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The recent, dramatic rise of small hardware startups illustrates the demand

for rapid, low-cost ASIC design. While researchers borrow Agile principles

from software engineering, such as quick iteration, aggressive reuse, and

continuous integration, their methodologies have struggled to escape small labs.

Unfortunately, there remain clear challenges to broader adoption. Effective

research evaluation techniques often do not scale to larger, more complex

design flows. Conversely, risk aversity means that traditional hardware design

methodologies can be rigid and slow to adapt. The result is that despite

measurable quantitative improvements, traditional Agile design methodologies

cannot be practically applied in complex SoC designs. This thesis presents a

comprehensive approach to Agile Hardware Design through three tools: BSG

Pearls, BlackParrot, and ZynqParrot.

All three projects are open-source, silicon-proven, and available for immediate



use under a permissive BSD-3 License. Hardware designers can leverage these

efforts to make Agile Hardware Design qualitatively more feasible across a

wide variety of research and commercial projects.
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Glossary

Accelerator Specialized hardware designed to perform specific tasks more

efficiently, typically under orchestration by a general-purpose control

processor.

Agile A methodology for design that emphasizes iterative development across

short design cycles. Agile is often contrasted with traditional ”waterfall”

development methodologies with strict scheduling of deliverables.

ASIC Application-Specific Integrated Circuit. In this thesis, we consider the

ASIC designs for a variety of applications.

Collateral Additional timing constraints, design constraints, test vectors,

and other supporting materials needed for synthesis or verification.

Design Rule Check (DRC) A verification step that checks the physical

design against a fab-provided set of rules that ensure manufacturability.

EDA Electronic Design Automation. Software tools used for designing,

testing and manufacturing circuits. In this work, we mostly focus on

digital design flows.

Functional Verification The process of ensuring that a design meets spec-

ified requirements and functions correctly. In this work, we focus on

vii



dynamic techniques such as simulation and emulation to validate cor-

rectness and refer to this process as Verification.

Gate Level Simulation A type of simulation that models the behavior of

a digital circuit at the gate level, typically with annotated delays based

on the results of STA.

Hardening The replacement of generic design components with vendor-

specific implementations. This is often done automatically by FPGA

vendors and often done manually by ASIC designers to port between

technology nodes.

Latency Insensitive Design A design methodology that allows low-level

hardware components to communicate through ready-valid handshakes

without considering their relative latencies.

Netlist A textual representation of a digital circuit that describes the stan-

dard cells and their interconnections, but typically lacks physical place-

ment information.

Network-On-Chip (NoC) An interconnection methodology that uses pack-

etized links to communicate between chip components, rather than a

shared bus.

Place-and-Route (APR) The process of placing standard cells resulting

from synthesis into physical locations and routing wires between them.

Release Candidate A version of the design that is considered a ”successful”

viii



tapeout. Typically, any additional feature that result in a breaking

change will be pushed to the next Release Candidate.

Static Timing Analysis (STA) A verification step that checks the timing

of a design to ensure that it meets the required performance specifica-

tions. This step is a pessimistic analysis that provides confidence in

the design’s timing closure, but does not consider timing exceptions or

dynamic behavior.

Synthesis The process of converting a high-level (RTL) description of a

design into a netlist consisting of standard cells.

Tapein Non-standard term for an internal design checkpoint that meets

critical timing, verification and design rule checks but has not been sent

to fabrication.

Tapeout The final step in the ASIC design process where the design files

are sent to fabrication.

Technology Node A quality metric used in semiconductor manufacturing,

roughly corresponding to the minimum feature size of an equivalent

planar transistor.

ix
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Chapter 1

INTRODUCTION

1.1 Agile Hardware Design

1.1.1 Background

Agile Hardware Design methods promise cheaper, faster ASIC development

but face adoption challenges. While the quantitative benefits of reuse and

rapid iteration are well-established, this thesis argues many remaining barriers

are qualitative: complex hardware library integrations; discrepancies between

disparate verification environments; and hierarchical leakage preventing effec-

tive reuse in ASIC backend flows. In aggregate, these barriers increase the

friction of Agile Hardware methods, limiting their effectiveness in practice.

To address these challenges, this thesis presents three open-source projects:

BSG Pearls, BlackParrot and ZynqParrot. BSG Pearls introduces a hierarchy-

insensitive methodology of middleware component assembly that improves tool

predictability of mid-sized SoC designs. BlackParrot is a modular, multicore

RISC-V processor designed to simplify system integration for accelerator

designs. Finally, ZynqParrot provides a unified pre-silicon and post-silicon

infrastructure that enables reuse of verification efforts across the design

lifecycle.

The intersection of decreasing test chip tapeout costs, and increasing costs

of pre-silicon verification has led to a dramatic increase in N=1 tapeouts

for small research labs and startups. Quickly, these teams realize that the
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Figure 1.1: Impactful computer architecture research requires a feedback loop between

academia and industry. Unfortunately, the high cost of hardware prototyping limits holistic

analysis of design tradeoffs, where benefits may be reduced or eliminated by second or third

order effects. By dramatically reducing the iteration cost of hardware design, researchers

can build realistic prototypes more readily embraced by industry.

relatively small effort to prepare their accelerator design is dwarfed by “out-

of-scope” concerns such as on-chip control orchestration and memory system

design. We designed the BlackParrot [185] multicore processor to fill this gap

as a “rest of the owl” control system for rapidly designing accelerator SoCs.

While other open-source control cores are in use [19] [57] [273], BlackParrot

is unique in its focus on modularity and ease of integration.

Verification efforts are a large and ever-growing chip design cost. Pre-silicon

verification focuses on thorough IP-level code coverage through cycle-accurate

but painfully slow simulations. Architects have historically bridged this gap

with FPGA emulation [137, 217, 69, 67]. However, FPGA emulation frame-

works struggle with both scalability and cycle-accuracy, typically requiring

costly single-use infrastructure or sacrificing generality. We introduce Zynq-

Parrot: a unified pre-silicon / post-silicon accelerator design infrastructure

capable of verifying functionality and performance at tunable granularity.
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Figure 1.2: While latency-insensitive design logically partitions discrete hardware compo-

nents, it does not prevent physical interaction due to shared resources such as clock and

reset trees. This means that even small changes in one component can cause unpredictable

and costly schedule delays during a tapeout.

Compared to burdensome prerequisites of existing FPGA emulation frame-

works, ZynqParrot is designed for Scale-Down emulation: it can run on a

single Zynq-7000 SoC, making it accessible to small teams and research labs.

When silicon teams design their second ASIC, they integrate the lessons

learned from their first chip. Unfortunately, changes in a single IP can

disturb power, area and timing budgets across the chip, forcibly reopening

mature IP blocks and eliminating respin cost savings. The challenge with

reuse at this granularity is minimizing the overhead of full isolation while

maintaining predictability at every stage of the flow. Traditional IP reuse

proponents focus on the verification savings at the logic level; however, even

changes that are externally non-observable from a logical perspective can have

significant impact on the backend flow. From the perspective of the tools,

any change must be re-verified through the entire flow, from synthesis to

place-and-route, to ensure that the design meets specifications. We describe
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(a) When developing a new IP, designers must con-

sider integration with a variety of internal and ex-

ternal stakeholders. This often results in the de-

velopment of non-reusable ”glue code”, increasing

development costs and overall design complexity.

(b) When reusing an existing IP, even minor changes

in upstream dependencies can cause unforeseen in-

compatibilities. Re-design and re-verification efforts

can lead to increased costs and delays, undermining

reuse benefits.

Figure 1.3: IP integration in hardware design has a high, atomic, cost of change, leading

to ”glue code” proliferation and the creation of non-reusable, bespoke components. This

increases the cost of each tapeout and expand delivery schedules.

a methodology to increase predictability and reuse through BSG Pearls:

middleware components that enable rapid and safe iteration of mid-sized SoC

designs. While non-monolithic design methodologies are not new [56, 205, 147],

they have historically focused on quantitative benefits such as area and power

savings rather than the predictability and ease of integration provided by

BSG Pearls.

This thesis presents a comprehensive approach to Agile Hardware Design

through BSG Pearls, BlackParrot, and ZynqParrot. All three projects are

open-source, silicon-proven, and available for immediate use under a permissive

BSD-3 License. Hardware designers can leverage these efforts to make Agile

Hardware Design qualitatively more feasible across a wide variety of research

and commercial projects.



5

(a) BSG Pearls synthesis flows identify necessary

constraints for special cases such as hardened cells,

synchronizers, I/O constraints and generated clocks.

(b) BSG Pearls verification flows identify necessary

annotations for accurate gate-level simulation, even

with circuit delays and clock-crossing synchronizers.

Figure 1.4: In traditional design flows, there is tremendous constraint redundancy: IP

level, block level, top level, synthesis and STA might rewrite the same constraints each

time. Similarly, each tool may have its own design exploration flow, requiring designers to

manually verify that intents are consistent across tools. BSG Pearls uses Surelog to provide

tool-agnostic design annotations that can be easily consumed by all tools in the flow.

1.2 BSG Pearls: Effortlessly Synthesizable Building Blocks

1.2.1 Introduction

Agile Hardware Design methodologies rely on aggressive reuse of components

to reduce iteration time. There is a broad understanding that more component

reuse leads to less time spent on design and verification. In order to achieve

practical reuse of components, designers employ latency-insensitive design

principles [56]. However, latency-insensitive design principles alone do not

address the challenges of hierarchical design, where components are integrated

into larger systems. Although handshake-based protocols such as ready-valid

provide logical guarantees of correctness at the RTL level, they have implicit

dependencies on the timing and structure of the design. For instance, if timing

is worsened in one latency-insensitive component, adjacent components may

fail timing, or degrade in power or area.

Hierarchy-Insensitive Design is based on the insight that the design flow can
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be made more predictable and manageable by making opinionated decisions

about the architecture of components and their integration. This thesis

presents BSG Pearls: a collection of middleware components that enable

rapid and safe iteration of mid-sized SoC designs, as well as demonstrating the

hierarchy-insensitive Clamshell design methodology for isolating immature

components from the rest of the design flow. Clamshell complexes are design

assemblies that are designed to surround immature components, such as

accelerators, with hardened interfaces to provide predictable design closure.

Changes within the Clamshell complex are isolated from the rest of the

design, allowing for rapid iteration and experimentation without affecting

other blocks. Additionally, because boundaries are consistent across levels

of hierarchy, designers are able to reuse complex constraints throughout the

design flow, reducing collateral management overhead and reducing the risk

of unexpected design impacts. By providing reliability at a higher level of

abstraction, BSG Pearls reduces the likelihood of design flow errors, allowing

engineers to explore innovative solutions with higher confidence.

1.2.2 Collateral Reuse in Hierarchical Designs

RTL is only one part of the design flow, along with synthesis constraints,

place-and-route guidance and verification scripts, commonly referred to as

”collateral”. This collateral is tightly coupled not only to the specific hierarchy

of the design, but also to tools or even the state observed at an intermediate

stage of the design flow. Although there is correspondence between the

original design and the collateral, this fragility means that in practice new

scripts are often created for each new design, each stage of the backend

and even each iteration of the toolflow. Managing this collateral can be a

significant burden, especially for mid-sized SoC designs where the number of

components and their interactions can grow rapidly. For small teams, this
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(a) Collateral generation reduces the manual IP in-

tegration and verification effort. The benefits are

greatest in Clamshell architectures, where only BSG

Pearls interfaces are exposed outside of the hierarchy,

providing maximal design isolation.

(b) BSG Pearls generate collateral from a single

source of truth that can be used in a variety of tools.

By outputting parameterized artifacts, manual effort

(and corresponding mistakes) are minimized.

Figure 1.5: While alt-hdls such as Chisel [29] accelerate generation of simulation and

synthesis-capable Verilog, designers manually construct SDC contraints and layout files for

a specific parameterization.

can lead to situations where design intent is silently lost between handoffs,

fixes are dropped, and bugs go uncaught (or are introduced) late in the design

flow.

Compared to software, unit testing in hardware is more complex and laborious.

One reason is that hierarchical designs necessitates testing at multiple levels of

hierarchy. Unlike in software, where a single function can be tested in isolation,

hardware components have complex spatial and sequential dependencies that

cannot be easily mocked. Faithfully simulating an entire design can be overly

resource-intensive, while modifying the environment to speed up testing can

lead to false bugs or regressions. To avoid this, designs replicate the same

tests at multiple levels of hierarchy. For each level, the testbench must be

adapted to the specific design interface, potentially requiring new drivers,

checkers, and assertions. This can lead to significant overhead in managing

testbenches, as well as increased risk of bugs due to inconsistencies between

hierarchical testbench environments.
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Just as Clamshell assemblies provide common constraints, designs which

leverage BSG Pearls on the boundary can reuse the same testbench drivers

and checkers across the hierarchy. Because bsg tag and bsg link interfaces are

source-synchronous, latency-insensitive and synthesizable, they can be used

in RTL simulation, annotated gate-level simulation, and even post-silicon

FPGA emulation. Testbench traces for configuration, send data and check

data can be synthesized into ROMs and reused.

1.2.3 BSG Pearls Library

The initial release of BSG Pearls is designed to provide a minimal set of

functionality sufficient for an accelerator test-chip. Every design needs a clock,

reset, static configuration, and some form of communication between compo-

nents. Figure 1.6 shows the set of initial pearls that are available in the BSG

Pearls library. Pearls are intended to be hardened early in the design flow, so

they have minimal parameters that must be set. When possible, design set-

tings are provided by the bsg tag configuration bus interface which allows for

static reconfiguration without requiring resynthesis. Communication between

pearls is provided by latency-insensitive, source-synchronous links, which

allow for decoupled communication between components. Because different

IPs often have different requirements for clock and reset, asynchronous FIFOs

provided a reliable way to buffer mismatched consumers and producers. Pearls

are designed to be hierarchy-insensitive, meaning that they can be used in any

level of hierarchy without requiring changes to the design flow or collateral.

BSG Pearls also provides a sample set of Clamshell complexes that can

be used as a starting point for designs. These complexes are designed to

demonstrate assembly of BSG Pearls components into larger systems. Fig-

ure 1.7 shows the two initial complexes that are available in the BSG Pearls
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(a) bsg clk gen pearl is a fully-digital, ring-oscillator-

based clock generator, glitchlessly tuneable at run-

time, as well as switcheable between multiple clock

sources: raw oscillator, downsampled frequency, ex-

ternal clock, or static.

(b) bsg clk dly pearl is a fully-digital delay line

which can automatically produce common clock vari-

ations: 90 degree phase shift, inversion, or 2x down-

sample. These variations are common to I/O as well

as LPDDR interfaces.

(c) bsg sdr link pearl is a fully-digital source-

synchronous link for single-data-rate (SDR) inter-

faces. It provides local ready/valid while using credit-

based global flow-control to connect two IP blocks

with decoupled communication.

(d) bsg sdr link pearl is a fully-digital source-

synchronous link for double-data-rate (DDR) inter-

faces. It provides local ready/valid while using credit-

based global flow-control for off-chip I/O with low

clock frequency.

Figure 1.6: The four canonical BSG Pearls for IP communication. Using these pearls,

designers can build a wide variety of hierarchy-insensitive IP blocks. This powerful

abstraction enables the rapid construction of large complex SoCs with minimal coordination

between subteams.
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(a) bsg io switch complex is a unified I/O complex

that provides a reliable tunneled interface to an off-

chip bridge. It tunnels bidirectional SDR links (rep-

resenting I/O and memory) over a single DDR link.

Arbitration is run-time configurable, allowing inde-

pendent redirection to on-board I/Os or off-chip

emulation.

(b) bsg dmc phy complex is an all-in-one DDR

controller, PHY and tester. Built on top of

bsg clk dly pearl, it provides a fully digital interface

to the PHY with reliable and tunable configuration.

Testers can send cycle-level traces to the PHY, which

can be used to verify timing and functionality.

Figure 1.7: bsg pearl complexes provide silicon-validated examples of hierarchy-insensitive

designs that leverage BSG Pearls. SoC designers can use these complexes directly or as a

starting point for their interfaces.

library: the bsg io switch complex and bsg dmc phy complex complexes. The

bsg io switch complex complex provides a reliable tunneled interface to an

off-chip bridge, while the bsg dmc phy complex complex provides an all-in-one

DDR controller, PHY and tester. Both complexes have been silicon-validated

and refined based on real-world tapeouts, making them a reliable starting

point.
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1.2.4 Related Work

BaseJump STL

BaseJump STL [235] provides a collection of reuseable, latency-insensitive

hardware components. Compared to BSG Pearls, BaseJump STL is focused

on generic components such as FIFOs, arbiters, memories and other basic

building blocks. BaseJump STL is focused on providing functionality that

is common to all users, much like STL does in C++. While BaseJump STL

provides primitives as well as portability layer to abstract technology-specific

details, BSG Pearls builds on top of BaseJump STL to provide a higher level

of abstraction and functionality. By making opinionated decisions about the

design of components, BSG Pearls is able to provide a more predictable and

consistent design flow while maintaining flexibility and efficiency.

