

be self-invalidated and self-flushed at proper time to maintain coherence. Unlike the two Cilk-like runtimes

that have per thread task queues, their proposal leverages a centralized task queue. All three works studied

manycore architectures with software-centric cache coherence, while our work targets architectures that

have only software-managed scratchpads. Orr et al. Orr et al. [2014] implemented a Cilk-like work-stealing

runtime on GPGPUs with software-centric caches.

Although not a manycore, the Cray T3D/E architectures cra [1993]; Anderson et al. [1997] bear

similarities to HammerBlade . Both are global shared memory architectures capable of parallel work-sharing

programming models. A notable difference is that the Cray machines’ notion of local memories pertains to

abundant-but-slow DRAM, as opposed to HammerBlade ’s local memories being fast-but-scarce SRAM.

Nonetheless, we believe that techniques from this work could be applied to these Cray machines.

Zakkak et al. Zakkak and Pratikakis [2016] proposed an implementation of the Java virtual machine on a

SPM manycore and adopted work-dealing instead of work-stealing. Our work, to the best of our knowledge,

describes the first implementation of a Cilk-like work-stealing runtime for manycore architectures with only

software-managed SPM. Alvarez et al. Alvarez et al. [2015] described a task-based parallel runtime which can

transparently use the SPM for holding input and output data in a hybrid memory hierarchy. Prior work also

studied work-stealing runtimes on PGAS or distributed memory clusters, including Dinan et al. [2009]; Pezzi

et al. [2007]; Saraswat et al. [2011]. Li et al. Li et al. [2010] studied efficient implementations of conditional

division on manycore architectures. Their work focused on improving the work scheduling efficiency on top

of an existing work-stealing runtime and is orthogonal to ours. Chen et al. Chen et al. [2018] and Margerm et

al. Margerm et al. [2018] explored generating task parallel accelerators with coherent caches. Our work can

be applied to support accelerators with SPMs.

82

4.7 Summary

We demonstrate that, in contrast to conventional wisdom, a work-stealing runtime is viable and beneficial on

manycore architectures with only software-managed scratchpad memories. This work provides programmers a

familiar programming model for efficient software development on manycore architectures like HammerBlade

, and achieves significant performance improvements over traditional programming models such as statically

scheduled parallel loops (i.e., up to 3.94× speedup for workloads that can be statically scheduled and

up to 28.5× speedup for workloads with dynamic parallelism). This work is a small yet important step

towards solving the manycore architecture programmability challenge. While we evaluated our work-stealing

runtime on HammerBlade, our techniques are applicable to other PGAS manycore architectures that have

software-managed scratchpads memories.

83

Chapter 5

Work-Stealing on One Thousand Cores

In the last chapter, I demonstrated that a dynamic task-parallel software runtime with a work-stealing scheduler

is feasible on HammerBlade. I also showed that, on the selection of applications I examined, the runtime

provides good performance scaling. However, this runtime was only evaluated on a single HammerBlade pod

consisting of 128 cores. HammerBlade, however, is specialized to be a massively scalable fabric; a 128-core

pod is just a fraction of a real-world HammerBlade system.

Fortunately, a new avenue for evaluation has become available. Our research group taped-out a 2048-core

HammerBlade chip, named BigBlade, in 2021. That processor now, in 2025, is in our lab at the University

of Washington and ready to run HammerBlade software. BigBlade presents an opportunity to evaluate how

scalable and practical the runtime work is at system-scale.

In this chapter, as my final thesis work, I extend my research on the dynamic task-parallel system to run

on real HammerBlade hardware, and on a full HammerBlade system. This is a progression from the 128-core

system on which I evaluated my runtime work previously.

Scaling any system up by a factor of eight requires engineers to rethink how they have implemented

their design. For example, HammerBlade is a non-uniform memory access (NUMA) architecture and spatial

locality can significantly impact performance. A major downside to using a work-stealing scheduler, such as

the one implemented in Chapter 4, is it renders exploitation of this locality significantly more challenging.

Preserving the programmer’s ability to leverage locality while maintaining the strengths of work-stealing is

critical to successfully scaling up the runtime.

85

HammerBlade’s native address space posed another challenge. It is a 32-bit architecture, with an address

space too small to hold large data sets. Enabling a larger address space, without sacrificing the area savings

from a 32-bit architecture, required creative hardware solutions with a non-standard hardware-software

interface. Improper use of this interface can result in strange bugs that are very difficult to track down. The

challenge posed by extending the address space required thoughtful and careful software engineer to solve.

Conducting research on real silicon presents new difficulties as well. Profiling and debugging on BigBlade

are different beasts from doing so in simulation. While simulation has its challenges, namely the prohibitive

wall-clock time, it can also have its benefits. In simulation, profiling counters and detailed instruction traces

are available. Over the years, the HammerBlade team has built tools and infrastructure to give us insight

into how our parallel programs behave. This can be as detailed as cycle breakdowns by program counter,

or how many requests each of the cache banks receive. We are even able to see breakdowns on stall causes,

such as how many cycles were spent waiting on long latency loads to complete as opposed to waiting for

network availability. None of this infrastructure is available on the real hardware. I must therefore rely on

micro-benchmarking, experimentation, and simulation of a smaller system to profile and debug software.

Another challenge is that my previous research relied on "soft" hardware design, meaning that, because I

was working in simulation, I was free to change the hardware as needed. This enabled me to fix bugs and add

features. For example, HammerBlade’s RTL had a bug when reading or writing tile-group addresses that

happened to point to the local core’s scratchpad. The LSU did not decode this address and determine that

it was local. Rather, it forwarded this to the tile’s network router and the request eventually routed back to

the scratchpad. While this did not cause a correctness issue, it was a performance problem, especially when

setting the stack pointer to a tile-group address as we did (see Chapter 3 for details on this type of addressing).

We were free to fix this issue, but this occurred well after the BigBlade chip was taped-out and sent to the

foundry for fabrication.

Along the same lines, we were able to use stack space liberally thanks to a change we made to the RTL to

decode addresses overflowing the scratchpads to point to DRAM. This enabled us to write our runtime in

a manner that did not need to pay too much attention to scratchpad use. On BigBlade, however, I cannot

use hardware hacks to surmount such issues. Rather, I need to seek out solutions in the software itself, often

times imperfect ones.

86

A final challenge is that the scale of BigBlade is not its only difference from HammerBlade in simulation.

The memory system is fundamentally different. The latency and bandwidth are significantly more challenging

than the system I modeled previously. This significantly impacts performance and dramatically alters the

trade-offs for using off-chip memory.

In this Chapter, I propose and implement software solutions to address the challenges described above. I

demonstrate how the unrestricted work-stealing scheduler in the previous chapter provides poor performance

on the larger HammerBlade system, and I propose a restricted work-stealing scheduler to replace it. I

also detail a library-based solution to the extended address space of a multi-pod HammerBlade system.

Furthermore, some of the lessons learned from my single-pod research are taken to adapt to larger systems to

improve reliability.

5.1 Bigblade’s Memory System

BigBlade’s memory system is important context for understanding the design decisions I make in this chapter.

It is also crucial to interpreting the results I present in Section 5.4.

BigBlade’s memory system has some stark differences from what we on the HammerBlade team often

model in simulation. There are good reasons for this. When we work in simulation for research purposes,

we have the luxury of imagining that we have financial and manufacturing resources that, in the real world,

we do not. Additionally, in simulation, we can reconfigure the design to optimize for a specific purpose or

application. In silicon, we are committed to optimizing for the one purpose we chose during tape-out.

HammerBlade was designed to be a high-throughput fabric with the intention that it be equipped with

a state-of-the-art high-bandwidth memory system. This would make HammerBlade’s memory system

competitive with similar systems and architectures built for a like purpose. Our simulation models assumed

that HammerBlade’s main memory system would be at least as state-of-the-art as HBM2 with a direct

connection between the on-chip cache hierarchy and the memory substrate. This made sense for comparing

HammerBlade to similar architectures. If we were trying to evaluate HammerBlade as a compute fabric, why

would we constrain it to a slower memory system than its viable alternatives? However, direct integration

with HBM is no small thing financially or logistically. Large semiconductor companies like NVIDIA or

AMD have the financial resources and market scale to partner with Samsung, SKHynix, or Micron on direct

87

Parameter BigBlade Simulation Simulation : BigBlade
Miss Latency 430 ns 55 ns 8
Revised Miss Latency 366 ns 55 ns 6.5
Bandwidth Per Pod 550 MB/s 14.5 GB/s 1/26

Revised Bandwidth Per Pod 2.5 GB/s 14.5 GB/s 1/6

Line size 32 bytes 64 bytes 2
Associativity 4 ways 8 ways 2
Pod cache size 256 KB 2 MB 8
Total cache size 2 MB Pods × 2 MB Pods ×8

Table 5.1: BigBlade and Simulation Cache Configuration Parameters

integration with their chips. A small research group such as ours does not.

HammerBlade is a fabric designed for massively parallel software substrates. But that can mean almost

anything in 2025. Although the architecture is general purpose, individual instances of it must be specialized.

Do we want to accelerate memory intensive applications? What about applications with challenging spatial

locality, such as sparse linear algebra kernels? If so, spending more area on a robust cache hierarchy would

be to its advantage. Or, perhaps, we mean to accelerate workloads that are heavily floating point intensive, in

which case it behooves us to fit as many fast FPUs on the chip as possible. This last case is the one for which

the BigBlade instance of HammerBlade is most closely optimized.

As a result the cache hierarchy is slimmed down to accommodate more area for compute. Table 5.1

shows the cache parameters of BigBlade relative to the system modeled in Chapter 4. The total cache size per

pod has 8× less capacity. The associativity is 4-way down from 8-way, increasing the likelihood of misses

due to conflicts. Furthermore, the cache line itself is half the size. Since BigBlade’s caches are blocking and

have no prefetcher, this would double the latency incurred per byte fetched from memory, assuming that the

latency of a memory fetch on BigBlade matches that in simulation.

This assumption does not hold true, however. BigBlade is mounted on a PCB that routes off-chip memory

traffic to HBM by way of an FPGA (the model is a Xilinx Virtex Ultrascale+ VU47P). Moreover, the

interconnect between BigBlade’s caches differs from simulation in that 4 pods will share a request pipeline

to the off-chip IO, which is then routed through a cross-bar on the FPGA. In simulation, by contrast, each

pod has a dedicated and direct pipeline to a single HBM channel that it owns. This results in dramatic

discrepancies in memory bandwidth and latency between BigBlade and the system we typically model.

One major performance difference is the latency of a cache miss. I use a microbenchmark called stride,

88

1 struct node {
2 node *next;
3 };
4
5 static int kernel_dram()
6 {
7 node *p = &dram_node[0];
8 int i = N;
9 for (; i != 0;) {

10 p = p->next;
11 asm volatile ("addi %0, %1, -1"
12 : "=r"(i)
13 : "r"(i)
14 : "memory");
15 }
16 result_node = p;
17 return 0;
18 }

1 DRAM(int) *A; // set by host
2 int fetch()
3 {
4 int *p = &A[(__bsg_x + bsg_tiles_X*(__bsg_y == bsg_tiles_Y

-1)) * CACHE_LINE];
5 bsg_barrier_tile_group_sync();
6 // only the north and south rows participate
7 if (__bsg_y == 0 || __bsg_y == bsg_tiles_Y-1) {
8 // parameter N is total lines to fetch
9 for (int i = 0; i < N/(bsg_tiles_X*2); i++) {

10 asm volatile ("lw x0, %0"
11 :: "m"(*p) : "memory");
12 p += bsg_tiles_X * 2 * CACHE_LINE;
13 }
14 }
15 bsg_barrier_tile_group_sync();
16 return 0;
17 }

Figure 5.1: Shown at left is the stride benchmark used to measure memory latency. A single core executes
a tight pointer-chasing loop. Each iteration of the loop has a read dependency on the previous one. On
BigBlade, I run this benchmark many times and alter the source core and number of loop iterations. At right
is the fetch benchmark used to measure achievable memory bandwidth. This benchmark uses a single core
per bank in the cache array. A single word per cache line is fetched. This keeps the pod’s cache array busy
servicing misses at a near constant rate.

shown at left in Figure 5.1, to measure this latency consisting of a single core performing loads at a stride

equal to a cache line. Every load will result in a compulsory cache miss. stride uses dependent loads to

prevent any latency hiding from HammerBlade’s non-blocking memory operations. Figure 5.2 shows a plot

of the total runtime as I scale up the number of loads. I use a linear regression to estimate the latency of each

load, shown as the slope, and the constant initialization overhead. Note that I repeat the experiment for a

random selection of cores and take a mean. The result of this experiment shows that the expected latency of a

cache miss on BigBlade is 430 nanoseconds1. In contrast, running this experiment on our simulated models

shows a 55 nanoseconds latency, which is nearly an 8× difference.

