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Traditionally, computer architecture has been dominated by overly complex instruc-
tion sets that created a ”solution” to every problem by adding another instruction. If these
complex instructions sets are one side of a coin, the Reduced Instruction Set Computer
(RISC)-V [105] architecture is the other. RISC-V processors consist of 47 base instructions.
Having such a low amount of instructions is both the biggest strength and the biggest weak-
ness of the new era of RISC-V processors. Currently, there is a remarkable lack of high
performance RISC-V processors. The Hammerblade[39] architecture is one of the few. The
main difference between Hammerblade and other RISC-V processors is its leveraging of par-
allel computer architecture as a multi-core system. However, while Hammerblade consists
of potentially thousands of cores, it does not perform any data-level parallelism.

The primary intent of this thesis is to further understand how to increase the local
memory throughput by extending the RISC-V core to include Single Instruction Multiple
Data (SIMD) loads and stores. This will add the capability to locally load and store four
words of data on top of the existing singular word loads and stores. A single Vanilla RISC-V
core[40] can now have the potential of a 4x speedup in loads and stores. This will allow
Hammerblade to not only leverage the parallelism of the manycore architecture, but also the
data-level parallelism on each individual core.
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Chapter 1

Introduction

Even with the RISC-V open source revolution[27] still in its infancy, the world of hardware
design has been drastically changed. Traditionally instruction set architectures (ISA’s) are
hidden behind closed doors and require potentially millions of dollars to get permission to
use[7], the RISC-V ISA offers a new approach. Currently there is a lack of powerful RISC-V
cores, not due to limitations of the ISA itself, but limitations of the designs available.

The HammerBlade Manycore[75] is a processing behemoth. Simply put, this chip is a
modern spectacle of parallel computing. Each core is made up of compute tiles connected via
a mesh-like network on chip (NoC)[22]. The software running on HammerBlade is written in
HammerBlade CUDA-lite allowing for dispatching of workloads to subsets of the core. All
of this is compiled by the open source GNU Compiler Collection (GCC).

While the HammerBlade Manycore takes advantage of parallel computing via multiple
cores, it currently does not take advantage of any parallel processing in the individual cores.
This is a huge missed opportunity, as each and every one of the cores can be optimized to
load and store much quicker.

This thesis will summarize my work while I address the problem proposed above by
investigating potential solutions to vectorizing memory access in HammerBlade. This will
only be for float loads and stores that occur locally within a singular RISC-V core. While
most of my work was concentrated on the hardware changes, I also worked within GCC to
add custom instructions and rewrote multiple benchmarks using said instructions.
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1.1 Chapter 1.1. Thesis Overview

The goal of this thesis is to provide a survey of modern parallel computer architecture, my
proposed architecture changes, and future work to be done.

Chapter 2. Literature Review

This chapter goes over relevant literature and background information required to fully
understand the task at hand. It will primarily focus on ISA design, vectorization techniques,
and HammerBlade specific architecture and programming.

Chapter 3. RISC-V Vanilla Core Design Overview

All changes made to the existing RISC-V Vanilla Core are outlined and described. First
going over the intended use of the added instructions, followed by the changes required to
make it happen.

Chapter 4. Verification and Benchmarks

The scope of this thesis does not include full compiler support in the GCC toolchain,
however some work must be done for the system to understand the added instructions. This
chapter covers all these changes and why they must be made for proper testing of SIMD
instructions. In addition, it describes how the core reacts to a variety of benchmarks in the
HammerBlade benchmark suite, quantifying the gains achieved from the changes made.

Chapter 5. Cost Analysis

This chapter focuses on the cost of implementing the augmented core. The power and
area costs are analyzed to further understand the cost of modification.

Chapter 6. Conclusions and Future Works

The final chapter talks about where the logical next steps could be to further advance
this research. It also reflects on the issues and limitations of the current implementation.

Appendix. Python Code for Power Analysis

The appendix contains the code related to calculating the net zero power breakpoint.