Pulp Platform

Pulp Platform [206] Common Cells provide a collection of RISC-V cores and

peripherals, including AXI interconnects, standard library cells and other

common components. As BlackParrot depends on BaseJump STL, designs

such as CVA6 [273] leverage the Common Cells in addition to design-specific

components. However, the library does not generally provide collateral for

synthesis, place-and-route, or verification. Testing is generally limited to

component-level verification and cannot be reused during system integra-

tion tests. Additionally, Pulp Platform Common Cells are not designed

to be hierarchy-insensitive, and thus do not provide the same level of tool

predictability as BSG Pearls.
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ChipYard

ChipYard [12] is an integrated SoC research platform supporting chip design,

simulation and implementation. While ChipYard provides interfaces to a

variety of ASIC design tools and libraries, it does not ascribe any particular

design methodology. Generally, ChipYard is designed to be a more general

all-in-one SoC design platform, while BSG Pearls is focused on validating

subcomponents to be integrated into external designs. Additionally, ChipYard

components tend to be more monolithic, like an entire RocketChip. Of course

it is entirely possible to use BSG Pearls components within ChipYard, although

the ChipYard flow is not hierarchy-insensitive by default. BSG Pearls works

with standard Python, SystemVerilog, and TCL, while ChipYard is built on

top of the Chisel hardware description language [28].

Hammer

Hammer [251] is an open-source ASIC physical design flow that provides a

set of wrapper scripts for synthesis, place-and-route, and verification. Its

modular design allows for easy integration of a variety of CAD tools and

scripts, separating out RTL integration, toolflow configuration, and PDK spe-

cialization. BSG Pearls RTL, synthesis collateral and test methodologies can

be easily integrated into the Hammer flow. Using the Clamshell methodology

with Hammer would reduce iteration time as well as with traditional flows.

Other Design Methodologies

Globally Asynchronous, Locally Synchronous (GALS) [56] design method-

ologies have been proposed to address the challenges of hierarchical design.

However, these methodologies typically focus on the synchronization and

communication between different clock domains in order to increase perfor-
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mance or lower power consumption. More radical design methodologies such

as the fully asynchronous circuits used in the Illiac II [49] can achieve even

greater efficiency and performance. In contrast, BSG Pearls focuses on the

predictability and ease of integration of components within designs that tradi-

tionally would use only a single clock domain. This approach allows for a more

straightforward design flow while managing the complexity of hierarchical

designs. Prior works [156, 75, 29, 168] have proposed language extensions to

support property generation as well as testbench generation. However, these

approaches do not support a general methodology for hierarchy-insensitive

design using standard tools.

1.3 NoC Symbiosis: Lessons Learned from Agile Tapeouts

This section has been adapted from NOCS 2020 ”NoC Symbiosis” [188].

1.3.1 Abstract

Conventional wisdom states that Network-on-Chip router area grows quadrat-

ically with the channel width, and this perception has fundamentally shaped

the assumptions of thousands of NoC papers that have been written to date,

and many chip designs. However, this assumption is not entirely true. Simple

analysis and empirical data from this paper shows that, in modern standard

cell technology, a router’s standard cell logic area actually grows only linearly;

it is solely the wire routing area that grows quadratically.

If we think of a NoC as a standalone block as is done in standard hierarchical

VLSI design, then the overall area growth is indeed quadratic. But this

approach either vastly under-utilizes logic area, or, in designs that match

wire and logic area, leads to small network links. At the same time, many

standard non-NoC logic blocks like processors or accelerator blocks typically
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use the standard cell logic area but need only a fraction of available wiring

resources.

We propose an alternative approach, NoC Symbiosis, in which router logic

and the node logic it services are jointly placed together. The router absorbs

excess wiring resources from the node logic, and the node logic absorbs excess

standard cell area from the router. Current-day automatic place and route

(APR) tools already automatically distribute the router logic across the node

logic, in order to provide enough space for the wiring resources. With this

approach, future SoC’s can leverage vastly larger amounts of wiring bandwidth

than ever before, or alternatively, reduce the area overhead of existing routers.

We describe how we first encountered this phenomena, perform experiments

to demonstrate its behavior, and provide design tips to help teams realize the

potential of NoC Symbiosis.

1.3.2 Introduction

Network-on-Chip (NoC) is a common design pattern in modern SoCs, which

scales to hundreds or thousands of nodes in a single chip while maintaining

performance. They are a widely-used workhorse of multicore processor ar-

chitectures [249, 220, 185, 34, 209, 255, 37], parallel architectures [198], and

accelerators [141, 97, 226, 76, 62, 81].

Common practice envisions NoC routers as standalone blocks in SoC archi-

tectures. Network components, wiring, and other architectural logic can

be designed independently of the architectural logic that they connect to

and facilitate data transport to and from, then be implemented inside of

independent bounding boxes, and replicated across a floorplan.

This separation of concerns in design practices is widely modeled in the many
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Figure 1.8: Conventional design practices suggests that NoC and architectural logic

should be placed and routed in separate hierarchical boxes. We propose an alternate

approach, NoC Symbiosis, where the components are placed and routed together to save

area for the same bandwidth, or to allow greatly enhanced bandwidth and throughput

with minimal area impact.

tools that estimate NoC area, power, and performance metrics [133, 132, 130,

216, 31], and many papers that analyze NoC area and power [208, 80, 204, 31].

Because of this practice, conventional wisdom states that Network-on-Chip

router area grows quadratically with the channel width, and this perception

has fundamentally shaped the assumptions of thousands of NoC papers that

have been written to date, and many chip designs. However, this assumption

is not entirely true. Simple analysis and empirical data from this paper shows

that, in modern standard cell technology, a router’s standard cell logic area

actually grows only linearly; it is solely the wire routing area that grows

quadratically.

If we think of a NoC as a standalone block as is done in standard hierarchical

VLSI design, then the overall area growth is indeed quadratic. But this

approach either vastly under-utilizes logic area, or, in designs that match
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wire and logic area, leads to small network links. At the same time, many

standard non-NoC logic blocks like processors or accelerator blocks typically

use the standard cell logic area but need only a fraction of available wiring

resources.

We propose an alternative approach, NoC Symbiosis, in which router logic

and the node logic it services are jointly placed together. The router absorbs

excess wiring resources from the node logic, and the node logic absorbs excess

standard cell area from the router. Unlike in the past, current-day automatic

place and route (APR) tools can now automatically distribute the router logic

across the node logic, in order to provide enough space for the wiring resources.

With this approach, future SoC’s can leverage vastly larger amounts of wiring

bandwidth than ever before, or alternatively, reduce the area overhead of

existing routers.

These design studies estimate NoC area, power, and performance in isolation.

Isolated network architectures can produce inefficient layouts that under-

utilize the silicon area even when other quality metrics are good. This

phenomena occurs because the required perimeter of the router bounding

box scales faster than the internal cells and causes the router area to be

under-utilized. Strict hierarchical design flows can prevent this lost area from

being recovered by non-network architectural logic. This yields a sub-optimal

performance, power, and area result when a network topology is integrated

with architectural logic late in the design flow.

The concept of NoC Symbiosis, is illustrated in Figure 1.8. NoC Symbiosis

exists when the bounding box that contains a network component, such as

a router, and non-network architectural logic is smaller than the sum of

the area of their independent bounding boxes. When NoC Symbiosis exists,

implementing each component separately can produce sub-optimal QoR and
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lengthen design iterations.

In this paper, we describe our experiences with NoC Symbiosis. We have seen

NoC Symbiosis in our own work and have designed to exploit it. We also

perform experiments in a 12 nm process, sweeping across a variety of network

topologies, widths, and wiring constraints. These experiments explore the

parameters that determine when NoC Symbiosis is possible, and expose the

benefits of leveraging and the costs of ignoring symbiosis. Our experiments

show that other architectures could benefit from a Symbiosis-aware design

flow and we provide a methodology to recognize, leverage, and model the

behavior of Symbiosis.

The remainder of this paper is organized as follows: In Section 1.3.3 we

describe the concept of NoC Symbiosis. In Section 1.3.4 we relate where we

discovered NoC Symbiosis. In Section 1.3.5 we use our experience to develop

experiments that demonstrate when NoC Symbiosis occurs. In Section 1.3.6 we

distill our findings into a set of concrete design principles and we outline how

NoC Symbiosis can be realized in future work. We conclude in Section 1.3.7.

1.3.3 Network-on-Chip Symbiosis

We introduce the concept of Network-on-Chip Symbiosis. Symbiosis is defined

as a cooperative relationship between two dissimilar organisms. NoC Sym-

biosis occurs when the network components of a chip are placed and routed

in conjunction with dissimilar logic, producing better Quality-of-Results

(QoR) than independently placing and routing each component within its

own bounding box.

Figure 1.8 demonstrates two applications of NoC Symbiosis. Instead of (a)

instantiating a NoC router and non-network architectural logic separately,

merging the logic can unlock two opportunities. First, as shown in (b), the
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total area can be potentially shrink. Second, as shown in (c), for surprisingly

small incremental area, a designer can greatly increase bandwidth into and

out of the tile, whether by widening existing channels or add more NoC

channels. This bandwidth can be applied to decreasing congestion, reducing

serialization latency, or adding new traffic classes or functionality (e.g. how

about security or QoS features?) in a NoC.

Figure 1.9 illustrates why the bounding box for a 2D mesh router becomes

under-utilized as the network link width increases. For a small network link

width, the area of the bounding box (ABB) is determined by the area of the

router cells ASC , which scale linearly with the network link width (N). As

the network link width increases, the design reaches an inflection point where

the bounding box is determined by the number of wires and the required wire

pitch forces the perimeter to expand, quadratically growing the bounding box

area (ABB).

The relationship for router bounding box area in Figure 1.9 is summarized in

Equation 1.1:

ABB = max(
ASC

U
, (D ∗N ∗ P )2) (1.1)

Where ABB is the estimated area of the bounding box, ASC is the sum of

the area of the synthesized standard cells, U is the target area utilization of

the bounding box, D is the duplex factor, N is the number of network link

width and P is the effective wire pitch. In this paper we analyze full-duplex

networks, so D is 2.

NoC Symbiosis is possible when the router bounding box is larger than the

area required to fit its standard cells at a given utilization. This occurs

when (D ∗N ∗ P )2 > ASC

U
. When this holds, the bounding box area scales

quadratically with the number of wires, and the area becomes underutilized.
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In this Symbiotic Region, combined place and route of the network and

non-network components will yield a better QoR.

1.3.4 NoC Symbiosis in the Wild

We first encountered NoC Symbiosis in BlackParrot (BP): a tiled, cache-

coherent, Linux-capable RISC-V multicore introduced in [185]. BlackParrot

implements the RISC-V 64-bit RV64G ISA, which includes the integer (I),

multiplication and division (M), atomics (A), as well as single and double

precision floating-point (F/D) instructions. It supports three privilege lev-

els—machine, supervisor, and user-as well as SV39 virtual memory. These

extensions are sufficient to run a full-featured operating system such as Linux.

Development efforts have prioritized the use of intentional interfaces, modu-

larity, silicon validation as first-order design metrics. Rather than employing

a bus-based architecture, high-efficiency NoCs are used to provide scaling

and flexibility so that BlackParrot can service a wide variety of design points.

The three BlackParrot NoCs are the Coherence Network, I/O Network and

Memory Network. For further implementation details, see [185].

We describe the evolution of BlackParrot across three versions, illustrating

distinct points on the NoC Symbiosis spectrum. We then discuss implica-

tions of NoC Symbiosis on a variety of other tiled architectures which were

not explicitly designed to be Symbiotic. These systems are summarized in
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Figure 1.9: In a NoC router, conventional wisdom holds that the area of the router

bounding box (ABB) scales quadratically with the number of wires on an edge (N ∗D).

Instead, we demonstrate that the router cell area (ASC) scales linearly with the network

link width, while the bounding box perimeter scales linearly with the number of wires

and the wire pitch (P ). As the number of network link width increases, the area of the

bounding box will first grow linearly with the router cell area, until perimeter requirements

force the area to grow quadratically. Beyond this point, the bounding box will become

underutilized by the router cells and provide an opportunity for NoC Symbiosis.
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Table 1.1.

Tilera [255] Raw [219] OpenPiton [34] HammerBlade [200] EMM [209] BP v0 [39] BP v1 [40] BP v2 [185] [41]

Process

Node
90nm 180nm 32nm 12nm 45nm 40nm 12nm 12nm

Tile Area

(mmˆ2)
9.6 16 1.175 0.025 0.784 0.832 0.360 0.360

Est. 2X Wire

Pitch (nm)

1 540 1080 192 128 270 240 128 128

Networks 5x34b 4x34b 3x66b
1x56b

1x97b
6x66b

1x130b

2x578b

2x642b

5x66b

3x98b

2x130b

(Half-Duplex)

Max Wires

Per Side
340 272 396 300 792 5140 648 848

Effective Link

Width
170 136 198 150 396 2570 324 424

Pin

Utilization

2 5.9% 7.3% 7.0% 24.3% 24.2% 90.2% 13.8% 18.1%

Table 1.1: Network specifications for various tiled architectures. Tilera and Raw are early examples of

tiled manycores. OpenPiton and HammerBlade are more recent projects focusing on massive parallelism.

The Execution Migration Machine is a tiled multicore without support for instruction-granularity thread

migration. BlackParrot is a tiled, cache-coherent, application-class multicore.

1 All 2X wire pitches are estimated as 6x node size, except for 12nm [257].

2 All pin utilizations are with DLDT pins except for BP v0, which used 3 pin layers.

BlackParrot v0

BlackParrot v0 was designed with 5 wide network links that could shuttle en-

tire 512-bit cache lines in a single cycle among cores and coherence directories,

resulting in 4-10x greater bandwidth than contemporary NoCs in Table 1.1,

as well as 6-8x shorter serialization latency compared to BlackParrot v1 or v2.

In addition to reducing memory access latency, this quick inter-tile communi-

cation provides order of magnitude speedup for coherence operations, which

can cripple heavily cooperative multi-threaded programs. Overall, the design

priorities were functionality and performance rather than power or area.

We first attempted to tape in BlackParrot v0 as part of a VLSI course.

Following conventional practice, we partitioned the physical design of the core

into the Front End, the Back End, and the Memory End. Each portion was
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allocated to a different student. The Front and Back Ends quickly converged.

The Memory End, with NoC routers, was unable to route without DRC errors

and had incredibly low area utilization. Students were extremely unhappy

with their assignment. At that point, we started to realize how insanely

provisioned the NoC was!

We discovered NoC Symbiosis when a postdoc on our team mentioned that

he had no problems placing and routing BP. It seemed impossible. But he,

taking the easy route and wanting to avoid partitioning, had placed and

routed the entire tile, instead of the individual components. The tools easily

routed the entire tile, with a smaller bounding box than the three components

implemented separately. Figure 1.8 depicts this phenomenon. This discovery

impacted our internal tape-in builds, and led to the subsequent development

of BlackParrot v1 and the study of NoC Symbiosis.

BlackParrot v1

While BlackParrot v0 reaped latency benefits from its wide NoCs, without a

prefetcher or multithreaded memory system the core could not provide enough

requests to use a reasonable portion of the average bandwidth available. As a

relatively small core, it simply was not powerful enough to take advantage of

the Symbiotic potential of 2500+ bits per cycle of bandwidth. Additionally,

several other nodes on the NoC were incapable of sinking a full cache line

per cycle, requiring excessive buffering storage and serialization penalties. To

solve these issues, BlackParrot v1 consolidates the on-chip networks, reducing

the network link width (and bandwidth!) using wormhole routers. This

reduced the aggregate network link width to 324, which easily fit the router

into dense core tiles.

BlackParrot v1 is shown in Figure 1.3.4. Wormhole routing decreased the
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link width significantly (at the cost of increased serialization latency and

decreased bandwidth). The v0 I/O Network separated into two new networks:

a 1D I/O network which passes through special purpose I/O tiles at the top

of the chip, and a Memory Network, which is a half-duplex 1D network that

flows from each core tile to the on-chip DRAM controller. Decomposing the

2D I/O network into 1D networks results in dramatic PPA benefits, as the

router crossbars shrink from 5 ports to 3.