A second big difference is the memory bandwidth. Our simulated models assign each pod ownership of

an HBM2 memory channel clocked at 1 GHz. Each of these channels has a peak memory bandwidth of 16

GB/s. I use another microbenchmark called fetch, shown at right in Figure 5.1, to measure how much of

this bandwidth a HammerBlade pod can saturate. In fetch, the cores issue a single load to each cache line

in a large vector. This is the minimum number of loads to prompt the cache memory system to fetch the

entire vector from DRAM. Running this experiment in our simulation model, a pod’s cache array saturates

the memory system, achieving a rate of 14.5 GB/s which is 90% of a channel’s line rate. Running the same

1This latency is revised to 366 nanoseconds after memory system improvements

89

Figure 5.2: Results from a microbenchmark on BigBlade designed to measure memory latency. Each load
results in a compulsory cache miss. I run the benchmark with a single core, varying the number of memory
fetches and the source core. I then take a linear fit to account for initialization time. The slope of about 430
ns estimates the average latency of a cache miss.

benchmark on a BigBlade pod, I saw an effective bandwidth of 550 MB/s2, which is roughly a 26× reduction.

Revision: When I originally collected the data presented in this chapter, BigBlade’s memory system

contained bugs that were resolvable in the field. They have since been addressed. Table 5.1 shows revised

bandwidth and cache-miss latency numbers with the improved memory system. All data presented in this

chapter was collected before these issues were resolved.

5.2 Addressing the Extended Address Space

HammerBlade is a 32-bit system for a reason. Area is a constraint for a scalable fabric, especially when the

aim is to maximize compute density and energy efficiency. BigBlade fits more than two thousand independent

cores on a 99 mm2 chip. That density would be much harder to achieve if they all required 64-bit register files

and integer multipliers. BigBlade adopts a solution to this problem used by previously proposed manycore

systems Karaoui et al. [2016] in which the physical address space is replicated across pods. In this way, each

pod "owns" a 32-bit space and thus can operate within that space efficiently. This works well when we run

2This bandwidth is revised to 2.5 GB/s after memory system improvements

90

the same kernel on distinct data sets or use each pod to run distinct kernels that do not need to share any data

at all.

Suppose, however, that we want to use the entire BigBlade chip to run a graphical analysis on a large

network. Maybe that network does not fit in the 32-bit address space of a single pod. BigBlade’s answer to

this problem is an address translation control register that software can read and write at its discretion. This

control register, implemented as a RISC-V control status register (CSR), serves as a 4-bit extension to the

address space indicating the pod whose address space should be targeted by memory operations. When the

core dispatches a memory operation to a remote endpoint, not to its own local memory, the 4-bit register is

checked and the pod coordinates that it encodes are used to format the network packet. This 4-bit extended

address control register provides a hardware mechanism to access the entire address space provided by

BigBlade. This enables us to write parallel software on BigBlade to target one large data set that cores can

access dynamically based on runtime dependencies.

There remains challenges for software to address to effectively use the extended address space. The

control register is effectively a global control on where memory operations target. This introduces complexity

when trying to use this register. Reliable software design favors orthogonality, meaning that side-effects

from function calls or object construction are eliminated or restricted to the scope of those operators. Global

control variables are antithetical to maintaining orthogonality in software because they introduce, almost by

definition, a side-effect. For example, the physical memory location that a native 32-bit address references

changes when the control register is set. This can have a major impact on software reliability in higher-level

programming languages since not all memory accesses are explicit. One such common example of implicit

memory accesses are stack spills and callee-saves. Another common example in object-oriented languages

such as C++ is accessing class data members.

As part of my effort to extend the task-parallel runtime to run on the full BigBlade chip, I chose a library

approach to provide reliable and effective support for software use of the extended address space register. The

first two primitives I introduced are the pod_address and the pod_address_guard , shown in Figure 5.3. The

pod_address is a wrapper around a 4-bit integer that is initialized by reading the vanilla core’s CSR. It has

x and y bitfields to identify the physical pod address on HammerBlade’s network. The pod_address_guard

class assists software by providing an API for creating a live-range in which a particular pod address is active.

91

1 class pod_address
2 {
3 public:
4 // constructors, constants, etc.
5 static pod_address readPodAddrCSR() {
6 unsigned raw;
7 asm volatile
8 ("csrr %0, 0x360"
9 : "=r"(raw)

10 :: "memory");
11 return pod_address{raw};
12 }
13 static void writePodAddrCSR
14 (pod_address addr) {
15 unsigned raw = addr.raw;
16 asm volatile
17 ("csrw 0x360, %0"
18 :: "r"(raw) : "memory");
19 return;
20 }
21 union {
22 unsigned short raw_;
23 struct {
24 unsigned short px_ : pod_x_width;
25 unsigned short py_ : pod_y_width;
26 };
27 };
28 };

1 class pod_address_guard
2 {
3 public:
4 // save the old pod address
5 //set the new pod address
6 pod_address_guard(pod_address set) {
7 set_pod_addr(set);
8 }
9 // restore the old pod address

10 ~pod_address_guard() {
11 set_pod_addr(save_);
12 }
13 // gets the pod address in the CSR
14 pod_address get_pod_addr() {
15 return pod_address::readPodAddrCSR();
16 }
17 // sets the pod address in the CSR
18 void set_pod_addr(pod_address addr) {
19 return pod_address::writePodAddrCSR(addr);
20 }
21 pod_address save_;
22 };

Figure 5.3: C++ classes to encapsulate the pod address and the scoping of the address.

The live-range is active as long as the guard object remains in scope. This helps restrict the side-effects of

setting the global extended address space register by leaving it to the compiler to resolve automatic cleanup

code in functions with complex control flow or multiple exit points.

pod_address and pod_address_guard are sufficient for many applications to use BigBlade’s full address

space. If the application has statically allocated data, or data that is allocated at the same 32-bit address on

every pod, then these two software constructs are all that is needed. However, some applications are not able

to determine the 32-bit address of the data needed at compile-time. These workloads need a fat-pointer, or an

abstraction that encapsulates the full 36 bits of an address and facilitates memory operations to it.

My implementation of this fat-pointer is shown in Figure 5.4. The address class contains the 32-bit native

pointer and the 4-bit extended address as data members. It provides the read and write member functions

which use pod_address_guard and pod_address to set the control register and redirect the loads and stores to

an absolute 36-bit address. The reference class provides a syntactic overlay to address by overloading the

assignment and cast operators to invoke write and read respectively. reference is meant to mirror the syntax

of a native C++ reference, or lvalue , object. A class with the syntax of a C++ pointer is easily derived from

reference . The de-reference operator returns a copy of the reference and the arrow operator returns a pointer

it.

92

1 class address
2 {
3 public:
4 // updates the value pointed to
5 template <typename T>
6 void write(const T& other) {
7 register T wv = other;
8 register T* ptr = (T*)raw;
9 {

10 pod_address_guard grd(ext.pod_addr);
11 *ptr = wv;
12 }
13 }
14 // reads the value pointed to
15 template <typename T>
16 T read() const {
17 register T rv;
18 register T* ptr = (T*)raw;
19 {
20 pod_address_guard grd(ext.pod_addr);
21 rv = *ptr;
22 }
23 return rv;
24 }
25 address_ext ext; //!< pod address etc.
26 uintptr raw; //!< the raw pointer
27 };

1 template <typename T>
2 class reference
3 {
4 public:
5 // copy assignment (read => write)
6 reference& operator=(const reference& other) {
7 *this = (T)other;
8 return *this;
9 }

10 // assignment
11 reference& operator=(const T& other) {
12 write(other);
13 return *this;
14 }
15 // cast
16 operator T() const {
17 return read();
18 }
19 void write(const T& other) {
20 addr.write(other);
21 }
22 T read() const {
23 return addr.read<T>();
24 }
25 address addr; //!< the address information
26 };

1 template <typename T>
2 class pointer
3 {
4 public:
5 // dereference operator
6 reference<T> operator*() {
7 return ref_;
8 }
9 // arrow operator

10 reference<T>* operator->() {
11 return &ref_;
12 }
13 // indexing operator
14 template <typename I>
15 reference<T> operator[](I i) {
16 return reference<T>
17 (ref_.addr() + (i * sizeof(T)));
18 }
19 reference<T> ref;
20 };

Figure 5.4: The primitives to encapsulate a fat-
pointer interface in C++. The address class imple-
ments read and write explicitly. reference provides
a syntactic layer mirroring C++ reference objects. A
pointer class is trivially derived from reference and
overloads the dereferencing operators.

5.2.1 Discussion

Was a library approach the best solution to the extended address space problem? This is sufficient for

prototyping a research project because it provides reliability and ease of programming. However, like any

library approach, it is language-specific. My primitives rely on overloading C++ operators allowed by the

language specification. Furthermore, from a performance perspective, it certainly has detractors. A compiler

or language approach, which would be the most viable alternative, would enable optimizations such as

removing redundant accesses of the control register or auspicious reordering of memory operations to 36-bit

addresses. Because my approach relies on inserting inline assembly, around which the compiler must not

reorder memory operations, no such reordering is possible. Furthermore, the compiler has no understanding

of the control register’s semantics and thus redundant accesses to it cannot be eliminated. I leave the merits

of compiler support for this control register to future work.

93

It is also reasonable to wonder if the control register was the right hardware approach to extend the

address space. Certainly, from a software perspective, 64-bit pointer support would have made using the

extended address space simpler. Hardly any work at all would have been needed to port existing applications

and libraries. But, as touched on earlier, this would doubtlessly have come at a high area cost and resulted in

fewer cores.

Implicit memory operations, a feature of most high-level programming languages, is another challenge of

the control register approach. On BigBlade, local scratchpad memory addresses are not impacted by this

register. This turns out to be critical to making this approach practical for languages like C that rely on a

memory stack. Without there being at least one constant address space in which stack memory can be placed,

regions in which the control register’s contents are modified would likely need to be written in assembly

to ensure safe execution. On the other hand, it is certainly limiting that we are restricted to placing stack

memory in precious scratchpad; Not all applications would prefer this.

Overhead from setting and restoring the control register’s contents is another issue. On a system like

BigBlade, the extraordinarily high memory latency dwarfs the several cycles of overhead from manipulating

this register. If this were not the case, however, that latency would doubtlessly be a nuisance.

A more salient overhead on BigBlade is instruction memory footprint. BigBlade’s instruction cache has

capacity for only one thousand instructions and it is direct-mapped. There is thus a strong incentive to keep

instruction footprint low. Excessive manipulations of the control register are a permanent instruction footprint

overhead on the program. This is certainly a hazard of this approach for BigBlade software.

5.3 Runtime Library Design and Extensions

I carried over many of the design principles from previous work to BigBlade. Nonetheless, due to factors

related to scaling, back-porting, and the extended address space there was a need to adapt certain elements of

the library. I discuss these adaptations and extensions in this section.

5.3.1 Inclusive Linked List for the Task Queue vs a Ring Buffer

My previous work used a ring buffer instead of linked list structures to queue program tasks. Extending this

project to run on BigBlade motivated me to explore more scalable solutions. The ring buffer has performance

94

1 class delegate_queue
2 {
3 public:
4 // push task to target core’s delegates
5 void delegater_push(task * t) {
6 task_list().push_back(&t->queued_);
7 }
8 // pop from my core’s delegates
9 task *owner_pop() {

10 if (task_list().empty()) {
11 return nullptr;
12 }
13 list_item*l = task_list().pop_front();
14 return container_of(l, task, queued_);
15 }
16
17 bool empty() const {
18 return task_list().empty();
19 }
20
21 list task_list;
22 };

1 template <>
2 class reference<lockable<delegate_queue>>
3 {
4 void delegater_push(const pointer<task> &tp)
5 {
6 // cast this reference to 32-bit pointer
7 auto *queue = to_local();
8 task *ntv_ptr = tp.to_local();
9 if (tp.pod_x() == pod_x()

10 && tp.pod_y() == pod_y()) {
11 {
12 pod_address_guard gd(pod_addr());
13 queue->delegater_push(ntv_ptr);
14 }
15 } else {
16 register size_t size = tp->size();
17 register task* dst_task;
18 {
19 pod_address_guard gd(pod_addr());
20 dst_task = (task*)allocate(size);
21 copy(dst_task, tp, size);
22 queue->delegater_push(dst_task);
23 }
24 delete ntv_ptr;
25 }
26 }
27 };

1 void schedule()
2 {
3 task *t = nullptr;
4 // 1. check delegates
5 t = my_delegates_ptr->owner_pop();
6 if (t) {
7 t->execute();
8 delete t;
9 return;

10 }
11 // 2. check local tasks
12 t = my_tasks_ptr->owner_pop();
13 if (t) {
14 t->execute();
15 return;
16 }
17 // 3. steal work
18 int victim_id = fast_random() % num_tiles();
19 if (victim_id == my::tile_id())
20 return;
21
22 auto victim_tasks = tasks_of(victim_id);
23 auto stolen = victim_tasks->thief_pop();
24 if (!is_null(stolen)) {
25 execute_task(victim_id, stolen);
26 }
27 }

Figure 5.5: Delegate operations are instances
of task but they are dealt from one core to an-
other. Note that unlike the default task queue, the
delegate_queue is FIFO. When using a special-
ization reference for a delegate_queue , if pushing
work onto a remote pod, a clone local to the target
pod is made and the pusher cleanups the original
copy. Cores prioritize delegates as shown in the
updated schedule function.

advantages over a linked-list since it has minimal data-dependent loads and it has spatial locality when adding

and removing items to the queue. However, ring-buffers have a fixed capacity which limits the number of

tasks that can be spawned. This problem becomes more critical as the system and the inputs increase in size.