2



Chapter 2

Literature Review and Background

2.1 HammerBlade

The HammerBlade Manycore is a highly parallel processor that is designed with open
source hardware in mind. The basic format of this architecture is a tile array connected by
a mesh network. The Celerity chip (2017)[3] was one of the first fully taped out versions of
the HammerBlade architecture. Celerity is a 511 core system built in 16nm which achieved
a world record in RISC-V and Coremark performance. This chip is also supported by the
RISC-V Rocket Core [6] and a binarized neural network accelerator for real time computer
vision applications.

Figure 2.1: Architecture of Celerity Chip [75]

3



2.1.1 Architecture

In the simplest terms, the HammerBlade architecture is an array of interconnected tiles by a
mesh network on chip (NoC). Each tile can serve a different function, either as a throughput
optimized Vanilla RISC-V cores[67], or any custom accelerator. To support these tiles is
victim cache (Vcache) tiles to coordinate with off-chip DRAM (HBM2).

Figure 2.2: HammerBlade Node and Tile Layout [21]

4



2.1.2 On-Chip Network

The HammerBlade architecture makes use of a Ruche Network[22] which is a 2-d mesh with
additional parallel links. This network has two separate networks, the forward and reverse
network. The forward network deals with remote load and store requests while the reverse
network deals with all responses. The Ruche network is dimension-order routed, meaning
that it is either X-then-Y in the case of the forward network, or Y-then-X for the reverse
network. Dimension-order routing prevents deadlock and also removes path diversity [70].

Figure 2.3: Ruche Network [21]
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2.1.3 Cache Tiles and Memory

As seen in Figure 2.2, each tile array is supported by rows of victim caches (Vcaches). These
Vcaches communicate with memory controllers that manage various types of high bandwidth
memory [52].

Figure 2.4: Cache Tile Logic [37]

The Vcache follows a 2-stage blocking cache, tag lookup (TL) and verify (V). The Vcache
will handle one miss at a time and those misses will stall the cache pipeline. Vcaches are
8-way set associative[54]. To communicate with the Vcaches, compute tiles will send request
packets out to the network which are dealt with and responded to by the respective Vcache.
The off-chip DRAM address space is interleaved between the Vcache tiles to balance requests
among the Vcache array.

6



2.1.4 HammerBlade Software

The HammerBlade software architecture follows the CUDA-lite model[100]. This is a deriva-
tive model of the CUDA model popularized by NVIDIA[25]. The main idea behind this
programming model is to treat the GPU as a separate workhorse. The host dispatches
instructions to portions of the GPU which subsequently computes and responds with the
relevant data. On HammerBlade this is done via tile groups.

Figure 2.5: Tile Group Layout of SPMD Software [15]

Each of these groups collectively execute a kernel in parallel, share local memory, and
are synchronized using barriers. This allows the desired code to be split into manageable
slices and dispatched to tile groups. Each individual tile has access to its current tile group
dimensions, their position within said group, and their portion of the entire work[15].

7



2.1.5 HammerBlade Compute Tiles

While the compute tiles on the HammerBlade system can be any specialized accelerator,
the general purpose Vanilla Core will be the primarily focus. Similarly, it is where most of
this thesis’ work will be done. The Vanilla Core is a 5-stage in-order RISC-V core. The
standard Vanilla Core implements the RV32IMF(A) ISA. This thesis proposes the addition
of two new vector-like instructions to this base ISA. The Vanilla Core has a 3-stage ALU,
and 4KB i-cache (IMEM) and local DMEM. The Vanilla Core supports non-blocking remote
loads which allows it to have pending memory operations (in this case remote loads) while
still allowing for other instructions to complete. These tiles also include a network router,
to send and receive data from the network itself.

Figure 2.6: Compute Tile Layout [37]
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Figure 2.7: Tile Floor Plan in TSMC 16nm [21]

2.2 Vanilla Core

The Vanilla Core is the workhorse and most basic building block of the HammerBlade chip.
While any type of accelerator is accepted, The Vanilla Core is the standard compute tile
used in the HammerBlade architecture.

2.2.1 Instruction Set Architecture

The Vanilla Core is a 5-stage partially in-order RISC-V processor that implements the
RV32IMF(A) ISA. Rather than being optimized for individual core performance, it is opti-
mized for aggregated performance. The Vanilla Core is silicon proven with both 180nm and
16nm tapeout and a prototype manycore chip with 16x31 cores achieved a record CoreMark
score of 812,350[37].