The changes in v1 moved the design to the edge of the Symbiotic Region

described in Equation 1.1. While this resulted in PPA savings, BlackParrot

v1 loses the advantages that v0 enjoyed from NoC Symbiosis. In BlackParrot

v2, our current version, we leverage the implications of NoC symbiosis with a

design that lies between v0 and v1.

BlackParrot v2

We developed BlackParrot v2 with additional parameterization to explore

the NoC symbiosis design space. This version introduces additional RTL

parameters to control the size of the core logic and router clocks, in addition to

the wormhole routers introduced in v1. This allows the design to be tailored to

particular application bandwidth or performance requirements. In particular,

the parameterizations provided by v2 allow BlackParrot developers to compose

its NoCs anywhere between area-optimized v1 and maximum-performance v0

configurations.

The Coherence Network widened so that an entire packet header fits in a

single flit. This eliminates serialization latency from payload-free packets,

such as loads and acknowledgements. The Memory networks expanded to a

half-duplex 128b to reduce serialization latency while filling an L2 cache line.

Despite increasing the number of ports on each side of the tile by 70%, there



24

was negligible impact on utilization. NoC Symbiosis allowed us to adjust

system level bandwidth requirements with trivial backend adjustments.

OpenPiton

Notably, BlackParrot is not the only existing architecture to leverage NoC

Symbiosis. OpenPiton [35] is an open-source manycore research platform that

also leverages NoC Symbiosis principles at the tile level. The OpenPiton L1.5,

L2, and NoC modules are designed to be flattened into the tile. From this,

we observe that NoC Symbiosis is not limited to a specific core architecture

and can be applied as a general design principle.

Summary

Future iterations of BlackParrot will account for the extra flexibility that

NoC Symbiosis grants, allowing for surprisingly wide topologies and router

configurations. While BlackParrot has encountered NoC Symbiosis in a

variety of designs, we will demonstrate in the next section that it is a general

concept applicable to nearly all modern SoCs.

Symbiosis Gallery

Table 1.1 shows the Symbiotic capabilities of a variety of tiled architectures.

Most designs do not take advantage of NoC Symbiosis, and are either firmly

in the Standalone Router Region or near the inflection point (see Figure 1.10).

One reason designers may not have leveraged NoC Symbiosis in the past may

is a lack of tooling support. For instance, Raw and Tilera were designed

before timing-driven placement, so most blocks painstakingly positioned by

hand. Such a flow does not allow for counter-intuitive experimentation like

distributing router cells throughout the tile. This disconnect helps explain
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the relatively low pin utilization in these designs.

HammerBlade is a massively parallel manycore focusing on ML and graph

applications, which will happily consume any available bandwidth. The

Execution Migration Machine on the other hand aims to reduce on-chip

bandwidth consumption of tiled manycores, instead migrating threads to

cached data. However, its novel protocols employed many separate physical

networks to ensure deadlock avoidance, resulting in a moderate pin utilization.

The remaining systems are all cache-coherent multicores: systems which tend

to be latency-constrained rather than bandwidth-constrained. As opposed to

EMM which requires complete transfers of state before resuming execution,

techniques such as critical word first cache fills can alleviate serialization

latency penalties incurred by narrower network links. As an aggressively

scalable manycore, OpenPiton prefers narrower network links, allowing a

designer to pack more small tiles into a chip. BlackParrot targets moderate

scalability, between 1-16 cores, and so provides a wider range of pin utilization

configurations, optimizing by specializing networks.

BlackParrot v0 is a notable outlier. It is a coherent multicore, yet it uses over

90% of its maximum pinout. As described above, cache line wide links allow

for extremely low latency coherence operations. While conventional wisdom

dictates that such large routers would be infeasible, we demonstrate that NoC

Symbiosis enables this design space without any significant manual effort.

1.3.5 NoC Symbiosis in Captivity

In this section we study NoC Symbiosis through a series of directed experi-

ments. These experiments demonstrate the parameters where NoC Symbiosis

exists and show how to recapture the un-utilized area that NoC Symbiosis

provides.
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Figure 1.10: Plot of router bounding box area utilization (ASC

ABB
) as a function of DLDT

network link width (N). Design points are annotated for related work in Table 1.1. The

utilization is initially constant, but when the bounding box becomes wire-limited the

utilization decreases proportional to the inverse square, contrary to conventional wisdom.

The annotations illustrate design points along the NoC symbiosis spectrum in Table 1.1. *

BlackParrot v0 actually used way more wires but on three layers; we normalize to

DLDT.

We perform three experiments: First, we measure the relationship between

network width, and bounding box utilization to demonstrate verify our

hypothesis in Figure 1.9. Next, we determine how much of the un-utilized

area in the bounding box can be reused by dissimilar logic to verify that the

un-utilized area can be recycled. Finally, we examine the interaction between

the number of networks, aggregate network width, and router area utilization

to demonstrate that our experiments generalize to more than one network.

For our experiments we use silicon-validated wormhole routers from BaseJump

STL[235]. Wormhole routers allow us to make simplifying assumptions about

the physical design space and remove confounding variables, such as header

width and payload size. The router is a 2D mesh router with 5 ports (North,

East, South, West, and Local). Our network is input buffered, and stores

two flits per router direction. This allows us to remove the amount of FIFO
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Figure 1.11: Plot of un-utilized bounding box area (ABB −ASC) as a function of DLDT

network link width (N). The available area is initially approximately 0, and remains

constant as N increases, but as the width increases the un-utilized area begins to grow

quadratically when it reaches the Symbiotic Region.

buffering from our parameter space. The cardinal directions are routed to

the edge of the bounding box.

For each experiment we place and route the wormhole router inside of a

bounding box determined by Equation 1.1 and an aspect ratio of 1:1. We

set the target utilization (U) to 80% and target a multi-corner 800 MHz

operating frequency. To emulate the routing environment of a large SoC, we

configure input and output delays for an 825 ps arrival time.

Our experiments are performed using the 12nm GlobalFoundries PDK. We

use Design Compiler O-2018.06-SP4 to perform synthesis and IC Compiler II

O-2018.06-SP5 to perform place and route.
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Utilization vs. Network Link Width

To demonstrate why NoC Symbiosis arises, we first study how the utilization

of the router bounding box scales as the network link width increases. This

experiment aims to confirm our hypothesis in Figure 1.15. We place a router

within a hierarchical bounding box and sweep the network link width (N)

from 32 to 2048. We measure and plot the utilization of the bounding box

(ASC

ABB
), and the un-utilized area (ABB − ASC).

We examine two wire pitch configurations for network link wires to demon-

strate how P from Equation 1.1 affects symbiosis. First, we space alternating

metal layers two tracks apart (Double-Layer-Double-Track, or DLDT). This

strategy is the default for newer process nodes where routing is plentiful,

as it approximates a single track spacing while preserving signal integrity

at increased density. Older nodes with fewer metal layers may have fewer

options for accommodating NoC pins. For this case, we analyse layouts using

a single pin layer with double track spacing (Single-Layer-Single-Track, or

SLDT). Switching from DLDT to SLDT has the effect of doubling the value

of P .

Utilization in DLDT

Figure 1.10 plots the utilization (ASC

ABB
) as a function of the network link width

(N) for DLDT. The data show that there is a range of network widths where

the utilization decrease is linear, followed by a quadratic decrease. This

inflection point is highlighted in the plot at a network link width of 320.

The region to the left is called the Standalone Router Region because this is

where independent place and route of the router will not affect design QoR.

The region to the right is called the Symbiotic Region because this is where

symbiotic place and route of NoC router and logic components will yield
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Figure 1.12: Plot of router bandwidth, as a function of bounding box area (ABB), for

DLDT pins. Initially, the bandwidth grows linearly with the area, but when the symbiotic

region is reached, the area grows quadratically and provides diminishing bandwidth returns.

better QoR.

Figure 1.10 is annotated with network link widths that correspond to the

network configurations in related work.

Figure 1.11 plots the un-utilized area (ABB − ASC) as a function of the

DLDT network link width (N). In the Symbiotic Region, the un-utilized area

increases quadratically as hypothesized in Figure 1.9.

Figure 1.12 shows the relationship between bounding box area (ABB) and

router bandwidth. The bandwidth is derived from the network link width

(N) and the target frequency of 800 MHz to compute bandwidth for each

area result in our experiments.
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Figure 1.13: Plot of router bounding box area utilization (ASC

ABB
) as a function of SLDT

network link width (N). The utilization is initially constant but when the bounding box

becomes wire-limited, the utilization decreases proportional to the inverse square and

provides an opportunity for NoC Symbiosis. This transition happens 4× earlier than in

Figure 1.11 (64 vs 320)

Utilization with SLDT

As described in our experimental setup, in SLDT we have only a single layer

of pins, resulting in an effective pitch P that is two times that of DLDT.

Since the wire pitch is larger, we expect that the Symbiotic Region will begin

at 320
4

network link width, according to Equation 1.1.

Figure 1.13 plots the utilization (ASC

ABB
) as a function of the SLDT network

link width (N). As in Figure 1.10, the Symbiotic Region is annotated at the

place where the bounding box switches from linear to quadratic growth.

As hypothesized, this occurs with approximately 1
4
compared to DLDT designs.

This is particularly relevant to older designs that were implemented in previous

generation design nodes with fewer metal layers.
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Figure 1.14: Plot of un-utilized bounding box area (ABB −ASC) as a function of SLDT

network link width (N). The available area is initially low, and remains constant as N

increases, but as the network link width increases the un-utilized area begins to grow

quadratically and can be filled with symbiotic logic.

Figure 1.14 shows the un-utilized area (ABB − ASC) as a function of the

network link width (N). It is annotated with the Symbiotic Region. As

in Figure 1.13 the Symbiotic Region starts earlier. The unused area also

increases more quickly, increasing to due to the increased value of P

Comparing the plots of the DLDT experiments and the SLDT experiments

in the previous two sections, we can see that the wiring resources have a

significant impact on NoC Symbiosis. This is important to consider when

choosing a design node, metal stack, or track allocation strategy, as these

decisions affect Symbiotic behavior.
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Figure 1.15: The router bounding box from Figure 1.11 with co-located logic (ACO)

inserted to recover un-utilized area within the bounding box.

Attainable Symbiotic Area

In this experiment we will measure the resources made available through NoC

Symbiosis by attempting to recover the un-utilized area. First, we determine

un-utilized area for each network link width configuration using the data

from DLDT experiments in Section 1.3.5. Then, we pack the remaining cell

area with co-located logic by synthesizing shift registers between the inputs

and outputs of the router. We repeat the process until until the estimated

utilization reaches 80%, and no DRC errors occur. We then measure and

report the area of the co-located logic, ACO from Figure 1.15.

Figure 1.16 records the relationship between attainable co-located logic area

(ACO) and network link width (N). All points outside of the symbiotic region

are ignored because the router bounding box is cell limited and introducing

additional logic produced DRC errors. This figure demonstrates that the

Attained co-located logic area increases along with the Theoretical un-utilized
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area. Thus, much of the un-utilized cell area can be recovered.

Networks vs Area

In this section we will measure how the number of networks affect the router

standard cell area (A − SC) area as the aggregate network link width (N)

increases. In the previous sections we demonstrated results for single 2D

mesh router inside of a bounding box. In these experiments, we will repeat

the data collection shown in the previous experiments, but we will also vary

the number of routers in the bounding box.

Figure 1.17 plots the standard cell area of the routers in the bounding box

(ASC) as the the aggregate network link width varies from 128 to 512. The

sweep is performed three times: with 1, 2, and 4 routers in the bounding

box. As shown in the figure, the number of networks has no effect on ASC .

We conclude that aggregate network link width has the first order impact on

physical design for wormhole routed networks.

1.3.6 Symbiotic Design Methodology

In this section we summarize our experiments and experiences into a set of

helpful design tips. Our goal is to help teams Recognize Opportunities for

NoC Symbiosis; Design for NoC Symbiosis when it is available; and build

Models for NoC Symbiosis that can predict symbiotic impacts early in the

design cycle.

Recognize NoC Symbiosis NoC Symbiosis is possible when a network

bounding block becomes underutilized. In Figure 1.10 and Figure 1.13 we

demonstrated that there are many designs in, or near the Symbiotic Region.

It is important to realize when a design reaches this region so that an optimal
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Figure 1.16: Attained area shows the maximum co-located area that can be inserted into

the un-utilized region. The theoretical limit is the un-utilized area from Figure 1.11.
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with the links distributed equally between the routers. For a given point on the X-axis,

the number of links entering the box remains constant.

design is produced.

Equation 1.1, summarized below, can detect when a design enters the symbi-

otic region:
ASC

U
< (D ∗N ∗ P )2 (1.2)

The Symbiotic Region of a specific design depends on system parameters

like topology and link width as we demonstrated in our experiments. It also

depends on process technology, metal stack and hierarchical strategy as we

demonstrated in Section 1.3.5. Designers should be aware of these parameters

and use them throughout the design process.

Design for NoC Symbiosis NoC Symbiosis can be harnessed as a ben-

eficial design parameter to improve QoR. Our experiences in Section 1.3.4
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demonstrated that symbiosis can reduce design times as well as area. As we

showed in Section 1.3.5, the unused area inside of a symbiotic router can be

recaptured as useful design space.

With the right techniques, designers can move a design into the Symbiotic

Region and tune their design appropriately. For example, designers can

employ techniques such as wormhole routing, which allows link width to be

varied without disrupting the architecture.

There are several ways to move a design into the Symbiotic Region:

• Increase the router link width.

• Increase the number of networks.

• Constrain the number of routing layers.

If a design is Symbiotic but wire limited, there are many ways to tune to take

advantage of the extra area including:

• Increase sizes of local memory (cache, scratchpad, etc.).

• Combine multiple tiles and attach to a single router.

• Increase the datapath width of tile components.

Some of these can be tuned without major architectural implications, or

architecture-level Quality-of-Result. Designers should consider high-level

architectural goals and modeling when making these decisions.

Model NoC Symbiosis Accurate estimation of chip metrics early in

the design process is critical for reducing cost [129]. NoC estimation tools

[133, 132, 130, 216, 31] are an essential tool for performing early estimation

of chip metrics.
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We believe that current generation non-parametric modeling tools [133] can be

trained to estimate chip metrics in the presence of NoC Symbiosis. Previous

work estimates NoC area in isolation and has not been tested with NoC

Symbiosis. As we recounted in Section 1.3.5, an isolated router can produce

under-utilized area. In Section 1.3.4 we recounted how it increased design

time. Using our technique described in Section 1.3.5, non-parametric tools

should be able to model the transition into the Symbiotic Region, and the

attainable area of co-located logic.

1.3.7 Conclusion

In this paper, we introduced the concept of Network-on-Chip Symbiosis. NoC

Symbiosis occurs when the network components of a chip are placed and

routed in conjunction with dissimilar logic components to produce better

Quality-of-Result (QoR) than independent place and route of each component.

We recounted our experiences designing BlackParrot [185] and how our dis-

covery of Symbiosis affected our design methodology. We used our knowledge

to build experiments that demonstrated the symbiotic design space, and how

to leverage NoC Symbiosis in a design. Finally, we distilled our experiences

into a set of best practices for NoC Symbiosis.
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Chapter 2

BLACKPARROT

2.1 The BlackParrot Core

This section has been adapted from IEEE Micro 2020, ”BlackParrot: Black-

Parrot: An agile open-source RISC-V multicore for accelerator SoCs”.

2.1.1 Abstract

This paper introduces BlackParrot, which aims to be the default open-source,

Linux-capable, cache-coherent, 64-bit RISC-V multicore used by the world. In

executing this goal, our research aims to advance the world’s knowledge about

the “software engineering of hardware”. Although originally bootstrapped

by the University of Washington and Boston University via DARPA funding,

BlackParrot strives to be community-driven and infrastructure agnostic; a

multicore which is Pareto optimal in terms of power, performance, area and

complexity. In order to ensure BlackParrot is easy to use, extend and most

importantly trust, development is guided by three core principles: Be Tiny,

Be Modular, and Be Friendly. Development efforts have prioritized the use

of intentional interfaces and modularity and silicon validation as first order

design metrics, so that users can quickly get started and trust that their design

will perform as expected when deployed. BlackParrot has been validated in a

GlobalFoundries 12nm FinFET tapeout. BlackParrot is ideal as a standalone

Linux processor or as a malleable fabric for an agile accelerator SoC design

flow.
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2.1.2 Introduction

RISC-V [252] is a disruptive technology. Never before has such a large,

global community worked together to put forth a complete open source

instruction set, machine model, and software stack. There is a strong belief

in the community that RISC-V will find their foothold as low-NRE, high

performance host cores to the agile-developed specialized accelerators that

are being developed to in response to the end of Dennard Scaling.