This was not an issue in the previous work since it focused on a system with only 128 cores and the inputs

were small relative to the ones I explore here.

Linked-lists have few space limitations. It is relatively cheap to place the head node of a linked-list in local

memory since it is only a two pointer structure, and the tasks themselves can live in DRAM. Furthermore,

pushing new work in LIFO order onto a linked-list should in theory work well with BigBlade’s caches which

have an LRU ejection policy. Since work is often pushed onto the queue in bursts, the list implementation of

the queues should benefit from temporal locality. In order to avoid excessive dependent loads and suffering

95

extra latency penalties, the list itself is intrusive, meaning that the list nodes are embedded into the task

structures.

5.3.2 Spawning and Stealing Work

Spawning and stealing functions similarly to how it does in my previous work. First, tasks are allocated and

initialized. Next, the spawner appends the task to the back of its work queue. The spawning will pop from

the front of its task queue in LIFO order. Thieves steal from the back of the queue in FIFO order. There are

two differences in the implementation details from the previous work. First, I implement the task queues as

lists instead of as circular buffers, as described above. Second, the tasks are allocated in DRAM by default.

Why allocate the tasks in DRAM? In Section 5.1 I showed that BigBlade’s memory system poses

significant challenges to off-chip memory performance. Given that, a reasonable engineer would think that

storing the tasks in local scratchpad would be as beneficial as ever.

Practical limitations of the silicon-committed hardware prevents me from doing so. The previous work

was conducted in simulation. This had its own challenges related to scale and simulation times, but a major

benefit was that the hardware design was malleable. We took advantage of this fact to make the address

space for scratchpad memory overflow to DRAM. This enabled placement of the stack in scratchpad without

concern for the system crashing from overflowing the scratchpad memory. BigBlade lacks those hardware

design changes.

In the previous work, we discussed a possible compiler change that could address this issue and make

it feasible to implement the DRAM overflow mechanism in software. This would help with reliability.

Nonetheless, we would still end up allocating application data in DRAM since it would not actually prevent

scratchpad overflow.

I do believe there are opportunities in the compiler to improve performance and reliability for this runtime

library on HammerBlade. However, time constraints force me to leave that research for future work.

5.3.3 Delegation

Work-stealing is known to be effective on multi-core machines especially with conventional memory systems.

It is an open question how effective it is on NUMA architectures, particularly if processing elements can steal

96

work from across NUMA domains. An example of this on HammerBlade would be a core stealing a task

from a victim on a different pod.

One can certainly imagine why this type of scheduling might not be ideal for BigBlade. Locality is often

critical to efficiency on any system, but it is particularly impactful on an architecture with no private caching

and only a very large scalar network for data movement. Although work-stealing is effective in placing the

overhead of scheduling work on idle cores, it can also come at a sacrifice to coveted locality.

Previous work has recognized this problem and, in-fact, frequently taken it as a given that an unrestricted

work-stealing scheduler would not be ideal Guo et al. [2010]; Acar et al. [2000]; Torng et al. [2016]; Shiina and

Taura [2019]; Farooqui et al. [2016]. One solution is to accept an element of SPMD-ness to the programming

model. This is often done in distributed systems. A second solution is active-messaging or delegation in

which a processor can forward requests to a remote core to execute code on its behalf Nelson et al. [2015].

A third solution, particularly on single-node systems, is to allow work-stealing universally but to form a

hierarchy in which stealing from other works tied to the same socket is prioritized.

I extended the task-parallel library by adding delegates as a feature. Figure 5.5 shows the implementation

of the delegate_queue class, of which each core maintains one on its local scratchpad. Delegate operations

are instances of task and are dealt from one core to another. Unlike the default task queue, delegate queues

are FIFO. I also show a specialization of a reference for a delegate_queue. When pushing work onto a remote

pod, a clone local to the target pod is made and the pusher deallocates the original. When a core is looking

for work to schedule, it prioritizes checking its own delegate_queue for work before checking its default

work queue.

It is reasonable to wonder why delegation would be a preferred solution to accepting a degree of SPMD-

ness to the programming model. In Chapter 3, I give some perspective on the inherit benefits of SPMD.

SPMD assumes parallelism and leaves it to the programmer to define the critical sections that must be

serialized. The model explored by this runtime, by contrast, assumes that the program is serial unless the

programmer specifies that it can be run in parallel. This gives the SPMD model an inherent advantage towards

reducing overhead, since synchronization is assumed to be unnecessary by default, but disadvantages in terms

of usability. I describe the limitations of SPMD and its less desirable programmability aspects in Chapter 4.

A goal of this research is to investigate improvements to the programming model as it relates to how easily a

97

human can write a parallel program for HammerBlade. For this reason, I chose to explore a solution that did

not require SPMD programming but rather maintained the task-parallel model in full.

5.3.4 Locking

HammerBlade’s atomic memory instructions enable locking primitives. Specifically, the amoswap family

of instructions makes it possible to implement spin-locks. The semantics of amoswap is a memory address

is read and written atomically and the old value is returned and written back to a destination register.

Additionally, the amoswap instruction comes with two flags aq and rl that control the memory consistency

semantics. These flags are used to enforce memory ordering surrounding the acquisition and release of the

lock.

On HammerBlade, there is an important semantic difference between invoking amoswap on a location in

off-chip memory as opposed to one mapping to scratchpad memories. Invoking amoswap on a location in

off-chip memory is unrestricted and any value can read or written using this instruction. The semantics of

amoswap on scratchpad memory, however, is non-standard. In order to conserve area and mitigate occupancy

hazards on the HammerBlade tiles, amoswap operations targeting scratchpad are remapped to a single one-bit

register per tile. This is sufficient to implement correct spin-lock semantics for a lock whose value is either

zero or one. It is limiting, however, in that all data structures using scratchpad memories to hold a lock share

this register. Notably, this is relevant to this project in that each tile maintains two queues that require mutual

exclusion support: one for spawned tasks and one for delegates from other cores.

Endpoint bottlenecks are a major concern on BigBlade. With more than a thousand cores in the system, if

any one lock becomes a hotspot the impact on performance is widespread. Traffic trying to access a single

endpoint will need to spill back into the network and this can have a cascading effect as a traffic jam extends

along the network, delaying even memory traffic routed to a different endpoint by router and FIFO occupancy.

To mitigate the impact of hotspots and excessive locking traffic, I attempt two optimizations. First, I

add exponential backoff to all spin-locks, a strategy known to significantly reduce memory traffic around

spin-locks. Exponential backoff is especially potent when many cores are trying to acquire the same lock.

This can certainly be the case in this system since fetching tasks from memory can result in a long latency

cache miss. The second optimization is to provide a try_lock routine in which a core only attempts to acquire

98

a lock and stops trying if it fails to do so. This is a valid operation for cores that are idle and seeking work to

steal from others. There is no correctness requirement or performance guarantee that this specific thief must

steal from that specific victim. Furthermore, if a thief fails to acquire a lock it means either that the victim is

working on its own critical path, in which case it should have priority, or some other thief is in the process of

stealing whatever work there is. 3

5.3.5 Removing Tail Recursion from Parallel Foreach

The method for implementing parallel_for in my previous work leveraged recursive task spawning to create

a tree of sub-tasks. The motivation for doing this is to make the tasks that spawn more work stealable by idle

cores. This strategy remains sensible on BigBlade, especially given that the time to spawn a task has only

increased with a slower memory system. On the other hand, using recursion directly has major downsides

that were surmountable when prototyping in simulation, but are rendered untenable once developing for hard

silicon.

The salient problem is stack space utilization. My previous work showed that using the scratchpad for

stack space had a sizable positive impact on performance. Although we did not show an energy impact, it is

easy to imagine the high cost if we placed the stack in off-chip memory for all cores. However, scratchpad is

an extremely scarce resource, and thus a stack placed in it easily overflows.

Some of the unnecessary recursion in parallel_for used in the previous work can be refactored into a

loop instead. The number of sub-tasks that the current call to parallel_for needs to spawn directly is easily

computable. It is the log of the number of "leaf" tasks. This avoids stack overheads associated with function

calls such as spilling callee-saves. Furthermore, software can coalesce the allocation of multiple task’s data

into one buffer, the pointer to which needs only one register to be saved by the caller. This further reduces

register allocation pressure and stack footprint.

3During my thesis proposal a committee member asked me if HammerBlade’s memory consistency semantics ever impacted
software. In fact, I encountered an interesting need for using release semantics, i.e. amoswap.rl while implementing tile lock
software for task queues. We call HammerBlade "endpoint consistent" meaning that point-to-point memory traffic completes in
sequentially consistent order. Thus, although HammerBlade nominally has a relaxed consistency model, many of its memory
operations complete as if it were a sequentially consistent machine. However, the locks are not always co-located with the data they
are guarding. Thus, it is possible to issue the memory operations on data and release the lock, but have the lock release before the
data modifications have been committed.

99

1 // elements are distributed across pods
2 // alternating every STRIDE elements
3 vector<partial_table, STRIDE> C_product;
4 csr<float, int, ROWW_MAJOR> A;
5 csr<float, int, ROWW_MAJOR> B;
6 // calls the body over all elements in parallel
7 C_product.foreach([](int i, partial_table & result) {
8 partial_table accum;
9 // native pointers to A[i;*]

10 auto [A_idx_start, A_idx_end, A_val_start, A_val_end] = A.row_lcl(i);
11 value_type *A_val_p = A_val_start;
12 for (index_type *A_idx_p = A_idx_start;
13 A_idx_p != A_idx_end;
14 A_idx_p++, A_val_p++) {
15 index_type A_idx = *A_idx_p;
16 value_type A_val = *A_val_p;
17 // fat pointers to B[A_idx;*]
18 auto [B_idx_start, B_idx_end, B_val_start, B_val_end] = B.row(A_idx);
19 auto B_val_p = B_val_start;
20 for (auto B_idx_p = B_idx_start;
21 B_idx_p != B_idx_end;
22 B_idx_p++, B_val_p++) {
23 index_type B_idx = *B_idx_p;
24 value_type B_val = *B_val_p;
25 value_type C_val = A_val * B_val;
26 auto C_entry = accum.find(B_idx);
27 if (C_entry == nullptr) {
28 accum.insert(B_idx, C_val);
29 } else {
30 value_type C_val = C_entry->val;
31 C_entry->val = fma(A_val, B_val, C_val);
32 }
33 }
34 }
35 // write back
36 result = accum;
37 });

Figure 5.6: Implementation of
SpGEMM using both the vector and
csr primitives. vector distributes ele-
ments across pods, pod indexes using
the STRIDE parameter. It provides
a foreach method that iterates over
all elements in parallel and provides
a native reference to the application-
provided closure. csr distributes the
row offsets and non-zeros across pods
similarly. It provides iterator methods
mapping to native and pointer primi-
tives to row data.

5.3.6 Vector and Sparse Matrix Abstractions

There were two key challenges porting the six applications, discussed in 5.4, to the runtime library targeting

BigBlade. First, these applications needed to be re-written from their SPMD style of parallelism to use the

task-parallel library. Second, they needed to be adapted to distribute data across the address spaces of all

participating pods. This last challenge was novel with respect to HammerBlade since, to my knowledge, this

was the first time anyone had written a parallel program to execute with more than one pod.

Auspiciously, the data distribution challenge can be reduced to implementing a common data structure.

To do this, I implemented a vector primitive that is responsible for (i) distributing the data across the address

spaces of BigBlade’s pods, (ii) providing an random-access interface for its elements, and (iii) providing a

foreach method that maps a loop body to a parallel execution schedule. This schedule can use the delegate

operations to place the loop body iterations on pods where the data that will be accessed resides. This

common design pattern was sufficient to port most of the SPMD applications.