2.2.2 Programming Model

The Vanilla Core operates in a SPMD (Single Program Multiple Data) [23] setting when
used in the HammerBlade architecture. Each Vanilla Core is computing the same program
on a different subset of the data that is dispatched via the host tile. Each Vanilla Core
operates in a 32-bit virtual address, called the Endpoint Virtual Address (EVA) allowing for
in-group memory sharing.

Figure 2.8: EVA Mapping in HammerBlade Architecture [37]
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• Local DMEM: Accesses the local 4KB SRAM on an individual tile.

• Global: Accesses remote endpoints using x,y coordinates.

• In-Group: Accesses the tiles via tile group origin. This is set via configurable registers
on each Vanilla Core.

• L2/DRAM: Each address of the off-chip DRAM corresponds to an address in each L2
cache located on the border of the tile array. The x-coordinate and virtual bank address
provide a physical address in the off-chip DRAM.

Figure 2.9: Vanilla Core Tile Group Coordinates [37]
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2.2.3 Pipeline Architecture

The Vanilla Core follows the standard 5-stage pipeline (IF,ID,EXE,MEM,WB). However,
there are a few unique quirks to the Vanilla Core. After ID, the pipeline splits into two
paths EXE and FP EXE (Floating point execute). The EXE path has the LSU, ALU,
FP INT, and IDIV units while the FP EXE has a 2-stage FPU and an FDIV/FSQRT unit.

Figure 2.10: The Architecture of RISC-V Vanilla Core
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2.3 Single Instruction Multiple Data

The bulk of this thesis analyzes the implementation of Single Instruction Multiple Data
(SIMD) memory instructions into the aforementioned Vanilla Core. The key understanding
with SIMD is that many computation heavy algorithms rely on a series of consecutive loads
and stores before and after computing the workload. This is commonly a considerable
percentage of the overall instructions executed by each individual tile.

2.3.1 Basics of SIMD

The basic idea behind SIMD instructions is that sequenced loads and stores in consecutive
memory locations can be leveraged to convert a series load/store instructions into one larger
load/store instruction. This SIMD instruction would load/store 4x the amount of data in the
same amount of time a normal load/store would take to complete. In RISC-V architecture,
this can require minimal hardware additions [80]. This is often done by something called a
“vector unit”, essentially treating the string of data as a vector and storing the entire vector
at once.

Figure 2.11: Goal of SIMD Architecture [11]

The general idea behind SIMD is that it is often desirable to have the capabilities to do
the same computation on seperate sets of data in parallel.

12



2.3.2 RISC-V “V” Extension

There is currently a vector extension for the RISC-V ISA that has been implemented in a
variety of processors. One of note is the RISC-V2 [66], a scalable RISC-V processor with
a full vector processing unit (VPU) and up to 16 lanes for vector instructions. While it
achieved impressive speeds, the hardware costs are incredibly high. In the case of the RISC-
V2 the 16-lane Vector core required over 10x average power and 6x area[66]. This highlights
the expensive hardware overhead required to fully implement the V extension for the RISC-V
ISA.

13



Chapter 3

Implementation

3.1 Design Overview

The primary goal behind this instruction extension on the Vanilla Core is twofold. First,
to increase the speed at which each individual tile can compute its individual workload.
And second, to ensure that this speed does not come at the cost of power or area. With
2048 cores in the current HammerBlade design, a drastic increase in power or area could be
heavily detrimental to the performance of the design. As mentioned earlier, the Vanilla Core
is optimized for computing in parallel with other Vanilla Cores rather than only individual
computation. The desired change is to add local SIMD float loads and local SIMD float
stores. An important aspect of the proposed design is to keep the existing logic intact as
much as possible, this means adding parallel buses for SIMD data and adding logic only in
required locations to ensure proper data movement throughout the core.

The high-level changes to the core are as follows

• Decode (ID) Stage: replaced float register file with SIMD float register file

• Execute (EXE) Stage: added SIMD output from register file, Altered LSU to support
SIMD data

• Memory (MEM) Stage: DMEM changed to 4x width, Float scoreboard changed

• Write Back (WB) Stage: Added logic to support SIMD enable signal to register file

14



Figure 3.1: SIMD Vanilla Core (Changes in red)
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3.2 Instructions and Uses

The instructions must be described in order to understand how the modifications will support
the implementation. Two instructions will be added to the existing Vanilla Core: Float Load
SIMD (FLS) and Float Store SIMD (FSS). The opcodes follow the instructions single word
counterparts FLW and FSW respectively.