Strangely lacking, however, is a similarly globally-maintained open source

implementation of a RISC-V SoC. BlackParrot, described in this work, is

designed to fill this gap. BlackParrot is open source and available now under

the BSD license. BlackParrot is written in standard SystemVerilog and hence

easily integrates into existing design methodologies and is easily understood

and modified by industrial designers. BlackParrot has been fabricated in the

GlobalFoundries 12nm process, with several iterations of refactoring to attain

high area, delay and power efficiency.

Taking lessons from software engineering and the scalability of Linux develop-

ment, BlackParrot has a modular design that puts the interfaces first. We

believe that this will enable scalable collaboration by allowing contributors

to work independently without having to completely understand all of Black-

Parrot’s components, or how they are evolving. We seek not only to advance

the state-of-the-art in open source processor architecture, but also to develop

approaches that change the way the world designs hardware.

Success Metrics

We believe adoption of BlackParrot will be driven by optimizing across

four dimensions, as shown in Figure 2.1: quality, virality, functionality and

efficiency.
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Figure 2.1: The BlackParrot Success Metrics and Manifesto. The Success Metrics

strategically align the project for widespread adoption, and the BlackParrot Manifesto

provides tactical guidance for technical decisions.

Quality From the beginning, the BlackParrot was architected not simply to

achieve RISC-V compliance, but to produce a quality codebase that engineers

could inherently trust as a secure and high-quality design. At the heart of this

approach (which we term informally the software engineering of hardware) is

the pervasive use of intentionally designed, narrow, modular interfaces that

make the design easy to reason about without sacrificing performance, power

or area. Leveraging years of processor design experience, we developed a high-

level design document that partitioned the multicore into three major modules

with easy-to-understand, light-weight transactional interfaces. Each module

then had its own design document with specified its own internal modular

interfaces, and worked through the important nuances and special cases. From

there, we produced schematics and then SystemVerilog RTL which leveraged

BaseJump Standard Template Library [235], an expansive set of intentionally

designed interfaces for common computer architecture and hardware atoms

that comes with corresponding silicon-verified SystemVerilog implementations.



41

The RTL then underwent extensive code review, and both unit and random

testing. We are systematically measuring toggle, line, and functional coverage,

and driving up the coverage of our verification methodology on a daily basis.

The goal is that an experienced engineer can evaluate the documentation,

code, and tests; appreciate BlackParrot’s quality and use it confidently.

Virality While BlackParrot is a quality design, we realize it will ultimately

be unsuccessful if is not widely adopted and if the community does not

collectively take stewardship of it. For this reason, we have focused on the

out-of-the-box experience, making it simple to get up and running via a github

checkout, and pulling in as few external components as possible. We employ

a widely known languages, SystemVerilog, instead of Chisel or BlueSpec.

We have a focus on friendliness and inclusiveness in our social interactions.

Too many online collaboration forums are marred by a tolerance of abusive

behavior particularly by respected members of the community, as highlighted

by a recent case where Linus Torvalds himself stepped away from Linux for

several months to try to contemplate the toxic effects of his curmudgeonly

attitude. We actively try to prevent “not invented here” syndrome from

taking hold in the BlackParrot effort. Our effort welcomes your contributions

and the modular nature of the design makes it easy for individual contributors

to get up to speed.

Functionality BlackParrot boots Linux. It implements all of the core

features of the RISC-V instruction set that are used by current software

stacks. It also contains all the useful features required by modern SoCs,

such as interrupt controllers, cache coherence and cache hierarchies, and

easy-to-integrate accelerator interfaces.
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CoreMark/MHz Language Design Natively License

(Higher better) Schema Multicore

BlackParrot 3.04 SystemVerilog Pervasive Modular Interfaces; ✓ BSD-3

Standard Template Library

Rocket 2.62 Chisel Generator ✓ BSD-3

Ariane 2.45 SystemVerilog Monolithic SHL-2

Shakti 2.20 BlueSpec Generator BSD-3

Flute 1.00 BlueSpec Generator Apache-2

SiFive U54MC 3.01 Chisel Generator ✓ Closed Source

Figure 2.2: Recent Energy/Performance optimized 64-bit RISC-V Open Source

Linux-capable ASIC application class processor cores. Per-core performance is

given in CoreMark / MHz as is standard in the industry. For reference we given the

equivalent closed source, for-money, Linux-capable SiFive U54 core. (Note that since these

open source projects are living, breathing projects, this is just a snapshot in time!)

Efficiency BlackParrot must have best-of-class PPA for its target domain;

the Linux host multicore for accelerator chips. Early Coremark scores show

BlackParrot achieves competitive performance with both academic and com-

mercial cores of its class, as shown in Table 2.2. Extensive design and RTL

code review are used to ensure BlackParrot contains efficient implementations

of modern microarchitectural features expected of a Linux-class microproces-

sor. SRAM and logic structures are sized to be performance, power, and area

(PPA) efficient. To validate the design we have fabricated BlackParrot in

GlobalFoundries 12nm process node, and are deploying new features across

frequent 12nm and 40nm tapeouts.

Design Manifesto

During the course of the project, there have been many cases where there are

two reasonable technical directions to take the project. To guide our effort,

we developed an informal manifesto to help decide these difficult chases. The

manifesto has three key rules:
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1. Be tiny. When choosing among alternatives, we choose the option

that results in a smaller, more understandable code base and in less

die area, simpler critical paths, and fewer bugs. The result is a code

base that is as small and understandable as possible, and hardware

that is PPA efficient. We take care to not implement esoteric and

non-performance critical components in RTL, and to avoid a common

problem in recent generator-based RTL methodologies: a multitude of

tunable knobs in which most combinations have been untested and yield

dubious PPA benefit. If a feature is required by the RISC-V spec but

is not performance critical, we implement it through emulation. The

code is “all the RTL you need and nothing that you don’t”.

2. Be modular. We employ clean, latency-insensitive interfaces that do not

rely on knowledge of the other module’s internals. This allows multiple

contributors to work independently of each other, and to minimize bugs

that emerge from incomplete understanding of the entire code base; and

3. Be friendly. We ask ourselves both in design decisions and in our

presentation: does this make the project more approachable? With

this we can build a large open source project culture that encourages

contributions and avoids the “not invented here” syndrome.

To facilitate widespread adoption, the BlackParrot infrastructure is built

with community in mind. Environment dependencies are kept to a minimum.

BlackParrot is developed on a modern Linux version with easily portable

Makefile-based simulation and synthesis flows. Support for open-source

tools such as Verilator and GTKWave is prioritized as a first-class concern,

and BlackParrot will be one of the first major test cases for the upcoming

OpenROAD open-source CAD flow. All of these considerations culminate in

a focus on “out-of-box experience”. Prospective users are able to go from
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GitHub to simulation with a handful of simple commands.

System Architecture

The BlackParrot multicore implements the RISC-V 64-bit “RV64G” archi-

tecture, which includes the base integer ISA “I”, multiplication and division

“M”, atomics “A”, single and double precision floating-point “F/D”. It sup-

ports three privilege levels—machine, supervisor, and user—as well as SV39

virtual memory; these extensions are sufficient to efficiently run full-featured

operating systems such as Linux.

Race-Free Programmable Cache Coherence

BlackParrot implements a distributed directory-based cache coherence pro-

tocol, which currently supports VI, MSI and MESI. The underlying imple-

mentation, BedRock, consists of a collection of Local Cache Engines (LCE),

each controlling an L1 cache, that connect over an interconnection network

to the programmable Cache Coherence Engines (CCEs), which collectively

maintain the address-sharded directory state.

The BedRock protocol implementations have the unique property of being

race-free, because they ensure that coherence state transitions occur at the

CCEs and not at the local caches or LCEs, which significantly reduces protocol

complexity.

BlackParrot contains many novel and useful uncore/multi-core features, in-

cluding a programmable cache coherence engine and coherent accelerator

interfaces. This programmable coherence engine implements a novel dis-

tributed directory-based cache coherence protocol which we call BedRock.

BedRock is fast and simple enough that verification tools can prove its cor-

rectness. BedRock enables effortless composition of systems with coherent
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Figure 2.3: BlackParrot multicore SoCs are comprised of a mesh of hetero-

geneous tiles, allowing flexible composition of cores, accelerators, L2 cache

slices, I/O and DRAM controllers. Four different kinds of tiles are pictured. Core

tiles implement a processor, a directory shard and an L2 slice. Coherent Accelerator

tiles implement an accelerator that has access to the cache coherent memory system. L2

extension tiles allow the amount of L2 cache to be changed. Streaming accelerator or I/O

tiles allow flexible interfacing of a common memory system via a shared non L1-cached

address space that is routed over the coherence network.

cores, accelerators and I/O devices.

2.1.3 Heterogeneous Multicore Tiles

BlackParrot is designed as a scalable, heterogeneously tiled multicore micro-

architecture, as shown in Figure 3a. (We use the term multicore micro-

architecture because the user or programmer is not aware of how the multi-

core’s components are arranged, it is hidden beneath the multicore ISA layer.)

Decomposing the system into replicated sub-blocks has several benefits: struc-

tures are regularized for scalability and ease of timing closure, systems can

be flexibly composed into different topologies and protocol complexity can be

shifted from the component level to the network level. Rather than connecting
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these tiles with a shared bus, BlackParrot uses a collection of NoCs. The

routers used in BlackParrot are dimension-ordered and wormhole-switched,

using credit-based flow-control to limit contention.

In order to promote regularity for hierarchical ASIC flow designs, the system

is designed as a 2D mesh with a single router per network contained in

each tile. Some networks may have multiple endpoints within a tile – these

endpoint connections are combined and connected to the router through a

wormhole concentrator. While many other processors use standard bus-based

interfaces such as AXI or AHB for all on-chip communication, these protocols

are highly complex and require sophisticated IP blocks to achieve reasonable

performance. Rather than couple its internal networks with any particular

implementation of a standard bus, BlackParrot provides a set of adapters to

transduce between a set of well-known protocols, such as AXI or WishBone.

An additional level of hierarchy useful for system design is grouping sets of

similar tiles into complexes, which greatly simplifies network address mapping

and maximally reduces the dimensionality of routers. Figure 2.3 shows the

initial BlackParrot Processor Families available. The Core Complex (CC)

contains BlackParrot tiles. The I/O Complex (IOC) primarily transduces

between uncached BedRock messages and I/O messages which allow off-

chip communication. The Streaming Accelerator and Coherent Accelerator

Complexes (SAC and CAC) contain accelerators connected to the BedRock

Network. Last, the Memory Complex (MC) contains addition on-chip memory,

as well as a connection to off-chip memory, such as a DRAM controller.

BlackParrot Microarchitectural Tile Types

Tiles in a BlackParrot system attach to the BedRock network as both an LCE

and a CCE. However, a given LCE or CCE may only support a subset of
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operations provided by the interface. For instance, some LCEs may not have

a coherent cache attached to them; some CCEs may not contain directory

tags. Given these properties, BlackParrot microarchitectural tiles fall into

one of the four categories enumerated in Figure 3a, which we detail below.

BlackParrot Core Tile A BlackParrot Core Tile contains a full Black-

Parrot processor or an accelerator which acts a processor, comprising one or

more coherent caches as well as a directory shard and an L2 slice. A typical

system has many Core Tiles.

L2 Extension Tile An L2 Extension Tile provides a simple scale-out

method to increase the amount of on-chip L2 in a BlackParrot system. Each

L2 extension contains a directory and a non-inclusive non-exclusive L2 slice.

By distributing the L2 slices, a system designer can easily change the compute

to cache ratio of a BlackParrot system without perturbing critical paths

within the cores or the NoCs.

Coherent Accelerator Tile Attaching a Coherent Accelerator Tile to

the BlackParrot network can be done with a few degrees of specialization.

From an abstract system view, a coherent accelerator is simply an LCE with

a backing coherent cache. Depending on the accelerator’s needs and the

project’s complexity budget, users may (in increasing order of complexity):

1. Attach the accelerator directly to the provided BlackParrot data cache.

2. Reuse the provided BlackParrot LCE and provide a specialized cache.

3. Provide a specialized LCE implementation that interfaces with directly

with the network.
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Streaming Accelerator Tile Streaming Tiles are tiles which have no

locally cached memory and do not logically control any physical memory.

That is, these tiles do not contain a backing coherent cache for its LCE, nor

a directory. These tiles may be used for basic I/O devices, network interface

links, or even heavyweight streaming-based accelerators such as GPUs.

Other tile components As a truly tiled micro-architecture, BlackParrot

distributes as many system resources as possible. Each BlackParrot core tile

contains a memory-mapped configuration block, a slice of the Core Level

Interrupt Controller (CLINT) and a global L2 slice. Splitting these system

resources promotes regularity in the tiles, removes globally routed configura-

tion and interrupt signals, ultimately easing physical design implementation.

With simple adjustments to the network memory map, components can easily

be attached to the BlackParrot system and addressed from any other tile.

Networks-on-Chip

There are 3 NoC classes in BlackParrot: Coherence (BedRock), DRAM and

I/O. Although the NoCs are implemented using standard BaseJump STL

modules, BlackParrot specializes each network for the protocol, including flit

width, packet length and coordinate width, to optimize physical design.

BedRock Network The BedRock network is a cache-coherent fabric con-

necting all tiles in a BlackParrot system. Specifically, the network is the

connection point for all LCEs and CCEs in the system. The BedRock protocol

has 3 logical channels: request, command and response. The request channel

is used by an LCE to initiate a transaction, specifying whether it is a read

or write, whether it is cached or uncached, and additional metadata used

for return addressing. The command channel is used by a CCE to modify
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the system’s LCE state. Example commands include setting tags, filling

data, and completing synchronization sequences. Additionally, LCEs may be

commanded to transfer cache lines among each other – these transfers travel

over the command network as well. Finally, the response channel is used for

coherence acknowledgements, allowing for serialization of requests.

Although the BedRock protocol does not require it, the current implementa-

tion of the BedRock network is a wormhole-routed 2D mesh, with 1 physical

channel per logical channel.

DRAM Network The DRAM network connects CCEs to devices which

are able to service memory requests, for example DRAM, Flash or on-chip

ROMS. Since all requests are initiated by a tile and serviced by memory

devices at the bottom of the chip, the memory network is a lightweight 0.5D

network. The DRAM network is particularly suited to wormhole routing, as

DRAM controllers tend to return least significant word first.

IO Network The I/O network exists to connect a BlackParrot processor

to peripherals such as serial ports, PCIe controllers, external I/O devices and

debug interfaces. Messages may be initiated on or off chip, so the I/O network

is implemented as a 1D wormhole network. This network only exists in the

I/O Complex; generally, it serves as a lightweight transducer and physical

transport layer between BlackParrot protocols and standard protocols such

as AXI, WishBone and simple bit banging.

Decoupled Core Microarchitecture

BlackParrot is designed to be modular, reaping the usual benefits of simpler

verification, more agile development and easier onboarding of users and

developers. Additionally, by focusing on interfaces rather than concrete
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implementations, BlackParrot is provisioned to support a wide variety of

possible microarchitectures. Figure 3b shows the current BlackParrot core

microarchitecture.

Efficiency Through Thin Interfaces

While software interface abstractions are a useful tool, hardware interfaces

have physical overheads which can cripple a design. Interfaces in BlackParrot

are designed to have minimal overhead, partitioning regions which are both

logically and physically separated. Each interface described here is imple-

mented as a parameterizable SystemVerilog struct passed through a latency

insensitive port, usually via a small FIFO. Decoupling the Ends ensures

there are no timing paths between these logically separated components and

provides confidence that implementation changes in one End will not break

another.

Front End The Front End presents an in-order but potentially speculative

instruction stream to the Back End. The issue queue decouples the Front

End fetch from the Back End execution, allowing speculative fetching during

long latency Back End operations such as services cache misses. During

instruction fetch, exceptions may arise. Since exceptions in this domain

are purely speculative, they are sent to the Back End to be serviced in-line

with instructions. Because the RISC-V virtual memory scheme may modify

architectural state during instruction fetch (setting the “Access (A) bit”), all

TLB misses in the Front End are sent to the Back End to be handled inline

with other exceptions. Along with the PC/instruction/exception pair, the

Front End also sends metadata associated with the branch prediction that

resulted in that particular PC fetch.
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Figure 2.4: Fig 3b. BlackParrot Core Microarchitecture. Both the Front End (IF1

and IF2 stages in the diagram) and Back End adhere to the interface specifications, with

simple and efficient pipeline implementations. Because of a modest misprediction penalty,

complex branch predictors are unnecessary. In order to remove a physical design intensive

global stall signal, the Back End is non-stalling after the issue stage, instead flushing the

pipeline and replaying instructions upon infrequent cache misses. Cache misses are handled

entirely through the BedRock coherence system.
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Figure 2.5: Microprogrammed Cache Coherence Engine. The microarchitecture of the

CCE is fairly simple. By minimizing the coherence protocol complexity and pushing the

management logic into software, the hardware is easily verifiable.