The exception was sparse matrix multiplication. Although the vector abstraction was helpful to port

SpGEMM, some additional abstractions proved necessary. Leveraging vector , I also implemented a

distributed compressed sparse row (CSR) sparse matrix format. The key features provided by this class are

100

initialization, data layout, and accessor methods for iterating over row data that may be local or remote to

the executing core. Figure 5.6 shows in part the implementation of SpGEMM using vector and csr . Line 7

shows the invocation of the foreach() member that executes the loop body, provided as a closure argument,

in parallel across all pods. Line 11 invokes row_lcl () which may be called if the row data is known to be

resident on the calling core’s pod; It returns native pointers to the column indices and non-zero values. This

is in contrast to row() , invoked on line 18, to acquire extended address space fat-pointers to the row data that

may be resident on any pod.

5.4 Evaluation

In this chapter I have introduced BigBlade, a 2048-core HammerBlade ASIC, described its memory system,

and have introduced software extensions to my task-parallel library to run on it. In this section I evaluate those

extensions. First, I attempt to quantify the cost of spawn and delegate operations using a microbenchmarking

approach.

Next, I evaluate the effectiveness of the optimizations described in Section 5.3. I do so by porting six

applications from SPMD-style implementations the performance results from which were showcased in Jung

et al. [2024]. I also give a performance comparison between the ported applications and their SPMD-style

counterparts. Finally, I conclude with a scaling study to understand how the runtime as a whole performs on

a kilo-core scale system.

5.4.1 Application Suite

The applications used in this evaluation are shown in Table 5.2, along with their inputs. They were used in

Jung et al. [2024] to evaluate HammerBlade for both its programmability and scalability. They were deemed

suitable for evaluating HammerBlade’s programmability because they were each examples of different

parallel programming motifs, or "dwarfs" defined by Asanovic et al. [2006].

Here it is worth explaining the rationale behind the inputs I selected. Four of these six benchmarks are

implementable as a large parallel loop over a large vector. Indeed, I use the vector primitive described in

Section 5.3 to handle data placement and scheduling for all four of them. These four benchmarks are AES,

Barnes-Hut, Black-Scholes, and Smith-Waterman. I would expect to observe a runtime overhead over the

101

Benchmarks (Abbrev.) Dwarfs Input Data
AES (AES) Combinational Logic 64K and 1K (×1KB messages)
Barnes-Hut (BH) N-Body 1K and 64K bodies
Black-Scholes (BS) MapReduce 1M and 4M options
2-D FFT (FFT) Spectral Method 256 × 256 points
Smith-Waterman (SW) Dynamic Programming 8K and 1M sequences
Sparse Matrix Multiplication (SpGEMM) Sparse LA See Table 5.2b

(a) List of benchmarks and their corresponding Dwarfs from Asanovic et al. [2006].

Name (Abbrev.) Type Edges Vertices
wiki-Vote (WV) Social 103689 8297
email-Enron (En) Social 367662 36692
roadNet-CA (CA) Road 5533214 1971281

(b) List of sparse matrices used from Davis and
Hu [2011]

Table 5.2: Six parallel benchmarks ported from work presented in Jung et al. [2024].

SPMD-style baselines. I would also expect that overhead to be most severe on small inputs but for that

overhead to amortize on larger ones. I use both a small input and a large input for each of these applications

to confirm that this amortization occurs.

5.4.2 Overheads of Spawning and Delegating Tasks

Given the differences in BigBlade’s memory system, as overviewed in Section 5.1, coupled with the changes

to runtime implementation, it is prudent to quantify the cost of spawning and delegating tasks. I attempt to do

so once again using microbenchmarks as I did for evaluating BigBlade’s memory system.

Spawning: I use a benchmark called spawn to measure the runtime overhead of spawning a new task

pushing it to the front of a core’s task queue. spawn is a tight loop in which a core allocates memory for a

task, initializes it, and invokes the runtime’s subroutine for enqueueing the new task. I run spawn many times,

varying the total number of spawned tasks to estimate the cost with a linear regression, shown in Figure

5.7. The total cost of spawning is around 630 ns.4 This extraordinarily expensive operation is dominated by

allocating and initializing the task in memory. To show this, I run the same experiment but compiled out

the region of code in which the task is pushed onto the work queue. The same analysis as before shows that

initializing the tasks accounts for 85% of the runtime.

Why is spawning so expensive? In Table 5.1, I showed the latency of a DRAM access on BigBlade, which

accounts for most of this cost. A design choice I made for BigBlade was to allocate task memory in off-chip

4A memory system improvement that has since been applied to BigBlade would likely improve the cost of spawning stated here.

102

Figure 5.7: The costs of spawn collected using a benchmark that spawns a task in a tight loop over and
over. Running it many times while varying the number of spawns enabled me to estimate the cost to 630 ns.
Additionally, I ran the benchmark without pushing the tasks to the work queue and found the allocation and
initialization of the task accounts for about 85% of the time.

memory rather than in core local scratchpad. I made this choice to conserve stack scratchpad memory for use

by the application and to improve system reliability to avoid stack overflows. I expand on this decision in

Section 5.3.2. Nonetheless, this design choice comes at an overhead cost for spawns. Allocating task memory

often means writing to a buffer that has not been accessed recently, resulting in a DRAM fetch. 5 As a point

of comparison, I ran the spawn benchmark using the scratchpad for task storage. Using a scratchpad reduced

the cost of spawning to around 55 ns, which is more than an 11× speedup. However, the unreliability of

storing tasks in such a limited stack makes doing so impractical.

Delegation: I use a benchmark called delegate to measure the cost of delegating a task to a core on a

remote pod. delegate cycles through all pods round-robin to issue delegation requests. When spawning a

delegate to a pod, a core on that pod is selected at random as the target. This mirrors how delegates are used

in the data structures I describe in Section 5.3.6.

Figure 5.8 shows the results and an analysis of running this benchmark. I plot the run time as I vary the

5It is worth noting that these fetches would not be needed if the BigBlade caches had write-validation, a feature that was added in
a later design.

103

number of delegate tasks spawned and I do so for four different task sizes. Recall that the size of task is

related to its closure size, such as values captured in a C++ lambda for example. The 20-byte task payload is

effectively an empty task containing only meta-data such as its virtual table pointer. Before optimizations,

the expected cost of delegating a task to a remote pod is over 5.4 microseconds for the larger delegates and

around 2.7 microseconds for the empty task. Since a cache line on BigBlade is 32-bytes, we can surmise that

the roughly 2× difference in overhead is related to requiring at least two lines for storage.

Over 5 microseconds is a hard cost to accept for such a critical operation. Examining the assembly from

this benchmark, a key region of code stood out as a bottleneck. The subroutine that transfers data from the

local pod to the remote one leverages the pointer primitive for transferring data. The baseline code transfers a

single byte at a time. This is ripe for optimization. First, byte transfers can be coalesced into words to reduce

the total number of packets sent over the network. Second, the loop itself can be unrolled to take advantage

of HammerBlade’s non-blocking memory operations. This is particularly advantageous in this instance when

software is sending several packets across the entire chip. Shown at left in Figure 5.8 is the results from

delegate after applying these optimizations. It is evident that the cost is far less sensitive to the size of the

task itself; All four task sizes have similar time costs. Additionally, the cost of a delegation is reduced from

5.4 microseconds to roughly 1.2 microseconds. This is a greater than 4× improvement. Nonetheless the cost

of spawning a delegate remains high. Thus, it is prudent to avoid delegation in the inner loops of application

code.6

5.4.3 Optimizations

Here, I evaluate the optimizations and design decisions I made while extending this library to BigBlade.

Additionally, I explore two additional design parameters. First, I explore an alternative random number

generator for victim selection. The original work uses a linear congruential generator. I found that using

an xor-shift generator often improved performance particularly on smaller inputs. Second, I refactored

the library’s organization to help avoid caller and callee program text from conflicting with respect to the

instruction cache. Instruction cache misses can be particularly pernicious on BigBlade due to its high-latency

and low-bandwidth memory system.

6A memory system improvement that has since been applied to BigBlade would likely improve the cost of delegation stated here.

104

s

Figure 5.8: Delegation cost as measured using the delegate benchmark. I run the benchmark varying the
size of the delegate closure and the number of delegates issued. The 20-byte payload is all meta-data i.e. an
empty task. I selected the other delegate sizes based on what I observed from applications I ported. Above, I
show the benchmark before any optimizations. The 20-byte payload takes half as the other because it only
spans a single 32-byte cache line. Below, I show the results after optimizing the routine that transfers the
delegate data to the remote pod using the pointer primitive.

In Section 5.3.3 I explained my design choice to implement delegation to address the friction between a

work-stealing scheduler and preserving spatial locality. Here I evaluate this decision by implementing an

unrestricted work-stealing scheduler. In this version of the scheduler, any core on the chip can steal work

from any other regardless of their pods.

A comparison between unrestricted work-stealing and restricting it to a pod can be seen for four appli-

cations in Figure 5.9.7 Speedups are normalized to the runtime that restricts work-stealing to within a pod.

Perhaps surprisingly, the only application that seems particularly sensitive to the scheduler policy is AES.

AES operates on 1 KB buffers, so the cost of a locality mismatch between execute and compute is high. FFT

has a similar program property. However, FFT performs more work on the data once it is in scratchpad,

which better amortizes the cost of data movement.

Another surprising result is that exponential back-off and the use of try_lock degrades performance.

The Simpl. Lock actually shows improvement from removing the locking optimizations in preference for

a simple spin-lock. Exponential back-off is useful when one spin-lock becomes a bottleneck, but can be

detrimental in other cases. If it is not ameliorating contention, then exponential back-off is bloat at best. The

7This data was collected before memory system issues were resolved, as discussed in Section 5.1.

105

AES-8k

Black-Scholes-256k
FFT256-2D-16

Smith-Waterman-64k
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

du
p

Unrestricted WS Restrict WS Simpl. Lock XOR-Hash RNG Fast Remote Memcpy Opt. Text Layout for ICache

Barnes-Hut-8k

SPGEMM-email-Enron

SPGEMM-roadNet-CA
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.9: Cumulative impacts of different runtime design optimizations. Speedups are normalized to a
design that restricts work-stealing, and uses locking optimizations and a linear congruential number generator
for victim selection.

AES-64k
AES-1k

Barnes-Hut-64k

Barnes-Hut-1k

Black-Scholes-1M

Black-Scholes-4M

FFT256-2D-16

Smith-Waterman-8K

Smith-Waterman-1M
0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

du
p

SPMD Task Parallel
SPGEMM-wiki-Vote

SPGEMM-roadNet-CA
0

1

2

3

Figure 5.10: Comparison of six applications written in the SPMD model to task-parallel counterparts.

same can be said for try_lock . In addition, thief cores use try_lock to "give up" and look elsewhere for work

to steal if they cannot acquire the lock. On the other hand, if the victim’s lock is held by another thief in the

process of stealing work, that may indicate the victim has even more work to steal.

Generally, the impact of these optimizations is less than 20%. One would hope this indicates that the

majority of the runtime is driven by the application code, and that the dynamic task-parallel library introduces

minimal overhead. If that were the case, any optimization made to the library would have minimal impact on

the total runtime.

106

5.4.4 Comparison to Single Program Multiple Data

I evaluate the overheads of my library on the six applications shown in Table 5.2 and find that the overheads

are highest when the amount of work per spawn is low. These results are shown in Figure 5.10.8 The running

times are normalized to those of the six applications in the SPMD style. These applications are run as they

were written for Jung et al. [2024] without modifications. All results are run on a single pod, since the baseline

sources are not written for multi-pod execution. AES, Barnes-Hut, Black-Scholes, and Smith-Waterman are

all semantically implemented as do-all loops. Thus I would expect that when the loop is small, the overhead

to be higher but to see that overhead amortize on a larger loop. That is what happens for AES, Barnes-Hut

and Smith-Waterman; the large inputs have overheads of less than 10% and in the case of Smith-Waterman

the overhead is completely amortized.

Black-Scholes does not see any overhead amortization as the input increases. Rather, the performance

consistently degrades 30% even when the work-to-spawn ratio increases by 4×. This suggests that some

overhead has leaked into the work loop of this application. Profiling in simulation on a smaller input showed

that using the library introduced 9.8 instruction-cache misses per kilo-instruction. The baseline version fits

entirely in the tile’s 4 KB instruction cache. Instruction-cache misses on HammerBlade can be particularly

detrimental to performance if all tiles are missing on the same instructions. This is because HammerBlade’s

secondary instruction storage is the pod’s shared cache array, which are blocking. On BigBlade, this is

compounded by the DRAM latency discussed in Section 5.1. Furthermore, misses on the same instruction will

map to the same cache bank and can cause hotspots and traffic jams in the network. Indeed, HammerBlade’s

instruction-cache poses a significant challenge to implementing any library with sizable instruction footprint.