Figure 3.2: RV32 opcode structure for load and store instructions

Float Load SIMD

fls register grp, address
The SIMD load instruction will load 4 words from local memory given by address into

the register group given by register grp.

Float Store SIMD

fss register grp, address
The SIMD store instruction will store 4 words from the register group given by register grp

into the DMEM address given by address.

16



3.3 Register File

In order to support the execution of 4-word wide loads and stores, the float register file
must be changed accordingly. It’s important to note that in this implementation the SIMD
instructions can only be called on registers that are a multiple of 4 (0,4,8,etc). The function
of the register file largely stays the same, but now the SIMD data is output alongside the
original read data.

Figure 3.3: SIMD Register File Schematic

Note that the registers are grouped into groups of 4. This allows the requested data to be
outputted using only the input address and the SIMD signal. This is what is a considered
a banked register due to the grouping of the registers (banking). This heavily decreases the
area cost by limiting unnecessary multiplexers being added.

17



3.3.1 Store Instruction

The semantics of the normal FSW (float store word) is as follows: when valid read(r v i) is
turned on, the register file outputs the data from the individual register decided by the read
address(r addr i). This data is then sent through the pipeline to the EXE stage.

The new semantics of FSS (float store SIMD) is the exact same as before, however now
the registers are broken into groups of 4. When valid read is turned on, not only is the read
address register outputted, but also the data from registers 2-4 of the register group which
contains the read address.

When FSW is called, only the read address data is required. However when FSS is
called, both the read address data and the data from that register group are required.

Figure 3.4: Standard vs SIMD regfile outputs

Shown below are example store instructions to further understand the SIMD register file
function. The new register file SIMD output allows the existing logic to stay intact, while
also enabling the SIMD data to follow in parallel to the MEM stage.

Figure 3.5: Store Example
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3.3.2 Load Instruction

The semantics of the normal FLW (float load word) is as follows: when write valid (w v i )
is turned on, the data at the input port is stored into the write address (w addr i).

The SIMD core FLW instruction acts slightly differently. The input address corresponds
to the register groups rather than the individual registers. To access the individual registers
write valid (w v i ) is converted to a 4-bit enable signal. Each bit corresponds to the register
within the group that is being written to.

The new FLS instruction acts in the exact same as the SIMD core FLW instruction,
however the 4-bit enable signal is all 1’s (4’b1111) meaning the entire register group is written
to. Again, the SIMD instruction is only available on registers that are a multiple of 4.

3.3.3 System Verilog Module

The following code is the module used for the SIMD register file.

‘include "bsg_defines.sv"

module simd_regfile

#(‘BSG_INV_PARAM(width_p)

, ‘BSG_INV_PARAM(els_p)

, localparam addr_width_lp=‘BSG_SAFE_CLOG2(els_p)

)

(

input clk_i

, input reset_i

, input [3:0] w_v_i //one hot write enable

, input [addr_width_lp-1:0] w_addr_i

, input [3:0][width_p-1:0] w_data_i //width = 132

, input [2:0] r_v_i

, input [2:0][addr_width_lp-1:0] r_addr_i

, output logic [2:0][width_p-1:0] r_data_o //carries frs1,2,3

, output logic [2:0][width_p-1:0] rs2_simd_data_o //NEW OUTPUT, width 99

);

wire unused = reset_i;

logic [2:0][addr_width_lp-1:0] r_addr_r;

always_ff @ (posedge clk_i)

for (integer i = 0; i < 3; i++)

if (r_v_i[i]) r_addr_r[i] <= r_addr_i[i];

logic [3:0][width_p-1:0] mem_r [(els_p>>2)-1:0];

assign r_data_o[0] = mem_r[r_addr_r[0][4:2]][r_addr_r[0][1:0]];
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assign r_data_o[1] = mem_r[r_addr_r[1][4:2]][r_addr_r[1][1:0]];

assign r_data_o[2] = mem_r[r_addr_r[2][4:2]][r_addr_r[2][1:0]];

for (genvar i = 0; i < 3; i++)

assign rs2_simd_data_o[i] = mem_r[r_addr_r[1][4:2]][i+1];

always_ff @ (posedge clk_i) begin

for (integer i = 0; i < 4; i++) begin

if (w_v_i[i]) begin

mem_r[w_addr_i[4:2]][i] <= w_data_i[i];

end

end

end

endmodule

‘BSG_ABSTRACT_MODULE(simd_regfile)
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3.4 EXE Stage