Back End The Back End executes instructions, handles exceptions, and

generally maintains the architectural state of the processor. Messages from

the Back End to the Front End are used to correct mispeculation and update

shadow state in the Front End. Messages include branch resolution, interrupt

redirection, iTLB manipulation and privilege mode changes. Upon branch

resolution, the branch metadata associated with the branch is forwarded back

to the Front End. This metadata is never inspected by the Back End; the

particular branch prediction scheme used by the Front End is completely

opaque to the Back End.
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Memory End BlackParrot’s memory end, BedRock, is a scalable, dis-

tributed, directory-based coherence scheme designed with an emphasis on

simplicity and verification. Nodes in the coherence system are Local Cache

Engine (LCE) or Cache Coherence Engines (CCE). CCEs are responsible for

managing coherence for a slice of physical address space. LCEs are responsible

for initiating and responding to coherence requests on behalf of a coherence

cache. BedRock connects all components of a BlackParrot multicore, including

non-coherent or I/O devices.

Three types of CCE are available in Bedrock: a novel microprogrammed

variant, a traditional fixed-function management engine, and a minimal

controller which implements only uncached requests and is used for I/O

or simple accelerators. The microprogrammed CCE is the default for a

BlackParrot core and provides substantial flexibility and adaptability when

implementing variants of coherence protocols, and comes at a small area cost.

Notably, since microcode can be changed out by a simple firmware update,

advanced coherence experimentation and security patches can be applied even

on existing silicon designs.

Some configurations of BlackParrot (e.g. single core, with software coherence,

leveraging external coherence systems) do not require a full coherence system.

In these cases, caches simply need a mechanism to bootstrap and service

misses. By standardizing the cache miss handling interface and constraining it

to be a subset of the Cache to LCE interface, different cache implementations

and coherence schemes can be mixed and matched in BlackParrot.

Agile Development Process

In this section we describe the key features of the BlackParrot development

effort that lead to be a design users can trust.
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Microarchitectural Specification (MAS) Documents Components of

BlackParrot are designed before they are implemented. Initially, we separated

the design into three key components: the front end, the back end, and the

memory system. Module interfaces for these components were developed and

further sub modules designed. Each component was designed, documented

and peer reviewed prior to any RTL being implemented.

Along the way new features are requested. All new features first undergo a

three day waiting period – the person requesting it had better really want

it. It is then closely scrutinized and alternatives considered. If the feature

is deemed worth the “technical debt” of added complexity, it undergoes the

same design, documentation and review process prior to implementation.

Leveraging Open-Source Libraries In order to rapidly iterate on Black-

Parrot, it is important to leverage established open-source codebases. By

building upon battle-tested hardware libraries such as BaseJump Standard

Template Library (STL) for SystemVerilog [235] and Berkeley Verilog Hard-

Float [109], and integrating using latency insensitive design principles, Black-

Parrot is able to minimize its universe of possible bugs. Development of

BlackParrot is done using commercial tools, such as Synopsys VCS, but

supporting at least one open-source alternative, such Verilator [210], is a

first-class infrastructure concern.

Evaluating Design Complexity and Out-of-Box Experience One of

the most difficult-to-evaluate components of the BlackParrot manifesto is

whether we have achieved our goals of virality and complexity. To evaluate this,

we assigned BlackParrot as a 3-week class project in an VLSI class attended by

35 fourth and fifth year students, and all of the students (including ones that

had not taken computer architecture before!) were successful in proposing



55

FE BE

ME

Trace-Replay

FE BE

ME

Trace-Replay

ME

LCE LCE

ME

LCE LCE

DRAMSim2

FE BE

ME

RTR RTR

Mock

FE BE

ME

RTR

FE BE

ME

RTR

Trace-Replay Trace-Replay

AXEAXE

Coherence 
tracer

Commit 
tracer

Bind

Figure 2.6: Modular Testing in BlackParrot. Testing in BlackParrot is driven by the

insight that testing is invaluable, but testbenches are expensive to maintain. Testbenches

are designed to verify multiple dimensions of a system and are composed of flexible, reusable

components.

and implementing unique, previously unsupported features into the core, such

as modifying the pipeline to change the load-use latency to 2 cycles instead

of 3, adding variable fill widths to the L1 cache, enabling different bank

sizes in the L1 cache, and implementing more complex branch predictors in

the frontend. We intended to have yearly BlackParrot-related projects to

continuously self-evaluate these aspects of the project.

Continuous Integration, Code Review Cleanly specified interfaces

between the front-end, back-end and memory system components allow
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for stubbed-out versions to quickly be constructed. Test harnesses at the

component level were also developed.

The first instruction to flow through the BlackParrot core occurred four weeks

after completion of the MAS documents and team formation. After this

milestone BlackParrot remained fully functional throughout the development

process. New features, such as virtual memory support, were added by

forming new teams and adding them into the existing working BlackParrot

core.

For some modules we implemented multiple alternatives. For example, the

programmable cache coherence controller was also implemented in a fixed-

logic finite state machine form. We did this to fully understand the perfor-

mance/area trade-off of the design.

Along the way, refinements to the initial module partitions did occur. For

example, to remove a potential security flaw in the front-end of the processor,

all page table walks are handled non-speculatively in the back-end. This

required refinements to the inter-module messages that occur within the pro-

cessor. However, by having a clean interface between modules, no significant

changes to the MAS documents and overall module structure were necessary

to add this support, despite the fact that the early stages of the processor

were not designed for it.

Co-simulation Testing Framework The majority of testing in Black-

Parrot is done through a system-level testbench driven by program level

execution. In addition to a handful of directed white-box tests, BlackParrot

supports the riscv-tests suite, BEEBS suite, Spec and CoreMark as a baseline

functional regression. Our plan is to greatly expand this selection.

RISCV-DV [94] is a UVM-based instruction generator framework recently re-
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Figure 2.7: Hybrid Co-simulation Using Dromajo. Parallel co-simulation dramatically

speeds up traditional RTL simulation methodologies without sacrificing flexibility.

leased with support for RV64GC, MSU privilege modes, page-table generation

and trap-handling support. Due to a dearth of open-source directed privileged

mode tests (i.e. other than booting Linux), constrained random testing is an

effective way to expose edge cases. In a matter of days, RISCV-DV was able

to expose several hardware bugs in BlackParrot which may otherwise have

been found millions of cycles into a Linux boot test.

In the spirit of modularity, testing is also done at the End level (Figure 2.6).

Mock versions of other components are substituted in order to isolate bugs.

By maintaining a suite of End level tests, external BlackParrot developers

can easily verify their changes comply with the system interfaces.

Under traditional architectural research methodologies, there exist clear

trade-offs between speed and accuracy. In order to temper excessive debug

cycle times, hardware designers often analogously sacrifice system visibility

for speed through techniques such as FPGA emulation [136] or high level

modelling of sub-components. Debugging at the RTL level is commonly

done by comparing execution traces of a simulation model with a “golden
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trace”, typically generated by a well-trusted functional model, and examining

waveforms in the case of a trace mismatch. Another approach is to implement

the RTL model in an FPGA, outputting periodic status and debug information.

(A third option largely out of reach to academics and hobbyists is to use

sophisticated FPGA emulation frameworks such as Synopsys ZeBu.)

Instead, BlackParrot employs a hybrid approach of parallel co-simulation

using an open-source RISC-V ISA simulator, Dromajo [68]. First, a long-

running program is simulated using Dromajo. Every N cycles, Dromajo

collects the architectural state of the system and creates both a memory

dump as well as a checkpoint ROM. The checkpoint ROM comprises ordinary

RISC-V instructions designed to initialize a freshly rebooted processor to

a well-defined architectural state. Next, in parallel, the BlackParrot RTL

model is restored using each checkpoint ROM and co-simulated alongside

the Dromajo model. Imprecise events such as interrupts and device I/O are

relayed from RTL to Dromajo to keep the two versions aligned.

ASIC Validation In addition to our 12nm BlackParrot chip, which is

running in our lab, several upcoming BlackParrot tapeouts are planned both

as standalone chips and as accelerator hosts. Directories containing tape-

out parameterizations, constraints and ASIC infrastructure are all provided

as references. Work is in progress to push BlackParrot through the UW

OpenROAD Free45 Reference Flow [170] [5], so that users will simply be

able to clone the repository and generate a fully placed-and-routed, repre-

sentative BlackParrot. Providing this capability will enable architects to

quickly validate their hardware experiments without the financial and intel-

lectual overheads of maintaining a commercial CAD flow, or needing to sign

restrictive foundry NDAs.
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Figure 2.8: BlackParrot GF12 Placed and Routed. A quad-core BlackParrot system

was taped out in July 2019 using GlobalFoundries 12nm. Lessons learned from this tapeout

have driven several major changes in the BlackParrot system architecture, resulting in

a 50% reduction in tile area as well as a 50% reduction in total wire length. Although

RTL-level simulation is effective at analysing and comparing relative performance, an

experiment without ASIC validation can mask serious physical limitations of a design.



60

Conclusion

RISC-V challenges the world order of x86 and ARM. UC Berkeley has

bootstrapped a global stewardship to maintain the RISC-V ISA and its

software base. However, yet to emerge is a similar global stewardship of a

Linux capable RISC-V implementation that is documented, PPA efficient and

implemented in standard SystemVerilog. BlackParrot is architected from the

ground up to fill this role, in contrast to prior efforts [19][57][273] which have

centralized stewardship models and evolved organically to their current state.

BlackParrot is tiny, modular and friendly. It is an ideal SoC “base class”

to integrate with accelerators and build Linux-capable systems with. We

welcome your enhancements! As BlackParrot becomes more widely used,

community experts can contribute back to BlackParrot, ensuring that it

remains representative of state of the art processor designs. BlackParrot is

now available on GitHub (https://github.com/black-parrot/) under a

BSD-3 license.

https://github.com/black-parrot/
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Chapter 3

ZYNQPARROT

3.1 ZynqParrot

This section has been adapted from an Arxiv 2025 submission, ”ZynqParrot: A

Scale-Down Approach to Cycle-Accurate, FPGA-Accelerated Co-Emulation”.

3.1.1 Abstract

As processors increase in complexity, costs grow even more rapidly, both for

functional verification and performance validation. Additionally, performance

models become ever more sensitive to slight microarchitecture inaccuracies.

Runtime measurements of key workloads are an essential part of the per-

formance debugging process. Most often, silicon characterizations comprise

simple performance counters, which are aggregated and separated to tell a

story. Based on these inferences, performance engineers employ microarchitec-

tural simulation to inspect deeply into the core. Unfortunately, dramatically

longer runtimes make simulation infeasible for long workloads.

Traditionally, architects have bridged this gap by performing early prototyping

on FPGA. Yet, the scale of modern designs is impractical to implement on

a single emulation board. Large companies use Scale-Up solutions such as

commercial emulation platforms, but these are unaffordable to academics,

hobbyists and startups. Others have proposed Scale-Out solutions, leveraging

cloud FPGA clusters to emulate large System-On-Chips. However, this
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approach prescribes certain I/O and memory system architectures instead of

the native interface timings of any given subsystem.

Instead, we propose a Scale-Down approach to modelling and validation.

Rather than up-sizing a prototyping platform to fit large and complex system

designs, we show that it can be more accurate, faster, and more economical

to decompose a system into manageable sub-components that can be proto-

typed independently. By carefully designing the prototyping interface, it is

possible to adhere to strict non-interference of the Device Under Test (DUT).

This allows architects to have the best of both worlds: the speed of FPGA

acceleration while eliminating the inaccuracies of Scale-Out and the inherent

costs of Scale-Up.

In this work, we present ZynqParrot: a Scale-Down FPGA-based modelling

platform, capable of executing non-interfering, cycle-accurate co-emulations

of arbitrary RTL designs. ZynqParrot is capable of verifying functionality

and performance with arbitrary granularity. We also provide case studies

using ZynqParrot to analyse the full-stack performance of an open-source

RISC-V processor.

3.1.2 Introduction

As processors increase in complexity, verification costs grow even more rapidly,

both for functionality and performance. The end of Dennard Scaling [46] has

led to a Cambrian explosion of domain-specific accelerators which present

unique, full-stack verification challenges. Besides functional correctness, per-

formance validation is critical to achieving worthwhile gains from accelerator

integration. The higher performance the design, the more sensitive it is to

subtle disturbances in the microarchitecture. When characterizing full-system

performance in silicon, software engineers use simple performance counters
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which must be decided upon early in the design process, before problematic

subsystems have been identified. These counters are aggregated and separated

to divine reasons for the performance of a target application. On the other

end of the spectrum, architects can leverage the deep verification capabilities

of pre-silicon waveform inspection to identify subsystem bottlenecks before

tapeout, when fixes are much cheaper. However, cycle-accurate simulations

are painfully slow, so architects must settle for sampling applications [107] to

complete in a reasonable timescale.

Traditionally, architects have bridged this gap by performing early prototyping

in FPGA. By doing so, RTL similar to tapeout designs can be emulated with

cycle accuracy at 10-100x faster than simulation alone. However, modern

designs are too large to economically fit on a single emulation board. Large

companies can Scale-Up their prototyping systems using commercial emulation

platforms [215, 53, 160], but these are unaffordable to academics, hobbyists

and startups. Other academics have proposed Scale-Out solutions that

leverage cloud FPGA clusters [10, 6] to emulate large System-On-Chips.

However, this approach generally relies on regularity in the design, prescribes

certain standardized I/O and memory system architectures and couples

platforms to proprietary vendor IP which may interfere with the native

interface timings of any given system and provide no insight or ability to

adapt for system needs.

Inspired by biotechnological process modelling [164], we propose a Scale-

Down approach for architectural prototyping, shown in Figure 3.1. Instead of

unilaterally scaling up a chip design (process) from an FPGA prototype (lab-

scale experiment) to a full tapeout (industrial manufacturing process), it is

more economical to iteratively Scale-Up and Scale-Down the design to identify

subsystem issues at scale and precisely debug performance in a smaller, more
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Figure 3.1: A Scale-Up/Scale-Down cycle transforms industrial manufacturing processes

into laboratory experiments. Experiments accept identical inputs as the full process.

Results are extrapolated to predict impacts on the modified process before committing to

costly change orders. Iterating over the process lifecycle leads to continuous improvement.

tightly instrumented system. By closely correlating the two environments,

Scale-Down results can give deep debugging insights into process deviations

as well as accurately predict future deviations for orders of magnitude lower

cost than a full production run.

In this work, we show that decomposing and recomposing the system is more

accurate, faster, and more economical than state of-the-art alternatives. By

carefully designing the platform interfaces, it is possible to provide flexible

environments that represent the interactions of real systems while maintaining

system timings at the component interfaces. This allows architects to have

the best of both words: the speed of FPGA acceleration while eliminating

the inaccuracies of Scale-Out and the inherent costs of Scale-Up. Because

iteration time is much faster than monolithic prototypes, small design teams

can quickly bootstrap new Scale-Down subsystems, run large simulations on
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abstracted Scale-Up models and return to Scale-Down to rapidly debug and

enhance components.

When Scaling-Down, great care must be taken to accurately transform the

design and exactly mimic the environment between the full design and the

subsystem. In particular, I/O interface timings must adhere to accurate

timing models. Previous works [136, 69] have focused on instrumenting

FPGA timing for common interfaces such as DRAM and Ethernet rather

than the fully custom models required for subsystem partitioning. Others [14]

have focused on providing full-system emulation for software development

and too high a level of abstraction for microarchitectural debugging. Instead,

this work aims to provide more precise and more flexible interface emulation

to allow for finer-grained partitioning without sacrificing accuracy.

Previous FPGA emulation platforms [215] [53] [136] [69] are expensive, de-

pendent on vendor IP, or cumbersome and prone to lock-up. In contrast,

ZynqParrot builds upon the BaseJump STL [235] library to provide generic

and completely open bridges to commonly available AXI and UART interfaces.

When using Zynq-based FPGAs [268], the only requirement to use Zynq-

Parrot is an SSH-capable machine running Vivado. For non-Zynq FPGAs,

ZynqParrot requires a UART connection to the FPGA as well as a JTAG con-

nection for bitstream programming, although the platform architecture easily

supports plugins for additional host functionality. Contrast this to traditional

solutions which require expensive PCIe-capable accelerators. These setups

are hard to maintain, built on top of proprietary PCIe IP and software layers

such as Xilinx XDMA [267]. Failure to interface correctly to PCIe can lockup

not only the DUT but also the host server machine, requiring remote restart

capabilities. A cluster of such host machines and FPGAs can easily exceed

10s of thousands of dollars and require full-time system administration (see
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Table 3.1). In contrast, ZynqParrot provides verification teams the ability to

begin with the minimal possible Total Cost of Ownership (TCO) and scale

costs alongside the design progress.