Sparse matrix multiplication is another anomaly. One might be tempted to believe that the library has

improved the performance with load-balancing. This is unlikely. The original SPMD-style source load-

balances by leveraging atomic add operators. However, the implementations have a salient difference in

their work loops. The data structure used to store partial results is a key element of the algorithm. The

original source uses a linked-list structure. As many as possible of these list nodes are stored in scratchpad to

maximize reuse. Unfortunately, I was unable to provide a working implementation using the original list

implementation along with my library. This might be due to stack overflows, since the task-parallel library

8This data was collected before memory system issues were resolved, as discussed in Section 5.1.

107

Figure 5.11: Scaling trends for six applications written using the dynamic task library. The vertical lines
mark where 8 pods are in use and we start scaling up more cores per pod. Both axes are in log scale.

consumes stack aggressively, or it could be due to a bug in the original source. Ultimately, the version I

implemented here uses a balanced binary tree to store partial sums instead. This has an algorithmic complexity

improvement over a list for merging results, and this is most likely the reason for a 3× improvement on

wiki-Vote and 1.5× on roadNet-CA.

5.4.5 Scaling

Figure 5.11 shows the scaling of the six applications from a single core to system scale.9 The vertical line

on each plot marks the core-count at which the applications are running with all pods and subsequent data

points are increasing the number of cores used per pod. All workloads scale close to ideally up to this point.

This is expected since increasing the number pods increases the number of cores, shared cache banks, and

memory channels. Smith-Waterman and AES scale best, with Smith-Waterman almost reaching ideal scaling

all the way to 1024 cores. Both of these applications benefit from requiring no synchronization, other than

that imposed by the runtime as overhead, high operational intensity, and balanced workloads.

Black-Scholes shares these characteristics, and yet we see a performance plateau at 32 cores. As seen

in Figure 5.10, using the task-parallel library appears to have introduced an inefficiency in Black-Scholes.

I conjectured above that this may be due to instruction-cache misses. This would certainly pose a scaling

9This data was collected before memory system issues were resolved, as discussed in Section 5.1.

108

challenge since the secondary storage for instruction memory is the shared cache, of which there are 4×

fewer banks than there are cores. Furthermore, if the misses are triggered on the same instructions, all cores

will need to fetch instructions from the same cache bank making it a hotspot.

Sparse matrix multiplication has a high memory intensity and some synchronization in between bulk

synchronous parallel phases. Furthermore, the memory accesses are random and this can impact load-

balancing on the cache banks. FFT also has frequent synchronization relative to some of the other applications

which is likely contributing to its poor scaling.

The most stark anomaly in the scaling data is Barnes-Hut. It scales well until running with 256 cores,

at which point performance sharply declines. Barnes-Hut has a couple characteristics that would impact its

ability to scale. It is memory intensive and the accesses are random across the memory space of the chip.

Furthermore, the outer loop over which the work is parallelized is imbalanced since each body requires

varying depths of traversal in a tree. Neither the work-imbalance nor the memory intensity fully explains why

Barnes-Hut performance sharply declines as more cores are used. A more likely culprit is memory system

imbalance. For each body, the kernel traverses a tree depth-first from its root. Nodes shallower in three

are visited most frequently. Thus, cache banks in which these nodes are resident will become hotspots. If

the hotspots are severe enough, then the memory traffic can backup the on-chip network and impact other

ambient endpoints.

5.5 Related Work

Guo et al. [2010] introduces a SLAW, Locality-Aware Work-Stealing scheduler that relies on programmer-

provided hints on what "place" tasks should execute. Workers are restricted to stealing work from their

own place which this work defines as workers who share a common LLC. They will first attempt to execute

from their own queues, then they will attempt to steal from other workers in the same place, and lastly

they will check a mailbox that is shared by all workers in the same place. This work was conducted on

a multi-core systems with private L1 and L2 caches, unlike HammerBlade. Nonetheless, my approach is

similar if you consider a HammerBlade pod to be analogous to a place in their work. The key difference is,

rather than having a shared queue per pod, a delegation target is selected at random among a pod’s cores. This

avoids contention on any work single queue. Min et al. [2011] propose an extension to SLAW, enabling the

109

programmer to define place hierarchies. Workers prioritize stealing from victims according to this hierarchy,

starting with threads closer in the place hierarchy. Both works focus on multi-core systems with traditional

memory hierarchies including private caches with coherency.

Shiina and Taura [2019] propose Almost Deterministic Work-Stealing in which tasks are deterministically

allocated to workers, but hierarchical work-stealing is allowed. This is, in essence, a hybrid approach of

work-stealing and work-dealing. What makes their approach novel is that they embed the hierarchy into the

tasks. When a worker becomes idle, it searches for work among its current task’s worker pool. If it cannot

find work, it searches in the range of that task’s parent’s worker pool. This approach embeds a locality-bias

into the distribution of work to which idle cores will adhere. It requires hints from the programmer of the

workload distribution among tasks. Similarly to Guo et al. [2010]; Min et al. [2011], this work was evaluated

on a server class multi-core CPU with a robust and coherent cache hierarchy, although this approach could

certainly be explored on HammerBlade by extending the scheduler proposed in this thesis.

Torng et al. [2016] explores the design of a task-parallel work-stealing system across a manycore

architecture with asymmetric compute resources. They propose a scheduling scheme that involves idle fast

cores "mugging" slow cores when the idle core is unable to find work. This "mugging" feature leverages an

interrupt to steal the smaller cores context, including register state, when the small core is in the process of

executing a task. Mugging ensures that the fast, more powerful core is running useful work as frequently as

possible. They focus their work on a system more closely related to HammerBlade then the other related work

mentioned, but the problem they are addressing is more concerned with efficient of utilization asymmetric

compute resources rather than locality.

Nelson et al. [2015] implement a task-parallel software framework for a large distributed shared-memory

machine using commodity hardware. They also have a notion of delegates and active messaging to assign

small tasks on remote processors to improve data locality. They assume delegates are small messages that are

forbidden from spawning more work. I relax this restriction in part because I use these delegates at to assign

work at a coarser granularity and expect them to be used at a significantly lower frequency. The system that

they focused on has mcuh greater latency implication impacts depending on locality than BigBlade. While

BigBlade has extraordinarily high memory latency, the contribution to this from the cores’ on-chip network

locality is dwarfed by that of the off-chip memory latency which is uniform.

110

Chapter 6

Conclusion

This thesis explored the task-parallel programming model for the HammerBlade manycore. In Chapter 2, I

performed a study of the performance and power characteristics of High Bandwidth Memory on an AMD

Radeon VII. HBM was the memory system we ultimately planned to use for HammerBlade which, at the

time that study was conducted, did not yet exist in silicon form. I provided an overview of HammerBlade in

Chapter 3. I then introduced a library to support the task-parallel model in the form of fork-join parallelism

in Chapter 4. This work was informative as it revealed that such a model could be implemented with

low-overhead on HammerBlade aided by a work-stealing task scheduler. In Chapter 5, I was finally able

to run applications for HammerBlade on the real silicon that the group taped-out in 2021. This final work

revealed that applications using the dynamic task-parallel runtime can scale to full system size and that the

overheads are small at large inputs relative to pure SPMD implementations. Additionally, by restricting the

work-stealing schedulers to consider victims only within their pods, performance can improve by as much as

25%.

6.1 Future Research Directions

Work-Stealing with Asymmetric Computation: In this thesis, a worker is defined to be a single core.

This does not need to be the case. A worker could be defined as a group of cores in close proximity on the

network, each of which executes distinct regions of program text that collectively execute a task. For example,

one core in the worker group could be in charge of scheduling, another in charge of memory allocation and

111

prefetching, and yet another in charge of executing the core application logic. Some cores might not execute

at all, and allow others to claim use of their tile’s scratchpad memory. One could imagine a few reasons why

this might be a good idea. First, as I touched on in Section 5.4, HammerBlade’s tile instruction-cache is built

for area efficiency but presents serious performance challenges when program text outgrows its 4 KB capacity.

Dividing the regions of program text between several different cores instead of having all of them execute the

text uniformly mitigates instruction redundancy in the system and enables each core to specialize its tile’s

memory resources. Second, not all applications are bounded by compute resources. This is true regardless of

the architecture, and Figure 5.11 shows that HammerBlade and BigBlade is no exception. Therefore, rather

than allocating more cores towards fruitlessly executing memory-intensive application code, redirecting them

towards other purposes such as reducing scheduling overheads or increasing on-chip memory utilization is

more likely to improve performance and efficiency.

Opportunities for Compiler Support: A key concern in Chapter 5 is reliability stemming from limited

stack space in scratchpad memory. The work in Chapter 4 found that placing the stack in scratchpad was

often a boon to performance, and the challenging memory system on BigBlade makes that optimization as

important as ever. At the same time, 4 KB of stack is very little, especially for a work-stealing runtime that

relies on a recursive divide-and-conquer scheme such as the one studied in this thesis. Furthermore, stack

memory allocated in the root task is utilized much less than that allocated in the leaves. Cactus stacks Yang

and Mellor-Crummey [2016], which have been explored for work-stealing frameworks in the past, are a

particularly promising direction for HammerBlade. The compiler could amend the ABI so that the memory

location of individual stack frames can be selected on a procedure-by-procedure basis.

Chapter 5 also discusses HammerBlade’s mechanism for extending the native 32-bit address space using

control registers. I introduce software primitives in C++ for simplified, if not seamless, software adoption of

this control register. A limitation of that approach is inefficiency. Because the compiler does not know that

control register’s semantics, it often redundantly sets it to the same value to which it was already programmed.

Sometimes this is unavoidable, even if the compiler has semantic understanding, such as setting and restoring

its value across procedure calls (although this too could be mitigated with callee-save conventions). Often

times, however, it is avoidable. Empowering the compiler with some semantic understanding of the register

would improve work-efficiency and also reduce instruction footprint.

112

Targeting Different Memory Systems: In Chapter 5, I conduct a brief study of BigBlade’s memory

performance to ground our understanding of system behavior. I showed that BigBlade’s memory latency

and bandwidth pose serious performance challenges to all but the most compute-intensive applications.

This characteristic makes off-chip memory the most significant constraint when designing any software for

BigBlade. A faster memory system would have a dramatic impact on software design, and that dynamic

would certainly be worth exploring in future HammerBlade systems.

Evaluating Programmability of Parallel Models: At the time of this writing, those of us interested in

researching programming models, programmability, and other software-engineering problems are due for

reflection. The ubiquity of artificial intelligence has expanded rapidly in recent years, and the pace of this

expansion will likely accelerate. When I started my graduate student career in 2018, my first grant called for

a machine that could be programmed with Python. Python, rightly or not, was widely considered the gold

standard with respect to "programmability" as far as programming languages were concerned. I use the word

"was" here because, seven years later, industry leaders are suggesting that the future gold standard might

not be any programming language at all, but rather natural language conveyed to an AI agent to write the

software in our stead. The degree to which this prediction will come to pass remains uncertain. Nonetheless,

it is worth pondering how we should define programmability in a future where machines, rather than humans,

are write the code.

That aforementioned grant called for a "programmable" architecture. However, there was some mystery

as to how such a goal should be evaluated. In many of our deliverables, we cited the number of lines of code

as a proxy. This metric is imperfect for many reasons that are, hopefully, obvious. Initially, the grant sponsors

attempted to evaluate programmability by enlisting a large team of undergraduates as test subjects. This

approach ran into logistical problems and was, without a doubt, expensive to an extent that it would have

been out of reach for most researchers to reproduce. In 2025, results for programmability using a suite of

accepted AI models would be significantly easier to reproduce and also more accessible for researchers with

fewer financial resources.

113

Bibliography

1993. CRAY T3D System Architecture Overview. Cray Research, Inc.

2011. OpenCL Specification, v1.2. Khronos Working Group.

2012. Intel Cilk Plus Language Extension Specification. Intel Corporation.

2013. OpenMP Application Program Interface, Version 4.0. OpenMP Architecture Review Board.

2015. Jedec standard jesd235a: High bandwidth memory (hbm) dram.

2018. Jedec standard jesd235b: High bandwidth memory (hbm) dram.

2019. Intel Threading Building Blocks. Intel Corporation.

2020. Jedec standard jesd235c: High bandwidth memory (hbm) dram.

Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. 2000. The data locality of work stealing. In

Proceedings of the Twelfth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA ’00,

page 1–12, New York, NY, USA. Association for Computing Machinery.