To support the SIMD data coming from the register file the EXE stage needed to be modified
to include said data in the pipeline. The load store unit (LSU) needed to be modified to
support the SIMD data.

Figure 3.6: EXE Pipeline with SIMD data in red
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3.4.1 Load-Store Unit

The Load-Store Unit (LSU) is a combinational logic element in the EXE stage of the Vanilla
Core. It is responsible for address generation, address checking, and handshaking logic with
the pipeline and network. The LSU checks each memory address and determines whether
it’s a local or remote address. Local instructions take precedence over remote instructions.
A Local Load Buffer Figure 3.7 ensures that a remote load does not overwrite the DMEM
output.

Figure 3.7: Local Load Buffer Schematic [37]

The main changes made to the LSU support the masking of the data being sent to the
DMEM. This ensures that FSW instructions properly send data to the correct location, and
that FSS instructions send all expected data.

The semantics of the LSU related to local loads/stores are as follows: If it is a SIMD store
(FSS), the store data is set to the SIMD data and the mask is set to all 1s. For a singular
word store (FSW), the store data is replicated 4x and the mask depends on the last two
digits of the DMEM write address. This allows the store data to be written to the proper
word-sized DMEM address using the last two bits of the address to mask the input data.
Below are the SIMD related portions of the LSU that determine the data and mask being
sent to the DMEM.

always_comb begin

if (exe_decode_i.is_simd_op) begin

store_simd_data = {{exe_rs2_simd_i},{store_data}};

store_simd_mask = {{4{store_mask}}};

end
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else begin

store_simd_data = {{4{store_data}}};

unique casez (dmem_addr_o[1:0])

2’b00: begin

store_simd_mask = {{3{4’b0000}}, {store_mask}}; //only store [0]

end

2’b01: begin

store_simd_mask = {{2{4’b0000}}, {store_mask}, {1{4’b0000}}}; //only store [1] element

end

2’b10: begin

store_simd_mask = {{1{4’b0000}}, {store_mask}, {2{4’b0000}}}; //only store [2] element

end

2’b11: begin

store_simd_mask = {{store_mask},{3{4’b0000}}}; // only store [3] element

end

default: begin

store_simd_mask = 16’b0000000000000000;

end

endcase

end

end

3.4.2 recFNToFN Module

The recFNToFN module is the implementation of the Berkeley HardFloat module [13] to
conform the data to the IEEE 2001 Verilog standard for floating points[71]. The data is
stored in the float register file according to the IEEE standard for Floating-Point Arithmetic
and must be converted before it is sent to DMEM. This is one of the first major downsides
to the SIMD extension, as to ensure a SIMD store can occur in one cycle all the applicable
data must be converted which requires 4 recFNToFN modules compared to the previous one.
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3.5 MEM Stage

The MEM stage was largely kept the same but the DMEM needed to be altered to support
four wide loads. Similarly, the dependencies on the float scoreboard needed to be updated
to ensure accurate SIMD stores.

3.5.1 DMEM

The DMEM is altered to be 4x wider and have 4x less depth in order to support four wide
loads and stores while also staying at a size of 4KB. To ensure that single wide loads are
properly dealt with, a mux is required at the output of the DMEM for the desired single
word. The key to understand here is that the DMEM address sent throughout the core is 9
bits, but only 7 are required in the DMEM module itself. This is due to the fact that the
address width is essentially abstracted away from the pipeline, and the remaining last two
bits of the original DMEM address are instead used on an output mux.