Strategy $/year/FPGA0 Logic Unit Required I/O

Scale-Up1 ∼$5000 Full Design Native PCIe

Scale-Out2 ∼$2000 Tile PCIe Tunnel

Scale-Down2 ∼$100 IP Block SSH/Serial

Table 3.1: On a per-FPGA basis Scale-Down systems require a much smaller investment, allowing teams

to incrementally build up their verification infrastructure. Parallelizing a benchmark suite rather than a

subcomponents of a design has further economic benefits.

0 2000 hours is equivalent to a year of 8-hour regressions.

1 $1.4167 per AWS f1.16xlarge hour [11].

2 $0.6744 per AWS f1.4xlarge hour [11].

3 $300 per Avnet Ultra96v2 board [21], with a replacement rate of once per three years. Cluster MTBF

is 100+ years [266].

ZynqParrot adheres to strict non-interference of internal design timings

through strategic clock-gating during unpredictable host back-pressure. This

allows subsystems to execute with the illusion that they are running in

situ within the full system. Each Device-Under-Test (DUT) execution cycle

can be verified against a emulated model, taking into account functional

correctness along with verification of internal and external performance.

Additionally, ZynqParrot is able to synthesize complex performance counters

without interfering with mature or frozen RTL. Such a deep dissection of the

subsystem can allow an architect to design experiments to identify subsystem

bottlenecks and quickly iterate without requiring microarchitectural changes.

We provide case studies of how to analyse a complex RISC-V processor,

BlackParrot, using ZynqParrot. We identify useful software and hardware

enhancements to quickly verify functionality and performance and how they

easily fit into the ZynqParrot framework. These non-invasive, instrumented
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measurements and host software abstraction layers were written for use in

BlackParrot; however, they are generally applicable to a wide range of RISC-V

projects. Additionally, we demonstrate real-world uses of ZynqParrot: first

to host the term projects of an undergraduate/graduate architecture class

of 20 students, second to bring up first-batch silicon during a commercial

tapeout, and third to analyse a bottleneck and access the improvement of a

new microarchitectural widget in BlackParrot.

Our major contributions are:

1. We present ZynqParrot1, the first Scale-Down open-source prototyping

platform for deterministic, cycle-accurate local FPGA co-emulation.

2. We provide a co-simulation capable prototyping library that eschews

vendor dependencies and is cycle-identical to ZynqParrot co-emulation.

3. We explore the diversity of ZynqParrot usage via a series of case studies,

from the classroom to academic research to commercial bring-up.

4. We introduce PanicRoom2: an ultra-portable library that leverages

DRAM to run POSIX benchmarks on bare-metal systems.

Complex IP designs often require specific Vivado versions to ensure repro-

ducible builds. However, each Vivado version only supports a small subset of

operating systems, often directly conflicting with strict ASIC EDA vendor

compatibility guides. Although Vivado-based build systems can be bro-

ken up into bitstream generation and programming machines, this requires

supplemental system administration.

1The hardware and software code for ZynqParrot is open-source under a permissive
BSD-3 License.

2The software code for PanicRoom is open-source and as of submission time being
actively upstreamed to the Newlib project
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Additionally, many FPGAs are only available in PCIe-attached variants,

resulting in complex and fragile bridge solutions. These connections require

proprietary vendor solutions such as Xilinx XDMA [267], non-portable RTL

and software layers and are prone to full-system lockup due to subtle bugs in

configuration or execution. Lockup can cause long-running experiments to

be lost, force costly manual debugging and complicate systems with fallback-

recovery mechanisms.

Considering these limitations, emulation management software is often tai-

lored to each specific host-FPGA pair and disparate from simulation-based

testbench infrastructure, which must be maintained independently. As a

result, to normalize environments across designs for powerful prototyping

boards, groups must maintain costly heterogeneous server infrastructures

with multiple x86 environments customized to each design.

Traditional FPGA prototyping systems require powerful discrete host servers

to:

1. Compile a netlist and generate a bitstream, often requiring hours for

large designs.

2. Program the bitstream, typically over a USB/JTAG connection.

3. Manage emulation execution, running software to load test vectors,

monitor performance or verify results.

In this section, we describe the ZynqParrot architecture and how it addresses

these challenges cost-effectively and with lower maintenance than previous

solutions.
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(a) ZynqParrot subcomponents interface with the

P-Shell through a parameterizable set of SB-FIFOs

and CSRs. The P-Shell logic is run asynchronously

to the DUT, allowing for decoupled co-emulation.

Clock gating logic on the VPS side ensures accurate

co-emulation by maintaining internal timings of the

DUT.

PL

Logic

AXI

Regs

P-Shell Overlay

PS

FIFO 0

CNT 0

FIFO 1

CNT 1

CSR 0

CSR 1

CSR 2

CSR 3

GP0

(b) As DUT logic may be buggy during design, it

is essential to not hang GP0, which could lead to

VPS lockup. In ZynqParrot, the P-Shell prevents

lockup regardless of DUT state, by lifting generic

DUT interfaces to a set of nonblocking FIFO and

read/write CSRs.

Figure 3.2: The ZynqParrot system provides system architects with full co-emulation

capabilities through a simple C++ MMIO drivers, identically accessible from simulation,

co-emulation or on deployed systems. Users parameterize the P-Shell to for control or

monitor execution, while the VPS runs any necessary software functional models.
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Hardware Architecture

Zynq FPGA boards couple hardened ARM cores (PS ) with a programmable

fabric (PL). Common peripherals such as USB, Ethernet, and DRAM are

connected to the PS, while the PS communicates with the PL via hardened

AXI [15] interfaces. The PS master ports are called GP ports and cover a

small address space. PS client ports (HP) are larger and higher performance,

allowing the PL to indirectly access DRAM and peripherals.

ZynqParrot leverages the Zynq architecture to decompose prototyping systems

into these orthogonal functionalities. Bitstream generation can be done on any

machine with a compatible Vivado version to the particular IP. From there,

users can login to the PS over a standard Ethernet or UART connection, copy

over the compiled bitstream and using the Pynq API, program the overlay

and DUT on the PL.

ZynqParrot provides an overlay (shown in Figure 3.2) that includes the

P-Shell, the main interface between the host emulation and the DUT user

logic. The P-Shell provides a parameterizable array of input/output Control

and Status Registers CSRs, as well as an array of semi-blocking SB-FIFOs.

An SB-FIFO exposes blocking ready/valid [235] interfaces to the PL side

to support latency-insensitive interfaces, while the PS interacts with a non-

blocking credit/valid interface to prevent system lockup. While non-blocking

interfaces require multiple transactions for each read and write, they generally

have little overall performance impact as the PS outpaces the PL during large

system prototyping.

While ZynqParrot fits seamlessly into the Zynq PS-PL paradigm, there are

many FPGA architectures which lack hardened CPU cores. For these boards,

ZynqParrot provides hardware bridges (shown in Figure 3.3) which can convert
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Figure 3.3: When prototyping on non-Zynq FPGAs, ZynqParrot transparently tunnels

requests into a ”pseudo-GP0” accessing the P-Shell. For instance, GP0 writes are deserial-

ized from UART RX while GP0 reads are deserialized from RX and then reserialized into

UART TX.

C++ P-Shell requests to a pseudo-GP master bus via a transparent software

translation. We refer to this combination of C++ co-simulation code, host

transport layer and GP master bus as a PS. The PS abstraction supports the

flexibility of arbitrary MMIO interaction with the DUT while switching out

transport layers optimized for the specific execution environment, all while

maintaining lockup safety and reasonable performance.

When prototyping ASICs, the DUT clock is often limited by poor mapping

of standard cells to FPGA primitives [259], limiting the overall emulation

performance. While some efficiency may be regained by explicit manual

remapping of problematic primitives (CAMs, large muxes, heavily retimed

modules), this duplicates design efforts and forces dependencies between

FPGA and ASIC teams. Unfortunately, even the best mapping efforts cannot

solve this problem for aggressive submicron designs. To alleviate performance

bottlenecks and decouple the prototype and emulation, asynchronous FIFOs

and CSR synchronizers bridge the PS and DUT clock domains. This decou-
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Figure 3.4: ZynqParrot enables designs to run identical C++ code on the VPS of a Zynq

ARM core, over a UART bridge or in vendor-agnostic simulation. Instead of relying on

Verilog tasks to interact with the DUT, ZynqParrot exposes pins on the P-Shell through a

DPI-C interface. The result is fine-grained control over DUT execution, enabling software

flow-control and thorough verification. As multithreading is disallowed by many commerical

simulators, C++ coroutines are used to co-simulate the DUT with blocking transactions

such as AXI requests, providing parallelism and deadlock avoidance.

pling allows the PS to run ahead of PL and averts complex emulation models

slowing the DUT execution.

Emulation Layer

During deep performance profiling, the PS may need to process monitoring

information or system-call emulation every DUT cycle while it is also handling

context switching, network bridging or other asynchronous processing. If
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the PS is not ready to accept a new packet and an asynchronous FIFO fills,

either the FIFO must backpressure such that cycle-accuracy is lost, or the

packet is dropped. Most systems using latency-insensitive I/O constructs

use ready/valid handshakes to pause the DUT operation upon backpressure.

However, doing so perturbs the system and eliminates cycle-accuracy, making

the emulation non-reproducible. Figure 3.4 shows an abstraction of the PS

responsibilities.

Another approach to avoid degradation is to run a Real-Time Operating

System (RTOS) on the PS. However hard real-time guarantees are difficult

to meet, restricting maximum performance; and proofs would need to be

rewritten for each DUT interface, slowing iteration time. During profiling

the information bandwidth needed varies dramatically based on the specific

performance aspect being monitored. These guarantees will need to be retuned

for each monitoring mode, as well as relaxed for running in a simulation mode

that has dramatically different (wall-clock) timing characteristics. In addition,

compiling arbitrary programs is much more difficult on a specialized RTOS

compared to a full POSIX operation system.

ZynqParrot leverages the PS-DUT asynchrony to implement cycle-accurate

emulation by gating the DUT clock upon interfering backpressure. Once

gated, the asynchronous FIFOs are drained and execution can safely resume.

This approach masks non-determinism in the PS, which may be running a full

PetaLinux [270] operating system. Clock gating in the P-Shell means that

both PS software and DUT logic can be completely unaware of the other side

of the interface, operating in an ideal environment. Clearly defined boundaries

between PS and DUT domains simplify necessary timing constraints during

synthesis and standardized, validated asynchronous primitives shield users

from the subtle gotchas of multi-clock systems.
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On the other hand, modelling exact I/O timing is an essential functionality

in a Scale-Down system. In ZynqParrot, hardware model timers exist in

the DUT clock domain, but timing information is stored in the PS program

where it is exchanged via a simple handshake. For instance to prototype a

system with cutting-edge HBM DRAM, the DUT may emit a DRAM request

which causes DUT execution to stop. The PS receives the request, calculates

the predicted timing of the specific HBM model, and programs the expected

timing through P-Shell CSRs. The DUT clock then resume, waiting for

the DRAM request to return but executing any other parallel tasks. If the

DRAM request returns before the hardware model timer finishes, it will be

paused until the correct cycle. If the hardware model timer expires before

the DRAM request returns, the DUT will return to a gated state. This

event-driven co-emulation maintains cycle-accuracy while ensuring there are

minimal wasted cycles.

Scale-Down Decomposition

A key element of Scale-Down is shrinking the design size while maintaining

the integrity of inputs and outputs of the system. As illustrated in Figure 3.5,

even for a single design hierarchy there are various decomposition strategies.

The best strategy will depend on the size of the design, verification team and

FPGA supply. At later stages in the verification cycle it may be advantageous

to hyperfocus on smaller modules, attempting to expose subtle optimizations

that may be clouded by full-system effects. Small, cost-effective FPGAs are

especially advantageous at this stage. Firstly, smaller designs will benefit

from shorter compilation times and faster emulation speeds, leading to quicker

overall turnaround time. Secondly, when running a large number of tests (for

example running a benchmark suite on a processor design), each independent

run requires system resources such as a DRAM storage and bandwidth to
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Figure 3.5: Decomposition into smaller components leverage smaller FPGAs to verify

modules in parallel as well as hyperfocus on specific performance or verification targets.

In the above decomposition, verification engineers can tune their analysis for either a full

multicore, a single core, the front end or just the instruction cache. Because the P-Shell

supports both unidirectional and latency-insensitive links, any hardware interface can

be exposed. Rather than cumbersome hardened RTL models, VPS software mimics the

interface timings.

support it. Allocating a cheap board for each test scales testing throughput

linearly, while investing in larger FPGAs quickly becomes cost prohibitive.

PanicRoom: Portable Bare-Metal Benchmarking

Due to the complexity of benchmarking experimental processor designs,

architects normalize performance across a wide range of applications such

as [115, 116, 50, 44]. There are several significant challenges associated with

reusing the same applications for fabricated chips as for pre-silicon designs:

notably, the scale of commercial benchmarks are incompatible with the

massive slowdowns of RTL simulation. Prior works have proposed reducing

input set size [145, 242] and reducing instruction count through statistical
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Table 3.2: PanicRoom supports host functionality more portably than comparable proxy solutions. While

a full debugging solution such as ARM Semi-Hosting provides an end-to-end experience, PanicRoom is

able to run identically in simulation and hardware, increasing verification correlation.

Proxy

Solution

Hardware

Needed0

LoC

(Userspace)1

Open-

Source

RISCV-PK Host core 14157 ✓

RAW Interface Host core 6999 ✓

ARM Semi-Hosting Debugger -

PanicRoom DRAM 20 ✓

0 While ZynqParrot provides a VPS host, PanicRoom can run fully

untethered.

1 We refer to non-benchmark, bare-metal code as ”Userspace”.

sampling [107, 254]. Other approaches is creating targeted benchmarks which

are intrinsically small and portable [89, 106, 176], but these have questionable

correlation to high-performance microarchitectures.

In addition to scale, commercial benchmarks also suffer from oversized scope.

The most commonly evaluated suites rely on functions from the C standard

library for I/O capability, filesystem operations and memory management.

While it is interesting to evaluate the performance of an end-to-end system,

during deep microarchitectural optimization architects often wish to observe

bare-metal behavior. Yet, without operating system, it is impossible to run

all but the most intentionally portable applications. Instead of glibc [86],

embedded systems typically rely on smaller stdlib implementations, but these

lack necessary system call compatibility.

To bridge this gap, we introduce PanicRoom: a minimal, mostly-platform-

agnostic C standard library implementation that enables running POSIX

applications on bare-metal systems. PanicRoom is built as a Board Support
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Figure 3.6: PanicRoom provides filesystem and I/O operations to POSIX applications.

Platform support needs 4 non-portable syscalls: init, exit, sendchar and getchar. All

other syscall functionality is platform-independently provided by the PanicRoom libgloss

implementation. Programs cannot differentiate between PanicRoom or a full OS, simply

running benchmarks which otherwise require esoteric environments.
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Package (BSP) on top of the light-weight C standard library newlib [85].

newlib elegantly separates system-specific functionality into an easily portable

portion called libgloss. PanicRoom implements the libgloss functionality using

an open-source, lightweight, DRAM-based filesystem designed for embedded

flash memories, ARM LittleFS [16].

As shown in Figure 3.6, PanicRoom implements file I/O system calls by

translating them to LFS function calls, which in turn operate on memory.

In contrast, proxy-based solutions such as RAW [250] and RISCV-PK [84]

work by packaging I/O calls and tunneling to a host core, which executes the

actual filesystem functionality.

PanicRoom eschews platform-dependent syscalls, whereas previous works

require porting syscalls to open-source simulators, commercial simulators,

FPGA emulation frameworks, ASIC test boards and PCIe hosted chips (see

Table 2). A more subtle benefit is that transforming the I/O emulation from

an asynchronous host interaction to a synchronous function, which makes

execution deterministic and easily reproducible.

3.1.3 Case Studies: ZynqParrot in the Wild

We first developed ZynqParrot for undergraduate/graduate architecture class

performing full-stack analysis and optimizations to an open-source Linux-

capable RISC-V multicore. Our main goals were:

1. Provide a cheap, flexible platform for designing and analyzing microar-

chitectural modifications to the core.

2. Avoid supporting all laptop to FPGA mappings by standardizing the

host system (the Zynq PS).

3. Synchronize co-simulation and co-emulation execution to minimize



79

FPGA debugging.