Tutu Ajayi, Khalid Al-Hawaj, Aporva Amarnath, Steve Dai, Scott Davidson, Paul Gao, Gai Liu, Atieh Lotfi,

Julian Puscar, Anuj Rao, Austin Rovinski, Loai Salem, Ningxiao Sun, Christopher Torng, Luis Vega,

Bandhav Veluri, Xiaoyang Wang, Shaolin Xie, Chun Zhao, Ritchie Zhao, Christopher Batten, Ronald G.

Dreslinski, Ian Galton, Rajesh K. Gupta, Patrick P. Mercier, Mani Srivastava, Michael B. Taylor, and Zhiru

Zhang. 2017a. Celerity: An open-source risc-v tiered accelerator fabric. Symp. on High Performance

Chips (Hot Chips).

115

http://www.bitsavers.org/pdf/cray/HR-04033_CRAY_T3D_System_Architecture_Overview_Sep93.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1665.htm
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
https://software.intel.com/en-us/intel-tbb
https://doi.org/10.1145/341800.341801

Tutu Ajayi, Khalid Al-Hawaj, Aporva Amarnath, Steve Dai, Scott Davidson, Paul Gao, Gai Liu, Anuj Rao,

Austin Rovinski, Ningxiao Sun, Christopher Torng, Luis Vega, Bandhav Veluri, Shaolin Xie, Chun Zhao,

Ritchie Zhao, Christopher Batten, Ronald G. Dreslinski, Rajesh K. Gupta, Michael B. Taylor, and Zhiru

Zhang. 2017b. Experiences using the risc-v ecosystem to design an accelerator-centric soc in tsmc 16nm.

Workshop on Computer Architecture Research with RISC-V (CARRV).

Lluc Alvarez, Miquel Moretó, Marc Casas, Emilio Castillo, Xavier Martorell, Jesús Labarta, Eduard Ayguadé,

and Mateo Valero. 2015. Runtime-guided management of scratchpad memories in multicore architectures.

Int’l Conf. on Parallel Architectures and Compilation Techniques (PACT).

AMD. Rdna architecture whitepaper. https://www.amd.com/system/files/documents/

rdna-whitepaper.pdf. [Online].

AMD. 2019. Amd radeon vii graphics card. https://www.amd.com/en/products/graphics/

amd-radeon-vii. [Online].

E. Anderson, J. Brooks, C. Grassl, and S. Scott. 1997. Performance of the cray t3e multiprocessor. Int’l Conf.

on High Performance Networking and Computing (Supercomputing), pages 39–39.

Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands, Kurt

Keutzer, David A Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams, et al. 2006. The

landscape of parallel computing research: A view from berkeley.

Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin, Federico Massaioli, Xavier

Teruel, Priya Unnikrishnan, and Guansong Zhang. 2009. The design of openmp tasks. IEEE Trans. on

Parallel and Distributed Systems (TPDS), 20(3):404–418.

baidu-research. Deepbench. https://github.com/baidu-research/DeepBench. [Online].

R. Balasubramonian. 2019. Innovations in the Memory System, volume 14 of Synthesis Lectures on Computer

Architecture.

Shane Bell, Bruce Edwards, John Amann, Rich Conlin, Kevin Joyce, Vince Leung, John MacKay, Mike

Reif, Liewei Bao, John Brown, Matthew Mattina, Chyi-Chang Miao, Carl Ramey, Dave Wentzlaff, Walker

116

https://doi.org/10.1109/PACT.2015.26
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://www.amd.com/en/products/graphics/amd-radeon-vii
https://www.amd.com/en/products/graphics/amd-radeon-vii
https://doi.org/10.1145/509593.509632
https://doi.org/10.1109/TPDS.2008.105
https://github.com/baidu-research/DeepBench

Anderson, Ethan Berger, Nat Fairbanks, Durlov Khan, Froilan Montenegro, Jay Stickney, and John Zook.

2008. Tile64 processor: A 64-core soc with mesh interconnect. Int’l Solid-State Circuits Conf. (ISSCC).

Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson, and Keith H. Randall. 1996a.

An analysis of dag-consistent distributed shared-memory algorithms. Symp. on Parallel Algorithms and

Architectures (SPAA).

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall, and

Yuli Zhou. 1995. Cilk: An efficient multithreaded runtime system. Symp. on Principles and Practice of

Parallel Programming (PPoPP).

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall, and

Yuli Zhou. 1996b. Cilk: An efficient multithreaded runtime system. Journal of Parallel and Distributed

Computing, 37(1):55–69.

Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling multithreaded computations by work stealing.

Journal of the ACM, 46(5):720–748.

Brent Bohnenstiehl, Aaron Stillmaker, Jon J. Pimentel, Timothy Andreas, Bin Liu, Anh T. Tran, Emmanuel

Adeagbo, and Bevan M. Baas. 2017. KiloCore: A 32-nm 1000-processor computational array. IEEE

Journal of Solid-State Circuits (JSSC), 52(4):891–902.

Ajay Brahmakshatriya, Emily Furst, Victor Ying, Claire Hsu, Changwan Hong, Max Ruttenberg, Yunming

Zhang, Dai Cheol Jung, Dustin Richmond, Michael Taylor, Julian Shun, Mark Oskin, Daniel Sanchez,

and Saman Amarasinghe. 2021. Taming the zoo: The unified graphit compiler framework for novel

architectures. Int’l Symp. on Computer Architecture (ISCA).

S. Burke. Gamersnexus. https://www.gamersnexus.net/hwreviews/3020-amd-rx-vega-

56-review-undervoltage-hbm-vs-core. [Online].

K. K. Chang, A. G. Yağlıkçı, S. Ghose, A. Agrawal, N. Chatterjee, A. Kashyap, D. Lee, M. O’Connor,

H. Hassan, and O. Mutlu. 2017. Understanding reduced-voltage operation in modern dram devices:

Experimental characterization, analysis, and mechanisms. In SIGMETRICS, New York, NY, USA.

117

https://doi.org/10.1109/ISSCC.2008.4523070
https://doi.org/10.1145/237502.237574
https://doi.org/10.1145/209937.209958
https://doi.org/10.1145/324133.324234
https://doi.org/10.1109/JSSC.2016.2638459
https://doi.org/10.1109/ISCA52012.2021.00041
https://doi.org/10.1109/ISCA52012.2021.00041
https://www.gamersnexus.net/hwreviews/3020-amd-rx-vega-56-review-undervoltage-hbm-vs-core
https://www.gamersnexus.net/hwreviews/3020-amd-rx-vega-56-review-undervoltage-hbm-vs-core

Kevin K. Chang, Abdullah Giray Yaglikçi, Saugata Ghose, Aditya Agrawal, Niladrish Chatterjee, Abhijith

Kashyap, Donghyuk Lee, Mike O’Connor, Hasan Hassan, and Onur Mutlu. 2018. Voltron: Understand-

ing and exploiting the voltage-latency-reliability trade-offs in modern DRAM chips to improve energy

efficiency. CoRR, abs/1805.03175.

P. Charles, C. Grothoff, V. Sarkar, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar.

2005. X10: An object-oriented approach to non-uniform cluster computing. Conf. on Object-Oriented

Programming Systems Languages and Applications (OOPSLA).

N. Chatterjee, M. O’Connor, D. Lee, D. R. Johnson, S. W. Keckler, M. Rhu, and W. J. Dally. 2017.

Architecting an energy-efficient dram system for gpus. In HPCA.

N. Chatterjee, M. O’Connor, G. Loh, N. Jayasena, and R. Balasubramonian. 2014. Managing dram latency

divergence in irregular gpgpu applications. In SC’14, pages 128–139.

Tao Chen, Shreesha Srinath, Christopher Batten, and Edward Suh. 2018. An architectural framework for

accelerating dynamic parallel algorithms on reconfigurable hardware. Int’l Symp. on Microarchitecture

(MICRO).

Lin Cheng, Peitian Pan, Zhongyuan Zhao, Krithik Ranjan, Jack Weber, Bandhav Veluri, Seyed Borna Ehsani,

Max Ruttenberg, Dai Cheol Jung, Preslav Ivanov, Dustin Richmond, Michael B. Taylor, Zhiru Zhang, and

Christopher Batten. 2022. A tensor processing framework for cpu-manycore heterogeneous systems. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 41(6):1620–1635.

cuda. 2013 (accessed Nov 2013). Cuda. Online Webpage. http://www.nvidia.com/object/

cuda_home_new.html.

Matthew Curtis-Maury, James Dzierwa, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos. 2006.

Online power-performance adaptation of multithreaded programs using hardware event-based prediction.

In Proceedings of the 20th Annual International Conference on Supercomputing, ICS ’06, page 157–166,

New York, NY, USA. Association for Computing Machinery.

Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, and Mark Horowitz. 2012. CPU DB:

Recording microprocessor history. ACM Queue, page 10–27.

118

http://arxiv.org/abs/1805.03175
http://arxiv.org/abs/1805.03175
http://arxiv.org/abs/1805.03175
https://doi.org/10.1145/1103845.1094852
https://doi.org/10.1109/MICRO.2018.00014
https://doi.org/10.1109/MICRO.2018.00014
https://doi.org/10.1109/TCAD.2021.3103825
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
https://doi.org/10.1145/1183401.1183426

H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu. 2011. Memory power management via

dynamic voltage/frequency scaling. In ICAC, New York, NY, USA.

Scott Davidson, Shaolin Xie, Christopher Torng, Khalid Al-Hawaj, Austin Rovinski, Tutu Ajayi, Luis

Vega, Chun Zhao, Ritchie Zhao, Steve Dai, Aporva Amarnath, Bandhav Veluri, Paul Gao, Anuj Rao, Gai

Liu, Rajesh K. Gupta, Zhiru Zhang, Ronald G. Dreslinski, Christopher Batten, and Michael B. Taylor.

2018. The Celerity open-source 511-core RISC-V tiered accelerator fabric: Fast architectures and design

methodologies for fast chips. IEEE Micro, 38(2):30–41.

Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Trans.

Math. Softw., 38(1).

T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith. 2017. Evaluating attainable memory bandwidth

of parallel programming models via babelstream. IJCSE, 17:247–262.

Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini. 2012. Coscale: Coordinating cpu

and memory system dvfs in server systems. In MICRO.

Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini. 2011. Memscale: Active low-power modes

for main memory. In ASPLOS, New York, NY, USA.

James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and Jarek Nieplocha. 2009. Scalable

work stealing. Int’l Conf. on High Performance Networking and Computing (Supercomputing).

B. Diniz, D. Guedes, W. Meira, and R. Bianchini. 2007. Limiting the power consumption of main memory.

In ISCA, New York, NY, USA.

Eliovp. Amd memory tweak. https://github.com/Eliovp/amdmemorytweak. [Online].

S. Eyerman and L. Eeckhout. 2010. A counter architecture for online dvfs profitability estimation. IEEE

Transactions on Computers, 59(11):1576–1583.

Naila Farooqui, Rajkishore Barik, Brian T. Lewis, Tatiana Shpeisman, and Karsten Schwan. 2016. Affinity-

aware work-stealing for integrated cpu-gpu processors. Symp. on Principles and Practice of Parallel

Programming (PPoPP).

119

https://doi.org/10.1109/MM.2018.022071133
https://doi.org/10.1109/MM.2018.022071133
https://doi.org/10.1145/1654059.1654113
https://doi.org/10.1145/1654059.1654113
https://github.com/Eliovp/amdmemorytweak

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The implementation of the cilk-5 mul-

tithreaded language. ACM SIGPLAN Conf. on Programming Language Design and Implementation

(PLDI).

Yaosheng Fu and David Wentzlaff. 2015. Coherence domain restriction on large scale systems. Int’l Symp.

on Microarchitecture (MICRO).

Michael I. Gordon, William Thies, and Saman Amarasinghe. 2006. Exploiting coarse-grained task, data, and

pipeline parallelism in stream programs. Int’l Conf. on Architectural Support for Programming Languages

and Operating Systems (ASPLOS).

Yi Guo, Jisheng Zhao, V. Cave, and V. Sarkar. 2010. Slaw: A scalable locality-aware adaptive work-stealing

scheduler. Int’l Parallel and Distributed Processing Symp. (IPDPS).

Tom R. Halfhill. 2020. Thunderx3’s cloudburst of threads: Marvell previews 96-core 384-thread arm server

processor. Microprocessor Report, The Linley Group.

Hasan Hassan, Minesh Patel, Jeremie S. Kim, A. Giray Yaglikci, Nandita Vijaykumar, Nika Mansouri Ghiasi,

Saugata Ghose, and Onur Mutlu. 2019. Crow: A low-cost substrate for improving dram performance,

energy efficiency, and reliability. In 2019 ACM/IEEE 46th Annual International Symposium on Computer

Architecture (ISCA), pages 129–142.

Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar, Vivek Seshadri, Donghyuk Lee, Oguz Ergin, and

Onur Mutlu. 2016. Chargecache: Reducing dram latency by exploiting row access locality. In 2016 IEEE

International Symposium on High Performance Computer Architecture (HPCA), pages 581–593.

Henry Hoffmann, David Wentzlaff, and Anant Agarwal. 2010. Remote store programming. Int’l Conf. on

High Performance Embedded Architectures and Compilers (HiPEAC).

Yatin Hoskote, Sriram Vangal, Arvind Singh, Nitin Borkar, and Shekhar Borkar. 2007. A 5-GHz mesh

interconnect for a teraflops processor. IEEE Micro, 27(5):51–61.

Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David Finan, Gregory Ruhl, David Jenkins,

Howard Wilson, Nitin Borkar, Gerhard Schrom, Fabrice Pailet, Shailendra Jain, Tiju Jacob, Satish Yada,

120

https://doi.org/10.1145/277652.277725
https://doi.org/10.1145/277652.277725
https://doi.org/10.1109/HPCA.2016.7446096
https://doi.org/10.1109/MM.2007.4378783
https://doi.org/10.1109/MM.2007.4378783

Sraven Marella, Praveen Salihundam, Vasantha Erraguntla, Michael Konow, Michael Riepen, Guido

Droege, Joerg Lindemann, Matthias Gries, Thomas Apel, Kersten Henriss, Tor Lund-Larsen, Sebastian

Steibl, Shekhar Borkar, Vivek De, Rob Van Der Wijngaart, and Timothy Mattson. 2010. A 48-core ia-32

message-passing processor with DVFS in 45nm CMOS. Int’l Solid-State Circuits Conf. (ISSCC).

Dai Cheol Jung, Scott Davidson, Chun Zhao, Dustin Richmond, and Michael Bedford Taylor. 2020. Ruche

networks: Wire-maximal, no-fuss nocs : Special session paper. Int’l Symp. on Networks-on-Chip (NOCS).

Dai Cheol Jung, Max Ruttenberg, Paul Gao, Scott Davidson, Daniel Petrisko, Kangli Li, Aditya K Kamath,

Lin Cheng, Shaolin Xie, Peitian Pan, Zhongyuan Zhao, Zichao Yue, Bandhav Veluri, Sripathi Muralitharan,

Adrian Sampson, Andrew Lumsdaine, Zhiru Zhang, Christopher Batten, Mark Oskin, Dustin Richmond,

and Michael Bedford Taylor. 2024. Scalable, programmable and dense: The hammerblade open-source

risc-v manycore. In 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture

(ISCA), pages 770–784.

Kalray. 2022 (accessed Aug 2022). Kalray mppa products. Online Webpage. https://www.kalrayinc.

com/products/mppa-technology/.

S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-Y. Wei, and D. Brooks. 2015. Profiling

a warehouse-scale computer. In ISCA, New York, NY, USA.

David Kanter. 2015. Knights Landing reshapes HPC.

Mohamed Lamine Karaoui, Pierre-Yves Péneau, Quentin L. Meunier, Franck Wajsbürt, and Alain Greiner.

2016. Exploiting large memory using 32-bit energy-efficient manycore architectures. 2016 IEEE 10th

International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSOC), pages 61–68.

I. Karlin, J. Keasler, and R. Neely. 2013. Lulesh 2.0 updates and changes. Technical report, Livermore.

S. Kaxiras and M. Martonosi. 2008. Computer Architecture Techniques for Power-Efficiency, volume 3 of

Synthesis Lectures on Computer Architecture.

B. Keeth, R. J. Baker, B. Johnson, and F. Lin. 2007. DRAM Circuit Design: Fundamental and High-Speed

Topics, 2nd edition. Wiley-IEEE Press.

121

https://doi.org/10.1109/ISSCC.2010.5434077
https://doi.org/10.1109/ISSCC.2010.5434077
https://doi.org/10.1109/NOCS50636.2020.9241586
https://doi.org/10.1109/NOCS50636.2020.9241586
https://doi.org/10.1109/ISCA59077.2024.00061
https://doi.org/10.1109/ISCA59077.2024.00061
https://www.kalrayinc.com/products/mppa-technology/
https://www.kalrayinc.com/products/mppa-technology/
https://api.semanticscholar.org/CorpusID:18682995

John H. Kelm, Daniel R. Johnson, Matthew R. Johnson, Neal C. Crago, William Tuohy, Aqeel Mahesri,

Steven S. Lumetta, Matthew I. Frank, and Sanjay J. Patel. 2009. Rigel: An architecture and scalable

programming interface for a 1000-core accelerator. Int’l Symp. on Computer Architecture (ISCA).

Georgios Keramidas, Vasileios Spiliopoulos, and Stefanos Kaxiras. 2010. Interval-based models for run-time

dvfs orchestration in superscalar processors. In Proceedings of the 7th ACM International Conference on

Computing Frontiers, CF ’10, page 287–296, New York, NY, USA. Association for Computing Machinery.

D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. K.-W. Chang, and O. Mutlu. 2015. Adaptive-latency

dram: Optimizing dram timing for the common-case. In HPCA, Burlingame, CA.

D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu. 2013. Tiered-latency dram: A low latency

and low cost dram architecture. In HPCA.

Charles E. Leiserson. 2009. The cilk++ concurrency platform. Design Automation Conf. (DAC).

L. Li, J. Fang, H. Fu, J. Jiang, W. Zhao, C. He, X. You, and G. Yang. 2018a. swcaffe: A parallel framework

for accelerating deep learning applications on sunway taihulight. Int’l Conf. on Cluster Computing.

S. Li, D. Reddy, and B. Jacob. 2018b. A performance & power comparison of modern high-speed dram

architectures. In MEMSYS, New York, NY, USA.

S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob. 2020. DRAMsim3: A cycle-accurate, thermal-capable

dram simulator. Computer Architecture Letters (CAL).

Zheng Li, Jose Duato, Olivier Certner, and Olivier Temam. 2010. Scalable hardware support for conditional

parallelization. Int’l Conf. on Parallel Architectures and Compilation Techniques (PACT).

Mieszko Lis, Keun Sup Shim, Myong Hyon Cho, Ilia Lebedev, and Srinivas Devadas. 2013. Hardware-level

thread migration in a 110-core shared-memory multiprocessor. Technical Report 512, MIT CSAIL CSG.

Z. Liu. Tom’s hardware. https://www.tomshardware.com/news/amd-memory-tweak-

tool,39407.html. [Online].

Guo-Ping Long, Jun-Chao Zhang, and Dong-Rui Fan. 2008. Architectural support and evaluation of cilk

language on many-core architectures. Chinese Journal of Computers, 31(11):1975–1985.

122

https://doi.org/10.1145/1555754.1555774
https://doi.org/10.1145/1555754.1555774
https://doi.org/10.1145/1787275.1787338
https://doi.org/10.1145/1787275.1787338
https://doi.org/10.1145/1629911.1630048
https://doi.org/10.48550/arXiv.1903.06934
https://doi.org/10.48550/arXiv.1903.06934
https://doi.org/10.1109/LCA.2020.2973991
https://doi.org/10.1109/LCA.2020.2973991
https://www.tomshardware.com/news/amd-memory-tweak-tool,39407.html
https://www.tomshardware.com/news/amd-memory-tweak-tool,39407.html
https://doi.org/10.3724/SP.J.1016.2008.01975
https://doi.org/10.3724/SP.J.1016.2008.01975

Steven Margerm, Amirali Sharifian, Apala Guha, Arrvindh Shriraman, and Gilles Pokam. 2018. Tapas:

Generating parallel accelerators from parallel programs. Int’l Symp. on Microarchitecture (MICRO).

Michael McCool, Arch D. Robinson, and James Reinders. 2012. Structured Parallel Programming: Patterns

for Efficient Computation. Morgan Kaufmann.

Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou, Jonathan Balkind, Alexey Lavrov, Mohammad

Shahrad, Samuel Payne, and David Wentzlaff. 2017. Piton: A manycore processor for multitenant clouds.

IEEE Micro, 37(2):70–80.

R. Miftakhutdinov, E. Ebrahimi, and Y. N. Patt. 2012. Predicting performance impact of dvfs for realistic

memory systems. IEEE Micro, pages 155–165.

Seung-Jai Min, Costin Iancu, and Katherine Yelick. 2011. Hierarchical work stealing on manycore clusters.

In Fifth Conference on Partitioned Global Address Space Programming Models (PGAS11), volume 625.

mpi. 2013 (accessed Nov 2013). Message passing interface (mpi) standard. Online Webpage. http:

//www.mcs.anl.gov/research/projects/mpi/standard.html.

Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon Kahan, and Mark Os-

kin. 2015. Latency-tolerant software distributed shared memory. In Proceedings of the 2015 USENIX

Conference on Usenix Annual Technical Conference, USENIX ATC ’15, page 291–305, USA. USENIX

Association.

NVIDIA. 2016. Nvidia tesla p100. https://www.nvidia.com/en-us/data-center/tesla-

p100/. [Online].

NVIDIA. 2017. Nvidia titan v. https://www.nvidia.com/en-us/titan/titan-v/. [Online].

M. O’Connor, N. Chatterjee, D. Lee, J. M. Wilson, A. Agrawal, S. W. Keckler, and W. J. Dally. 2017.

Fine-grained dram: energy-efficient dram for extreme bandwidth systems. IEEE Micro, pages 41–54.

Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James Dinan, P. Sadayappan, and Chau-Wen Tseng. 2006.

Uts: An unbalanced tree search benchmark. Int’l Workshop on Lanaguages and Compilers for Parallel

Computing (LCPC).

123

https://doi.org/10.1109/MICRO.2018.00028
https://doi.org/10.1109/MICRO.2018.00028
https://doi.org/10.1109/MM.2017.36
http://www.mcs.anl.gov/research/projects/mpi/standard.html
http://www.mcs.anl.gov/research/projects/mpi/standard.html
https://www.nvidia.com/en-us/data-center/tesla-p100/
https://www.nvidia.com/en-us/data-center/tesla-p100/
https://www.nvidia.com/en-us/titan/titan-v/
https://doi.org/10.1007/978-3-540-72521-3_18

Andreas Olofsson. 2016. Epiphany-V: A 1024-processor 64-bit RISC system-on-chip. Computing Research

Repository (CoRR), arXiv:abs/1610.01832.

Marc S. Orr, Bradford M. Beckmann, Steven K. Reinhardt, and David A. Wood. 2014. Fine-grain task

aggregation and coordination on gpus. Int’l Symp. on Computer Architecture (ISCA).

Yanghui Ou, Shady Agwa, and Christopher Batten. 2020. Implementing low-diameter on-chip networks

for manycore processors using a tiled physical design methodology. Int’l Symp. on Networks-on-Chip

(NOCS).

Guilherme P. Pezzi, Marcia C. Cera, Elton Mathias, Nicolas Maillard, and Philippe O. A. Navaux. 2007. On-

line scheduling of mpi-2 programs with hierarchical work stealing. Int’l Symp. on Computer Architecture

and High Performance Computing (SBAC-PAD).

J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D. Hill, S. K. Reinhardt, and D. A. Wood.

2013. Heterogeneous system coherence for integrated cpu-gpu systems. Int’l Symp. on Microarchitecture

(MICRO).

Carl Ramey. 2011. TILE-Gx100 manycore processor: Acceleration interfaces and architecture. Symp. on

High Performance Chips (Hot Chips).

James Reinders. 2007. Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism.

O’Reilly.

D. Richards, Y. Alexeev, X. Andrade, R. Balakrishnan, H. Finkel, G. Fletcher, C. Ibrahim, W. Jiang,

C. Junghans, J. Logan, A. Lund, D. Lykov, R. Pavel, and V. Ramakrishnaiah. 2020. Fy20 proxy app suite

release. Technical report, Livermore.

ROCMm-Developer-Tools. rocprofiler. https://github.com/ROCm-Developer-Tools/

rocprofiler. [Online].

Barry Rountree, David K. Lowenthal, Martin Schulz, and Bronis R. de Supinski. 2011. Practical performance

prediction under dynamic voltage frequency scaling. In 2011 International Green Computing Conference

and Workshops, pages 1–8.