Figure 3.8: DMEM Ouput Mux

24



3.5.2 Float Scoreboard

The scoreboard is a tool the core uses to ensure that there are registers that are neither
reserved nor dependent. Oftentimes, SIMD stores are done after a series of remote loads
which take more time to complete than local loads. Currently, a register address is “scored”
when there is a remote load placed to that location. Subsequently, a store is not allowed
from that register until the score has been cleared. The SIMD stores, unlike the single word
stores, are reliant on 4 registers being clear which is reflected in the code below taken from
the SIMD core’s scoreboard module.

always_comb begin

if(is_simd_op) begin

rs_depend_on_sb_simd = (scoreboard_r[src_id_i[1] + 1] & op_reads_rf_i[1]) |

(scoreboard_r[src_id_i[1] + 2] & op_reads_rf_i[1]) | (scoreboard_r[src_id_i[1] + 3] &

op_reads_rf_i[1]);

end

else begin

rs_depend_on_sb_simd = 1’b0;

end

end
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3.6 WB Stage

The strategy of the WB stage is largely similar to the EXE stage. The pipeline is altered
to support the SIMD data, and 3 fNToRecFN must be added to convert the data to the
floating point standard before it is stored.

3.6.1 Pipeline changes

To ensure that the data is stored properly to the float register file the original write enable
must be converted to a 4-bit one-hot enable signal. The enable signal is 4’b1111 if it is a
SIMD operation, or the one-hot encoded float register file write address. Below is the write
back logic taken from the Vanilla Core System Verilog file.

always_comb begin

float_rf_wen_li = 4’b0;

float_rf_wdata_li = ’0;

if (flw_wb_ctrl_r.is_simd_op & ~float_remote_load_resp_v_i) begin

float_rf_wdata_li = flw_recoded_data;

end

else begin

float_rf_wdata_li = {4{float_rf_wdata}};

end

if (float_rf_wen & flw_wb_ctrl_r.is_simd_op & ~float_remote_load_resp_v_i) begin

float_rf_wen_li = 4’b1111;

end

else if (float_rf_wen) begin

unique casez (float_rf_waddr[1:0])

2’b00: begin

float_rf_wen_li = 4’b0001; //0001

end

2’b01: begin

float_rf_wen_li = 4’b0010; //0010

end

2’b10: begin

float_rf_wen_li = 4’b0100; //0100

end

2’b11: begin

float_rf_wen_li = 4’b1000; //0001

end

endcase

end

end
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Chapter 4

Verification and Benchmarks

A large part of this thesis was ensuring that the SIMD Vanilla Core was properly executing
both single word load/stores and SIMD load/stores. The work would be largely uninteresting
without speedup analysis on common benchmarks comparing the SIMD Vanilla Core to the
standard Vanilla Core.

4.1 Verification

The verification done on the SIMD Vanilla Core was done using the open source bsg manycore
repository[18] owned and maintained by the Bespoke Silicon Group at University of Wash-
ington. The verification suite is organized using a tiered system where levels 0 and 1 are
verifying the execution of single instructions while levels 2 and 3 implement HammerBlade
specific instruction loops (i.e remote loads) and the coremark benchmark suite[29]. To fully
verify the core, all levels must be successfully completed.

4.1.1 Basic Verification

To verify successful execution of that standard Vanilla Core instruction set, the core was
verified using all 3 levels of the bsg manycore verification suite. The Vanilla Core uses a
SPMD program loader to get relevant packets from the core to ensure it reaches the correct
states (BSG FINISH packets). This packet also gives simulation time stamps to ensure that
there is no performance degradation between the SIMD and standard Vanilla Core.

To ensure that the core was not losing performance, the VCS simulation report was
compared between the SIMD and standard Vanilla Core. Below is the bsg barrier VCS
simulation report compared between the SIMD and standard Vanilla Core.

Standard Core SIMD Core

Runtime(ps) 580841000 580841000

Table 4.1: bsg barrier simulation results
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Figure 4.1: All Successfully Completed SPMD Programs
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4.1.2 Vanilla Core Compiler

The HammerBlade architecture makes use of the Gnu Compiler Collection (GCC)[79], an
open source RISC-V compiler. GCC is responsible for turning C/C++ code into the assembly
that runs directly on the core itself. To support the SIMD instructions the GNU-GCC
toolchain must be altered to include SIMD load (FLS) and SIMD store (FSS). This is done
by creating the associated match and mask of FLS and FSS instructions, and adding them
to the toolchain. I used Hadi R. Sandid’s tutorial regarding this topic to successfully add
the instructions to the toolchain[78]. The SIMD instructions follow the same format as the
standard FLW and FSW instructions and are largely the same outside of changed control
logic. Below is the related code to the declaration of the FLS and FSS instructions and
related FLW/FSW instructions.