4. Make the platform robust to fatal RTL bugs by construction, impossible

to hang the host system.

However, we quickly realized that the abstract capability of interacting out-

of-band with arbitrary devices was applicable in a large number of diverse

settings. In this section we describe a few use-cases that we have found for

ZynqParrot since its inception.

A Scale-Down Pandamonium Cluster

We built the first ZynqParrot on TUL Z2 [244], inexpensive educational boards

available at an academic discount. Z2 boards are out-of-box compatible with

the open-source Xilinx Pynq [269] SDK, providing a Python-based interface

for bitstream programming, peripheral management and PS configuration,

among many other convenience features. Because the Pynq software makes

interaction with the Z2 boards so convenient, students can buy and develop

on their own device. Most FPGA development boards, including the Z2,

feature a watchdog timer which forces a reset upon hanging the board. In

academia, this feature is invaluable to ensure that inexperienced students can

always access their board.

Needing a more structured approach to coherently integrate a large number

of boards, we designed Pandamonium, a scalable cluster of network-attached

FPGAs running ZynqParrot. All ZynqParrot data is stored on a host system

and shared with the boards through a network-based distributed file-system.

For parallel development, team members log into each board to independently

program and run experiments. Bulk regression can be run from standard job-

scheduling software. The setup shown in Figure 3.7(b) is built with commodity

components: USB-Ethernet controllers, a network switch, and hand-cut
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(a) ZynqParrot clusters connect to a standard net-

work switch to enable remote connections. While

homogeneous clusters of Pynq Boards is the lowest

maintenance options, some labs may be restricted to

non-Zynq FPGAs and use small controllers such as

Raspberry Pi to bridge to a VPS interface.

(b) A twenty-server Ultra96v2 cluster. Students can

time-share boards for parallel builds and serialized,

private experiments. By connecting the cluster to a

network switch, students are able to work fully re-

motely, important during events such as the COVID-

19 pandemic.

Figure 3.7: Pandamonium can be configured for a variety of Pareto frontiers along cost,

capacity and design parallelism. For a design space exploration of heterogenous components,

a fleet of small FPGAs may minimize build times, whereas for a suite of long-running

benchmarks, medium-sized FPGAs may be able to complete overnight regressions on a full

system.

plexiglass shelves. Comprising 20 Ultra96v2 boards, this Pandamonium cost

around $4500 and supports multiple projects and Continuous Integration

(CI ) runners for a modestly sized research group. Based on Table 3.1, we

estimate that a Pandamonium outperforms in TCO after less than a full year

of usage.

Maintaining a Pandamonium is typically as simple as ensuring the central

network switch is remotely accessible. If the watchdog timers are properly

configured, any temporary glitch with the board has a fail-safe backup and

connections can generally be restored after reboot. For further robustness,

a remote network-attached reset switch (or Raspberry Pi [83]) removes the
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need to physically reset the system even upon unlikely watchdog failures. A

centralized job-scheduler can dynamically prevent interference between users

and regression jobs.

As shown in Figure 3.7(a), ZynqParrot easily supports heterogeneous Pan-

damoniums as there are only two classes of network interface to maintain.

Standard Zynq boards connect directly via Ethernet while non-Zynq parts

tunnel through a network-attached UART-capable device such as a Rasp-

berry Pi. In this way, clusters can simultaneously service a wide range of

IP blocks that each may leverage specific board features. A diverse setup is

ideal for a large continuous integration server as generic jobs can be assigned

to minimally-sized boards, reducing regression time and improving energy

efficiency.

To ensure the correctness of the BlackParrot execution and the observed

performance data, user needs to be able to verify the correct execution of

a benchmark during its runtime. For example, ZynqParrot’s infrastructure

can also be used to extract instruction commit information of a RISC-V

core and cross-verify it with Dromajo [68] abstract software-based golden

model of DUT in PS. Similarly, on each instruction commit and register write,

corresponding information is written to asynchronous FIFOs that can gate

the DUT clock while PS drains and verifies the data. Using this feature,

ZynqParrot can be integrated into the CI as part of the chip development

cycle. On a major change, FPGAs can be used to accelerate design verification

using longer benchmarks that are impractical for RTL simulation.

Microarchitectural Optimization: CatchUp ALU

In addition to modelling interface timings, the P-Shell can be used for verifi-

cation of BlackParrot logic by
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extracting commit information and cross-verifying it with Dromajo [68], an

abstract software-based golden model. Upon each commit PC, instruction

metadata, and writeback information are written to asynchronous FIFOs. PS

backpressure gates the DUT clock as PS drains the commits. With cycle-

accurate co-emulation, ZynqParrot can be integrated into the CI as part of

the chip development cycle.

Because ZynqParrot is able to maintain cycle-accuracy with arbitrary band-

width instrumentation, it enables deep insight into subtle microarchitectural

bottlenecks. Previous works have proposed sampling-based architectures that

accurately detect long latency stalls such as page table walks and L1 cache

misses, but cannot diagnose ultra fine-grained stall sources such as irregular

dependency bubbles. Section 3.1.3 more thoroughly explores the trade-off

between emulation speed and attribution accuracy, demonstrating the need

for ultra fine-grained sampling to detect certain types of microarchitectural

bottlenecks.

After adding synthesizable stall counters to the P-Shell, Figure 3.8 shows the

cycle-stack breakdown of stalls during execution of CoreMark [89]. While

CoreMark is a flawed benchmark for full-system characterization, it is widely

used as proof of microarchitectural optimization. Additionally, it is an

ideal demonstration of performance optimization frameworks since there is

so little low-hanging fruit remaining. Because BlackParrot is an in-order

pipeline with large L1 caches, load-use stalls are a primary performance

bottleneck, accounting for 18% of stalls in CoreMark. Load-use stalls have

two subtypes: load-arithmetic and load-control operations. For number

crunching applications, load-arithmetic stalls prevent optimal operation of

tight loops. For pointer chasing segments, load-control stalls add extra delays

on every null check.
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Figure 3.8: After basic core optimization, remaining low latency stalls (1-5 cycles)

are difficult to detect via coarse-grained sampling. Tailored event counters can identify

problematic categories, but lose PC association during aggregation. ZynqParrot allows

VPS software to monitor stalls at a per-PC, per-cycle granularity.

To reduce load-use stalls, we add a CatchUp ALU which is a secondary ALU

located serially after the first ALU. Catch-up ALUs are a common way to

improve performance in in-order cores. Out-of-order execution is often able

to tolerate L1 hit latencies, so extra resources are better spent on more

parallel ALUs for wider issue. For in-order cores, however, single threaded

performance is sensitive to head-of-line blocking and so Catch-up ALUs

can provide a substantial benefit. After justifying the idea in a high-level

(Scale-Up) simulation model, we implement an RTL version of the idea in

ZynqParrot to evaluate marginal performance gains.

The CatchUp ALU resides in EX2, parallel with the second stage of the

D$ access. When an integer or branch instruction has all dependencies met

during issue, it is dispatched as normal to the Early ALU. Alternatively, when

those dependencies are anticipated to be produced in EX2, the instruction is

dispatched to the Catch-up ALU, which adds an additional cycle of latency,
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EX MEM WB

D$

Figure 3.9: A second CatchUp ALU and set of bypass multiplexers allows the CatchUp

ALU to execute pipelined instructions. However, a dependent non-integer instruction

following a CatchUp operation will cause a bubble.

although fully-pipelined.

In addition to arithmetic operations, the Catch-up ALU also processes control

flow instructions. Because RISC-V branch comparisons are easily transformed

from existing subtraction and comparison operations, this support is cheap

to add. However, this feature adds complexity to the handling of branch

mispredictions. The BlackParrot pipeline resolves branches early in EX1 to

reduce the misprediction penalty. In order for load-branch operations to take

advantage of the CatchUp ALU, the pipeline must suppress PC mismatches in

EX1. Now, when the CatchUp ALU detects a PC mismatch, the pipeline must

be flushed in addition to redirecting the front-end. Therefore in BlackParrot,

CatchUp ALU mispredictions are treated as synchronous exceptions, reusing

their mechanism for replaying and recovering state. Figure 3.9 illustrates

CatchUp ALU modifications to a sample five-stage pipeline.

As shown in Figure 3.9, the CatchUp ALU reduces load-use stalls from 43%

of stalls to 18% of stalls, resulting in an overall 4% performance increase.

There are additional stalls from dependencies on CatchUp ALU instructions,

which now have an additional cycle of latency. However, these extra stalls
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Figure 3.10: When taping out a chip verification is scoped sequentially, starting with

C++ and RTL models and finishing with annotated gate-level simulations. Differences

in simulation and bring-up environments prevent sharing infrastructure between pre- and

post-silicon environments. ZynqParrot unifies tape-in and tape-out infrastructure, reducing

maintenance times and accelerating bring-up.

do not diminish the gains from optimizing the more common load-use case.

Interestingly, branch-related stalls increase by 1.04×, as deeper speculation

past EX1 triggers additional mispredictions. A further optimization could

restrict speculation only to branches which are predicted strongly taken which

would increase load-branch stalls but should reduce CatchUp mispredictions.

Leveraging cycle-accurate profiling with ZynqParrot allows architects to easily

identify potential bottlenecks as well as confirm both the positive and negative

effects of their proposed improvements.

ZynqParrot ASIC Bring-up Boards

During its initial evolution, ZynqParrot was also used as the design, prototype

and bring-up infrastructure for a 14M gate, 28 nm ASIC developed by a

boutique FPGA-based research and development firm. As a first genera-
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tion test chip, operational mode fallbacks were essential. For instance, an

experimental open-source LPDDR controller was taped out to accelerate

applications. However, it was essential that the chip function enough to bring

up all components independently. Additionally, it was not only possible but

expected that during experiments on the chip to bring-up new subsystems,

debug systemic issues and generate Shmoo plots [30] for operational PPA,

the chip will fail to respond, generate illegal traffic or otherwise operate out

of specification.

As shown in Figure 3.10, ZynqParrot leverages the P-Shell to allow bring-up

software to interact with subsections of the DUT for large and slow gate-level

simulations. Test chips are able to offload their memory controllers and

I/O devices to the PS, which allows pre-silicon bring-up to verify fallback

functionality much earlier in the life-cycle. In the other direction, the flexible

P-Shell can connect to a wide variety of bitbanged configuration devices

(JTAG, SPI, I2C), higher performance I/O links (CAN, UART, custom

SERDES), and DRAM (LPDDR, SDDR, HBM). In addition to bringing up

the actual chip with ZynqParrot, users are able to substitute out fully detailed

simulated execution models for faster-simulating smoke tests.

Using ZynqParrot, the ASIC was able to pass initial smoke tests on the first

day of bring-up despite power and packaging problems that prevented it from

operating in normal voltage operations. By using non-blocking registers to

bitbang and configure the attached test chip, the team was able to quickly

iterate and explore modes without hanging the system, needing to re-flash

the FPGA for different tests or debug the infrastructure itself.
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Figure 3.11: ZynqParrot is able to dynamically switch co-emulation speed for sample

rate. As sampling granularity decreases down to single step, there is a 32× slowdown.

Therefore, best practice is to identify regions-of-interest and change sampling frequency to

match importance.
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High Fidelity Sampling with ZynqParrot

While ZynqParrot accelerates design emulation, validating and optimizing per-

formance at a Scale-Down granularity additionally requires deep introspection.

Unfortunately, FPGA-enabled acceleration of designs is famously opaque and

extracting microarchitecural information is unintuitive. Traditional solutions

include using vendor IP such as JTAG scan-chains or Xilinx ILA [18] to ex-

tract signals. However, these solutions are slow, proprietary, have a high area

overhead, and operate out-of-band, therefore lacking capability to maintain

cycle-accuracy at full bandwidth. In this section, we explore how to leverage

ZynqParrot’s sampling infrastructure to characterize BlackParrot through

time-proportional [96, 95] performance profiling.

To extract arbitrarily precise microarchitectural information from RTL, Zynq-

Parrot leverages the same clock-gating mechanism used for I/O co-emulation.

Users instantiate a parameterizable number of synthesizable performance

counters in the P-Shell. These counters can be explicitly instantiated in the

RTL, automatically generated by tools like FirePerf [138], or by hierarchically

connecting PL counters to internal DUT signals. The latter does not require

any modification to the DUT RTL and so is the simplest and least invasive

solution.

When profiling BlackParrot, the profiler annotates each cycle of execution with

a PC and event classification (stall type or commit), attributing at the commit

stage to maintain time-proportionality. The DUT streams samples to PS

across asynchronous FIFOs at a configurable sample rate, if necessary clock-

gating identically to how ZynqParrot manages emulation of interface timings.

Critically, due to the backpressure mechanism, tuning profiling granularity

becomes a simple trade-off between slowdown and precision. TEA [96] and

TIP [95] have demonstrated the benefits of Oracular stall classification, but
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Figure 3.12: Stall stacks for sampling intervals 1, 10, and 100. Due to time-proportionality,

stall stacks do not generally vary across sampling intervals. However, a few benchmarks

such as 454.calculix and 464.h264ref have variances as high as 6.2%. Oracular sampling

through ZynqParrot is able to accurately identify these stall sources.

concluded that the bandwidth overhead is impractical. Figure 3.11 illustrates

that with ZynqParrot, an Oracle incurs only moderate overhead and enables

unprecedented insight for performance debugging.

The PS post-processes the stall information asynchronous to the DUT. Based

on this information, profiler runtimes may chose to manipulate the sampling

rate, perturb the DUT with emulated I/O traffic or monitor the runtime

execution. Figure 3.11 shows the emulation slowdown for performance sam-

pling of the core with error-free per-cycle sampling or with different sampling

frequencies that results from DUT clock gating. Note that due to other clock

gating factors (such as maintaining a memory timing model), with increasing

sampling interval, the slowdown curve saturates to a different value based on

the running benchmark. Due to the time-proportional nature of the profiler,
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stall stacks do not vary across sampling rates, as shown in Figure 3.12. There

are two resulting modalities for performance profiling in ZynqParrot: running

a coarse-grained regression suite to gain a sense of important stall categories,

and running a fine-grained analysis to produce Oracular stall attributions to

individual PCs.

3.1.4 Conclusion

Related Work

0 The ratio of FPGAs:Designs in a single system emulation. Commercial tools map large hierarchies into large clusters.

Firesim is able to emulate arbitrarily large systems using cloud auto-scaling. SMAPPIC is able to split large designs

across FPGAs. FreezeTime maps a single design to a single FPGA. Finally, ZynqParrot maps a number of designs to

a fixed-sized local cluster.

1 Co-simulation refers to the ability to reproduce the cycle-exact output of a system emulation on an RTL simulator

such as Verilator [211] (albeit at significant slowdown). This ability is essential in emulation-system debugging.

2 We combine Synopsys Zebu [215], Cadence Palladium [53] and Mentor Veloce [160]

with similar features and limitations.

While ZynqParrot shares similarities with many FPGA-accelerated proto-

typing platforms, its Scale-Down focus and aggressive portability make it

uniquely cost and effort effective. In this section, we compare to existing

projects which offer subsets of the features in ZynqParrot.

Gate-Level Accelerated Emulation Teams desiring a turnkey solution

to RTL emulation employ commercial tools for FPGA-accelerated design

modeling, such as Cadence Palladium [53], Synopsys Zebu [215] and Mentor

Veloce [160]. Unfortunately this convenience is costly, with obfuscated pricing

up to millions of dollars. In contrast ZynqParrot is free and open-source, with

an initial required investment up to hundreds of dollars.
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Emulating Large Systems with FPGAs FireSim [137], DIABLO [217]

and SMAPPIC [69] focus on scaling up emulations to analyze large-scale

designs such as datacenter-scale systems. They work by partitioning the

system design over multiple FPGAs and using Ethernet-based token-passing

systems to capture inter-node timing. Because they are based on AWS F1 [10]

infrastructure, the emulation model relies on proprietary vendor libraries for

the hardened AWS shell as well as PCIe DMA interfaces. As ZynqParrot

focuses on single-node systems, it allows for local execution with open-source

simulations, resulting in a much lower recurring cost. In contrast, a local

version for a comparable F1 FPGA setup, may cost tens of thousands of

dollars.

Decomposed FPGA Emulation Similar to a Scale-Down methodology,

Protoflex [71] and FAST [67] accelerate performance analysis using FPGAs.

However, they focus on acceleration of large, slow, cycle-accurate models,

attempting to gain performance insights into systems too large to simulate in

a reasonable time frame. In contrast, ZynqParrot allows for cycle-accurate

emulation of arbitrary RTL so that architects can easily validate and debug

performance with the deep introspection that RTL provides.