124

https://doi.org/10.48550/arXiv.1610.01832
https://doi.org/10.1109/ISCA.2014.6853209
https://doi.org/10.1109/ISCA.2014.6853209
https://doi.org/10.1109/NOCS50636.2020.9241710
https://doi.org/10.1109/NOCS50636.2020.9241710
https://doi.org/10.1109/SBAC-PAD.2007.36
https://doi.org/10.1109/SBAC-PAD.2007.36
https://doi.org/10.1109/HOTCHIPS.2011.7477491
https://github.com/ROCm-Developer-Tools/rocprofiler
https://github.com/ROCm-Developer-Tools/rocprofiler
https://doi.org/10.1109/IGCC.2011.6008553
https://doi.org/10.1109/IGCC.2011.6008553

Austin Rovinski, Chun Zhao, Khalid Al-Hawaj, Paul Gao, Shaolin Xie, Christopher Torng, Scott Davidson,

Aporva Amarnath, Luis Vega, Bandhav Veluri, Anuj Rao, Tutu Ajayi, Julian Puscar, Steve Dai, Ritchie

Zhao, Dustin Richmond, Zhiru Zhang, Ian Galton, Christopher Batten, Michael B. Taylor, and Ron G.

Dreslinski. 2019a. A 1.4 GHz 695 Giga RISC-V Inst/s 496-core manycore processor with mesh on-chip

network and an all-digital synthesized PLL in 16nm CMOS. Symp. on VLSI Technology and Circuits

(VLSI).

Austin Rovinski, Chun Zhao, Khalid Al-Hawaj, Paul Gao, Shaolin Xie, Christopher Torng, Scott Davidson,

Aporva Amarnath, Luis Vega, Bandhav Veluri, Anuj Rao, Tutu Ajayi, Julian Puscar, Steve Dai, Ritchie

Zhao, Dustin Richmond, Zhiru Zhang, Ian Galton, Christopher Batten, Michael B. Taylor, and Ron G.

Dreslinski. 2019b. Evaluating Celerity: A 16nm 695 Giga-RISC-V instructions/s manycore processor with

synthesizable pll. IEEE Solid-State Circuits Letters (SSCL), 2(12):289–292.

Vijay A. Saraswat, Prabhanjan Kambadur, Sreedhar Kodali, David Grove, and Sriram Krishnamoorthy. 2011.

Lifeline-based global load balancing. SIGPLAN Not., page 201–212.

Tao B. Schardl, William S. Moses, and Charles E. Leiserson. 2017. Tapir: Embedding fork-join parallelism

into llvm’s interemdiate representation. Symp. on Principles and Practice of Parallel Programming

(PPoPP).

O. Seongil, Young Hoon Son, Nam Sung Kim, and Jung Ho Ahn. 2014. Row-buffer decoupling: A case

for low-latency dram microarchitecture. In 2014 ACM/IEEE 41st International Symposium on Computer

Architecture (ISCA), pages 337–348.

Shumpei Shiina and Kenjiro Taura. 2019. Almost deterministic work stealing. In SC19: International

Conference for High Performance Computing, Networking, Storage and Analysis, pages 1–16.

Wongyu Shin, Jeongmin Yang, Jungwhan Choi, and Lee-Sup Kim. 2014. Nuat: A non-uniform access

time memory controller. In 2014 IEEE 20th International Symposium on High Performance Computer

Architecture (HPCA), pages 464–475.

Julian Shun and Guy Blelloch. 2013. Ligra: A lightweight graph processing framework for shared memory.

Symp. on Principles and Practice of Parallel Programming (PPoPP).

125

https://doi.org/10.23919/VLSIC.2019.8778031
https://doi.org/10.23919/VLSIC.2019.8778031
https://doi.org/10.1109/LSSC.2019.2953847
https://doi.org/10.1109/LSSC.2019.2953847
https://doi.org/10.1145/2038037.1941582
https://doi.org/10.1145/3155284.3018758
https://doi.org/10.1145/3155284.3018758
https://doi.org/10.1109/ISCA.2014.6853230
https://doi.org/10.1109/ISCA.2014.6853230
https://doi.org/10.1145/3295500.3356161
https://doi.org/10.1109/HPCA.2014.6835956
https://doi.org/10.1109/HPCA.2014.6835956
https://doi.org/10.1145/2517327.2442530

I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and T. M. Aamodt. 2013. Cache coherence for gpu

architectures. Int’l Symp. on High-Performance Computer Architecture (HPCA).

M. Själander, M. Martonosi, and S. Kaxiras. 2014. Power-Efficient Computer Architectures: Recent Advances,

volume 9 of Synthesis Lectures on Computer Architecture.

B. Su, J. Gu, L. Shen, W. Huang, J. L. Greathouse, and Z. Wang. 2014. Ppep: Online performance, power,

and energy prediction framework and dvfs space exploration. IEEE Micro, pages 445–457.

Giuseppe Tagliavini, Daniele Cesarini, and Andrea Marongiu. 2018. Unleashing fine-grained parallelism on

embedded many-core accelerators with lightweight openmp tasking. IEEE Transactions on Parallel and

Distributed Systems, 29(9):2150–2163.

Guangming Tan, Dongrui Fan, Junchao Zhang, Andrew Russo, and Guang R. Gao. 2008. Experience on

optimizing irregular computation for memory hierarchy in manycore architecture. Symp. on Principles

and Practice of Parallel Programming (PPoPP).

Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat, Ben Greenwald, Henry

Hoffmann, Paul Johnson, Walter Lee, Arvind Saraf, Nathan Shnidman, Volker Strumpen, Saman Amaras-

inghe, and Anant Agarwal. 2003. A 16-issue multiple-program-counter microprocessor with point-to-point

scalar operand network. Int’l Solid-State Circuits Conf. (ISSCC).

Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt, Ben Greenwald, Henry

Hoffmann, Paul Johnson, Jason Kim, James Psota, Arvind Saraf, Nathan Shnidman, Volker Strumpen,

Matt Frank, Saman Amarasinghe, and Anant Agarwal. 2004. Evaluation of the RAW microprocessor: An

exposed-wire-delay architecture for ILP and streams. Int’l Symp. on Computer Architecture (ISCA).

Christopher Torng, Moyang Wang, and Christopher Batten. 2016. Asymmetry-aware work-stealing schedulers.

Int’l Symp. on Computer Architecture (ISCA).

J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz. 2014. Xsbench - the development and verification of a

performance abstraction for monte carlo reactor analysis. In PHYSOR 2014 - The Role of Reactor Physics

toward a Sustainable Future, Kyoto.

126

https://doi.org/10.1109/TPDS.2018.2814602
https://doi.org/10.1109/TPDS.2018.2814602
https://doi.org/10.1145/1345206.1345255
https://doi.org/10.1145/1345206.1345255
https://doi.org/10.1109/ISSCC.2003.1234253
https://doi.org/10.1109/ISSCC.2003.1234253

O. Villa, D. R. Johnson, M. O’Connor, E. Bolotin, D. Nellans, J. Luitjens, N. Sakharnykh, P. Wang,

P. Micikevicius, A. Scudiero, S. W. Keckler, and W. J. Dally. 2014. Scaling the power wall: A path to

exascale. In SC’14.

Pascal Vivet, Eric Guthmuller, Yvain Thonnart, Gael Pillonnet, Guillaume Moritz, Ivan Miro-Panadès, Cesar

Fuguet, Jean Durupt, Christian Bernard, Didier Varreau, Julian Pontes, Sebastien Thuries, David Coriat,

Michel Harrand, Denis Dutoit, Didier Lattard, Lucile Arnaud, Jean Charbonnier, Perceval Coudrain, Arnaud

Garnier, Frederic Berger, Alain Gueugnot, Alain Greiner, Quentin Meunier, Alexis Farcy, Alexandre

Arriordaz, Severine Cheramy, and Fabien Clermidy. 2020. A 220GOPS 96-core processor with 6 chiplets

3D-stacked on an active interposer offering 0.6ns/mm latency, 3Tb/s/mm2 inter-chiplet interconnects and

156mW/mm2@ 82%-peak-efficiency DC-DC converters. Int’l Solid-State Circuits Conf. (ISSCC).

Moyang Wang, Tuan Ta, Lin Cheng, and Christopher Batten. 2020. Efficiently supporting dynamic task

parallelism on heterogeneous cache-coherent systems. Int’l Symp. on Computer Architecture (ISCA).

Yaohua Wang, Arash Tavakkol, Lois Orosa, Saugata Ghose, Nika Mansouri Ghiasi, Minesh Patel, Jeremie S.

Kim, Hasan Hassan, Mohammad Sadrosadati, and Onur Mutlu. 2018. Reducing dram latency via charge-

level-aware look-ahead partial restoration. In 2018 51st Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 298–311.

David Wentzlaff, Patrick Griffin, Henry Hoffman, Liewei Bao, Bruce Edwards, Carl Ramey, Matthew Mattina,

Chyi-Chang Miao, John F. Brown III, and Anant Agarwal. 2007. On-chip interconnection architecture of

the tile processor. IEEE Micro, 27:15–31.

Bob Wheeler. 2020. Ampere maxes out at 128 cores. Microprocessor Report, The Linley Group.

W. A. Wulf and Sally A. McKee. 1995. Hitting the memory wall. ACM SIGARCH Computer Architecture

News.

Chaoran Yang and John Mellor-Crummey. 2016. A practical solution to the cactus stack problem. In

Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’16, page

61–70, New York, NY, USA. Association for Computing Machinery.

127

https://doi.org/10.1109/ISSCC19947.2020.9062927
https://doi.org/10.1109/ISSCC19947.2020.9062927
https://doi.org/10.1109/ISSCC19947.2020.9062927
https://doi.org/10.1109/ISCA45697.2020.00025
https://doi.org/10.1109/ISCA45697.2020.00025
https://doi.org/10.1109/MICRO.2018.00032
https://doi.org/10.1109/MICRO.2018.00032
https://doi.org/10.1109/MM.2007.4378780
https://doi.org/10.1109/MM.2007.4378780
https://doi.org/10.1145/2935764.2935787

Foivos S. Zakkak and Polyvios Pratikakis. 2016. Building a java™ virtual machine for non-cache-coherent

many-core architectures. Int’l Workshop on Java Technologies for Real-Time and Embedded Systems

(JTRES).

Florian Zaruba, Fabian Schuiki, and Luca Benini. 2021. Manticore: A 4096-core RISC-V chiplet architecture

for ultraefficient floating-point computing. IEEE Micro.

128

https://doi.org/10.1145/2990509.2990510
https://doi.org/10.1145/2990509.2990510
https://doi.org/10.48550/arXiv.2008.06502
https://doi.org/10.48550/arXiv.2008.06502

	Introduction
	An Experimental Study of HBM2
	Introduction
	Background
	DRAM Operation and AC Timings
	High Bandwidth Memory
	Dynamic Voltage and Frequency Scaling in Memory

	Memory Parameter Sensitivity
	Memory Clock Frequency Scaling
	Performance Sensitivity to RCD
	Performance sensitivity to RP
	Power Trade-offs in Reconfiguring Memory Parameters

	Analytical Model for Performance and Power
	Performance Model
	Power Model

	RAMP: Application-Aware Dynamic Reconfiguration of Memory
	Application Profiling
	Memory System Reconfiguration

	Methodology
	Applications
	Baseline Policy
	Voltron for GPUs
	Oracle Policy

	Evaluation
	Performance-per-Watt
	Bandwidth-per-Watt
	Performance
	Power

	Related Work
	DVFS for Memory Systems
	DRAM Operation Latency Tuning
	Memory Systems for GPUs

	Summary

	The HammerBlade Manycore
	Vanilla Tile
	Multi-Tiered Memory System
	Scratchpad Memory
	Tile Shared Memory
	Shared DRAM Memory
	Atomic Memory Operations

	On-Chip Network
	Pod Architecture
	Programming Model
	Related Manycore Architectures

	A Dynamic Task Parallel Library
	Introduction
	Background
	Programming Models for Dynamic Task Parallelism
	Manycore Architecture Programmability Challenge

	Supporting Dynamic Task Parallelism on Manycore Architectures
	Running Example
	A Naive Work-Stealing Runtime
	Scratchpad Enhanced Runtime

	Evaluation Methodology
	Simulated Hardware
	Runtimes
	Workloads

	Results
	Related Work
	Summary

	Work-Stealing on One Thousand Cores
	Bigblade's Memory System
	Addressing the Extended Address Space
	Discussion

	Runtime Library Design and Extensions
	Inclusive Linked List for the Task Queue vs a Ring Buffer
	Spawning and Stealing Work
	Delegation
	Locking
	Removing Tail Recursion from Parallel Foreach
	Vector and Sparse Matrix Abstractions

	Evaluation
	Application Suite
	Overheads of Spawning and Delegating Tasks
	Optimizations
	Comparison to Single Program Multiple Data
	Scaling

	Related Work

	Conclusion
	Future Research Directions