FreezeTime [165] uses time multiplexing for architectural virtualization of

system components. Similar to ZynqParrot, Freezetime leverages BUFGCE

FPGA primitives to stall emulated blocks while virtualized blocks process

cycle-accurate timing models. However, ZynqParrot achieves greater flexibility

and lower resource overheads by executing standard C++ timing models in

the P-Shell rather than custom control logic per virtualized interface.

FPGA-Accelerated Performance Analysis While custom cycle-level

simulators and silicon performance counters are state-of-art for commercial
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performance validation, researchers have also proposed using accelerated

sampling for microarchitectural debugging.

FirePerf [138] provides two categories of microarchitectural analysis: commit

tracing via TraceRV and out-of-band hardware profiling via AutoCounters.

ZynqParrot supports not only commit tracing and out-of-band event counters

via P-Shell CSRs but also dispatch-time stall tracing, allowing for deeper

debugging insights. Additionally, ZynqParrot is written in standard Sys-

temVerilog rather than Chisel [28], making it more familiar to hardware

designers.

TEA [96] and TIP [95] propose time-proportional event analysis by creating

Per-Instruction Cycle Stacks (PICS ) to unify performance profiling and

performance event analysis. While TEA and TIP are able to accurately ascribe

microarchitectural events on average, they rely on statistical sampling by

periodically interrupting the program that disrupts non-interference. Because

ZynqParrot combines commit-stage cycle attribution with cycle accurate

tracing, it is able to accurately attribute stalls without any sampling error,

as well as trade co-emulation speed for sampling accuracy.

FPGA-based Coverage Collection FirePerf [138] injects synthesizable

coverpoints and then extracts coverage through a scan-chain. Instead, Zyn-

qParrot automatically instruments designs and extracts stall data through

the P-Shell, without dedicated scan hardware. Simulator Independent Cover-

age [150] introduces a flow for injecting hardware coverpoints into Chisel [28]

designs through the introduction of a new cover keyword. In contrast, Zynq-

Parrot coverage instrumentation uses standard SystemVerilog primitives.
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Future Work

While ZynqParrot has been successfully used for classwork, academic research

and industrial prototyping, in this section we consider several directions to

enhance versatility and robustness:

1. While Scale-Down methodology greatly benefits prototyping iteration

time, subdividing the design into co-emulatable subcomponents is gen-

erally a manual process. Automatically partitioning commercial-size

architecturables could lead to faster full-design iterations, detecting

bugs earlier in the design schedule.

2. Although ZynqParrot currently supports DRAM, UART and Ethernet

as well as a small set of demonstration AXI-lite masters and clients, we

anticipate community development of a diverse open-source library of

functional and timing models for common peripherals.

3. ZynqParrot was intentionally developed to minimize dependence on

proprietary vendor IP. While current implementations use Xilinx Zynq

and Virtex parts, only a small subset of the infrastructure (¡ 100 lines

of TCL) must be ported to support new boards. We hope in the

future to support Intel and Lattice alternatives to broaden the reach of

ZynqParrot to teams which are bound to these vendors.

Final Thoughts

We present ZynqParrot, a Scale-Down FPGA-based modelling platform ca-

pable of non-interfering, cycle-accurate co-emulations of arbitrary RTL de-

signs. Vendor-agnostic and fully open-source, ZynqParrot provides architects

with a accurate, convenient and low-cost infrastructure to prototype de-

signs. ZynqParrot is a cheaper alternative to FPGA cloud infrastructures
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for small-scale experiments and provides vendor-agnosticism. An iterative

Scale-Down/Scale-Up methodology allows architects to focus on subtle mi-

croarchitectural optimizations and avoid re-analysis of issues that only exist

at either scale.

In this work we have explored diverse use-cases for ZynqParrot distributed

acceleration for a class of architecture students, performance debugging,

functional verification and tapeout bringup for a complex 28 nm SoC. These

studies are meant to illustrate ZynqParrot’s fitness for teaching, research

and industrial development. We examined instrastructure enablements: ultra

fine-grained sampling and hybrid FPGA-software coverpoint strategies. We

believe the ZynqParrot, the P-Shell interface and its open-source co-simulation

libraries will accelerate RTL prototyping across teams and fields, helping

develop better architectures faster.
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Chapter 4

CONCLUSION

4.1 Contributions

The works described in this thesis have been battle-tested in multiple contexts,

from academic research to commercial ASIC development. They have been

presented at various conferences and workshops and have received positive

feedback from the community.

• Papers published or under revision:

– BlackParrot: An agile open-source RISC-V multicore for accelera-

tor SoCs (IEEE Micro 2020) (1st author)

– Noc Symbiosis (NOCS 2020) (1st author)

– ZynqParrot: A Scale-Down Approach to Cycle-Accurate, FPGA-

Accelerated Co-Emulation (Arxiv 2025) (1st author)

– The BlackParrot BedRock Cache Coherence System (Arxiv 2025)

(2nd author)

– RACE: RISC-V SoC for en/decryption acceleration on the edge

for homomorphic computation (ISLPED 2022) (3rd author)

– RISE: RISC-V SoC for En/decryption acceleration on the edge for

homomorphic encryption (IEEE VLSI 2023) (3rd author)

– Scaling Program Synthesis Based Technology Mapping with Equal-
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ity Saturation (WOSET 2024) (3rd author)

– Scalable, Programmable and Dense: The HammerBlade Open-

Source RISC-V Manycore (ISCA 2024) (Nth author)

• Chips designed using infrastructure:

– BP0: 4-core BlackParrot (GF12 3x3mm)

– BP1: TSMC40 4x6mm: 4 core multicore (TSMC40, tapein only)

– BigBlade: 16 x (2 unicore + CGRA + 128 core manycore) (GF12

10x10mm)

– MaxSDRv1: 1 big, 2 little cores, 192 core manycore, open-source

DRAM control, scalable clock generator, scalable DLL (TSMC28

4x6mm)

– TT-DLL: all-digital delay-locked-loop (Sky130 160x100um)

– MaxSDRv2: 1 big, 2 little cores, 192 core manycore, open-source

DRAM control, scalable clock generator, scalable DLL (TSMC28

4x6mm, tapein only)

– MiniBlade: DBI testing infrastructure, scalable clock generator

(GF12 1x1mm, tapein only)

• Talks given to publicize projects:

– bsg pearls: Effortlessly Synthesizable Building Blocks That Work

Right Out of the Shell (Latchup 2025)

– bsg tag: A minimal open-source ASIC configuration system (Latchup

2023)

– BlackParrot: An Agile Open Source RISC-V Multicore for Accel-
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erator SoCs (FOSDEM 2020)

– BaseJump STL: A Standard Template Library for Hardware Design

(Latchup 2019)

– BlackParrot: a Cache-Coherent RV64G Multicore For and By the

World (RISC-V Summit WI 2020)

– BlackParrot: a Cache-Coherent RV64G Multicore For and By the

World (International Conference on Supercomputing 2020)

4.2 Future Work

These projects are living research platforms. focusing on improving usability

and maintainability. One of the primary goals of this thesis is to ensure

these tools are usable by the new generation of architecture students with-

out maintainer intervention. There are several potential areas for further

development:

• BlackParrot: Publication of a canonical BlackParrot SoC design with

an open-source Ethernet controller and LPDDR1 DRAM controller

to serve as a reference design for future users. The IP has already

been developed and tested, so the remaining work will be to provide a

complete, ready-to-use system that can be easily adapted for various

applications.

• ZynqParrot: Support for the Kria and Alvea SoC families, which will

allow users to leverage the ZynqParrot infrastructure for a wider range

of applications. Most of the infrastructure is board-agnostic, so this

task will primarily involve the addition of board-specific drivers and

peripherals.

• BSG Pearls: Example applications of BSG Pearls Assemblies, focus-
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ing on end-to-end flows of synthesis, simulation and verification flows.

Individual IP blocks have already been developed and tested, so the

remaining work is primarily to package and document the library for

public use.

4.3 Final Thoughts

Despite worthy efforts of the research community, Agile Hardware Design

methods have not yet achieved widespread adoption in the industry. This

thesis argues that remaining barriers are qualitative rather than quantitative,

and proposes that open-source EDA tools and hardware can help realize

the benefits of Agile practices, namely: design reuse, verification effort, and

backend iteration time.

While Agile Hardware Design offers the promise of faster and more cost-

effective ASIC development, its practical adoption is hindered by qualitative

challenges such as complex library integration, verification environment dis-

crepancies, and backend flow unpredictability. This thesis addresses these

barriers through three open-source, silicon-proven projects –— BSG Pearls,

BlackParrot, and ZynqParrot–— which together provide modular system

integration, unified verification infrastructure, and hierarchy-insensitive mid-

dleware assembly. By lowering integration and verification hurdles, these

tools enhance the feasibility of Agile Hardware Design in a wide variety of

domains.



99

BIBLIOGRAPHY

[1] N. Abeyratne, R. Das, Q. Li, K. Sewell, B. Giridhar, R. G. Dreslinski,
D. Blaauw, and T. Mudge. Scaling towards kilo-core processors with
asymmetric high-radix topologies. In 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA), pages
496–507, Feb 2013.

[2] A. Agarwal, S. Amarasinghe, R. Barua, M. Frank, W. Lee, V. Sarkar,
D. Srikrishna, and M. Taylor. The RAW compiler project. In Proceedings
of the Second SUIF Compiler Workshop, pages 21–23, 1997.

[3] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. Johnson,
David Kranz, John Kubiatowicz, Beng-Hong Lim, Kenneth Mackenzie,
and Donald Yeung. The MIT alewife machine. In Proceedings of the
22nd annual international symposium on Computer architecture - ISCA
'95. ACM Press, 1995.

[4] Tutu Ajayi, Khalid Al-Hawaj, Aporva Amarnath, Steve Dai, Scott
Davidson, Paul Gao, Gai Liu, Atieh Lotfi, Julian Puscar, Anuj Rao,
Austin Rovinski, Loai Salem, Ningxiao Sun, Christopher Torng, Luis
Vega, Bandhav Veluri, Xiaoyang Wang, Shaolin Xie, Chun Zhao, Ritchie
Zhao, Christopher Batten, Ronald G. Dreslinski, Ian Galton, Rajesh K.
Gupta, Patrick P. Mercier, Mani Srivastava, Michael Bedford Taylor,
and Zhiru Zhang. Celerity: An Open Source RISC-V Tiered Accelerator
Fabric. In HOTCHIPS, Aug 2017.

[5] Ajayi et al. Toward an open-source digital flow: First learnings from
the openroad project. In DAC, 2019.

[6] Alibaba. https://www.alibabacloud.com/product/computing,
2023.

[7] Chips Alliance. https://github.com/chipsalliance/surelog, 2023.

[8] Charles J Alpert and Gustavo E Tellez. The importance of routing
congestion analysis. DAC Knowledge Center Online Article, 2010.

[9] Alric Althoff, Joseph McMahan, Luis Vega, Scott Davidson, Timothy
Sherwood, Michael Taylor, and Ryan Kastner. Hiding Intermittant

https://www.alibabacloud.com/product/computing


100

Information Leakage with Architectural Support for Blinking. In Inter-
national Symposium on Computer Architecture (ISCA), 2018.

[10] Amazon. Amazon web services. 2022. amazon ec2 f1 instances. https:
//aws.amazon.com/ec2/instance-types/f1/, 2023.

[11] Amazon. https://aws.amazon.com/ec2/spot/pricing/, 2023.

[12] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar
Karandikar, Harrison Liew, Albert Magyar, Howard Mao, Albert Ou,
Nathan Pemberton, et al. Chipyard: Integrated design, simulation, and
implementation framework for custom socs. Ieee Micro, 40(4):10–21,
2020.

[13] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar
Karandikar, Harrison Liew, Albert Magyar, Howard Mao, Albert Ou,
Nathan Pemberton, Paul Rigge, Colin Schmidt, John Wright, Jerry
Zhao, Yakun Sophia Shao, Krste Asanović, and Borivoje Nikolić. Chip-
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Appendix A

OPEN-SOURCE LINK FARM

Below is a list of open-source projects referenced in this thesis, organized by

category.

BlackParrot

• BlackParrot:

https://github.com/black-parrot/black-parrot

• BlackParrot Tools:

https://github.com/black-parrot/black-parrot-tools

• BlackParrot SDK:

https://github.com/black-parrot-sdk/black-parrot-sdk

• BlackParrot Simulation Environment:

https://github.com/black-parrot/black-parrot-sim

• BlackParrot Subsystems:

https://github.com/black-parrot-hdk/black-parrot-subsystems

• ZynqParrot:

https://github.com/black-parrot-hdk/zynq-parrot

• libperch:

https://github.com/black-parrot-sdk/libperch

https://github.com/black-parrot/black-parrot
https://github.com/black-parrot/black-parrot-tools
https://github.com/black-parrot-sdk/black-parrot-sdk
https://github.com/black-parrot/black-parrot-sim
https://github.com/black-parrot-hdk/black-parrot-subsystems
https://github.com/black-parrot-hdk/zynq-parrot
https://github.com/black-parrot-sdk/libperch
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• BP Tests:

https://github.com/black-parrot-sdk/bp-tests

• BP Demos:

https://github.com/black-parrot-sdk/bp-demos

• For Reference Only

– BlackParrot v0 tapeout:

https://github.com/black-parrot-examples/bsg_tapeout_v0_gf12

– BlackParrot v1 tapeout:

https://github.com/black-parrot-examples/bsg_tapeout_v1_tsmc40

– BlackParrot Tapeins:

https://github.com/black-parrot-examples/bsg_scratch_designs

– BlackParrot FPGA bringup:

https://github.com/black-parrot-examples/bsg_fpga

Bespoke Silicon Group

• BSG Pearls:

https://github.com/bespoke-silicon-group/bsg_pearls

• BSG Replicant:

https://github.com/bespoke-silicon-group/bsg_replicant

• BSG Manycore:

https://github.com/bespoke-silicon-group/bsg_manycore

• BaseJump STL:

https://github.com/bespoke-silicon-group/basejump_stl

• BSG BladeRunner:

https://github.com/black-parrot-sdk/bp-tests
https://github.com/black-parrot-sdk/bp-demos
https://github.com/black-parrot-examples/bsg_tapeout_v0_gf12
https://github.com/black-parrot-examples/bsg_tapeout_v1_tsmc40
https://github.com/black-parrot-examples/bsg_scratch_designs
https://github.com/black-parrot-examples/bsg_fpga
https://github.com/bespoke-silicon-group/bsg_pearls
https://github.com/bespoke-silicon-group/bsg_replicant
https://github.com/bespoke-silicon-group/bsg_manycore
https://github.com/bespoke-silicon-group/basejump_stl
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https://github.com/bespoke-silicon-group/bsg_bladerunner

• libgloss-dramfs (PanicRoom):

https://github.com/black-parrot-sdk/libgloss-dramfs

• HardFloat (fork of Berkeley Verilog HardFloat):

https://github.com/bsg-external/HardFloat

Miscellaneous Collaborations

• OpenPiton:

https://github.com/PrincetonUniversity/openpiton

• LiteX:

https://github.com/enjoy-digital/litex

• CVA6 (Ariane):

https://github.com/openhwgroup/cva6

• Rocket:

https://github.com/chipsalliance/rocket-chip

• Dromajo:

https://github.com/ChipsAlliance/dromajo

• Surelog:

https://github.com/ChipsAlliance/Surelog

• UHDM:

https://github.com/ChipsAlliance/UHDM

Excellent Tools Used By the Author

• ZachJS SV2V:

https://github.com/zachjs/sv2v

https://github.com/bespoke-silicon-group/bsg_bladerunner
https://github.com/black-parrot-sdk/libgloss-dramfs
https://github.com/bsg-external/HardFloat
https://github.com/PrincetonUniversity/openpiton
https://github.com/enjoy-digital/litex
https://github.com/openhwgroup/cva6
https://github.com/chipsalliance/rocket-chip
https://github.com/ChipsAlliance/dromajo
https://github.com/ChipsAlliance/Surelog
https://github.com/ChipsAlliance/UHDM
https://github.com/zachjs/sv2v
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• BSG SV2V:

https://github.com/bespoke-silicon-group/bsg_sv2v

• BSG FakeRam:

https://github.com/bespoke-silicon-group/bsg_fakeram

• Verilator:

https://github.com/verilator/verilator

• Surfer:

https://gitlab.com/surfer-project/surfer

• PULP AXI:

https://github.com/pulp-platform/axi

https://github.com/bespoke-silicon-group/bsg_sv2v
https://github.com/bespoke-silicon-group/bsg_fakeram
https://github.com/verilator/verilator
https://gitlab.com/surfer-project/surfer
https://github.com/pulp-platform/axi
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