‘define RV32_FLW_S ‘RV32_Itype(‘RV32_LOAD_FP, 3’b010)

‘define RV32_FSW_S ‘RV32_Stype(‘RV32_STORE_FP, 3’b010)

‘define RV32_FLS_S ‘RV32_Itype(‘RV32_LOAD_FP, 3’b101)

‘define RV32_FSS_S ‘RV32_Stype(‘RV32_STORE_FP, 3’b101)

4.1.3 Current Compiler Limitations

There are a few important caveats to understand with the addition of the FLS and FSS in-
structions to the Vanilla Core. First, the instructions can only be called on register addresses
that are multiples of four. Second, the desired data must be in consecutive register addresses.
As GCC converts the C/C++ code to assembly, it allocates registers accordingly; however
it does not consider the use of consecutive registers. This eliminates the possibility of SIMD
instructions being properly compiled by the current compiler1, so a different approach to
verifying the SIMD instructions must be taken.

1There is currently a concerted effort by members of The Bespoke Silicon Group to alter the HammerBlade compiler to
support the SIMD hardware extension however it was not complete at this time[9]
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4.1.4 SIMD Verification

Because of the current compilers limitations, the standard C/C++ code cannot be used to
properly simulate the Vanilla Core. Instead, assembly code is used to send SIMD instructions
to the Vanilla Core. Two of the bsg manycore SPMD verification benchmarks were chosen
to verify proper SIMD instruction execution: asm dmem test and asm memcpy dram. Both
benchmarks ultimately do the same thing, which is write 1024 pieces of data to memory
and then read said data. The difference being that asm dmem test writes to the local 4KB
DMEM (exclusively local load/stores), while asm memcpy dram writes to the modeled off-
chip DRAM (local and remote load/stores).

4.2 Benchmarking

Once verification of the SIMD Vanilla Core was complete, the next step was to ensure
that the speedup provided outweighs the costs of the hardware changes. There were three
benchmarks used to evaluate the speedup of the SIMD core.

• asm dmem test: SPMD program that copies 1024 pieces of data to and from local
DMEM

• asm memcpy dram: SPMD program that copies 1024 pieces of data to and from
remote off-chip DRAM

• sgemm: Single precision general matrix multiplication running on the HammerBlade
benchmark suite [17]
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4.2.1 asm dmem test

This benchmark was altered by unrolling the write and read loops by a factor of 4, and
replacing the SW and LW instructions with the float SIMD alternatives. This required a
moderate increase in overhead due to the fact the standard loop was using integer loads,
while the SIMD loop uses float loads requiring conversion from integers to floating point.
Below is the write and read loop code from the standard and SIMD program.

Listing 4.1: Standard loop

dmem_to_dram_loop:

// write to DMEM

li t0, 0

li t1, 0

li t2, N

write_loop:

sw t1, 0(t0)

addi t1, t1, 1

addi t0, t0, 4

bne t1, t2, write_loop

// read from DMEM

li t0, 0

li t1, 0

li t2, N

read_loop:

lw t3, 0(t0)

bne t3, t1, fail

addi t1, t1, 1

addi t0, t0, 4

bne t1, t2, read_loop

Listing 4.2: SIMD loop

li t0, 0

li t1, 0

addi t2, t1, 1

addi t3, t2, 1

addi t4, t3, 1

li t5, N

init_loop:

fcvt.s.w f0, t1 // = 0

fcvt.s.w f1, t2 // = 1

fcvt.s.w f2, t3 // = 2

fcvt.s.w f3, t4 // = 3

fss f0, 0(t0)

addi t1, t1, 4

addi t2, t2, 4

addi t3, t3, 4

addi t4, t4, 4

addi t0, t0, 16

bne t1, t5, init_loop

// read from DMEM

li t0, 0

li t1, 0

li t2, N

read_loop:

fls f0, 0(t0)

fcvt.w.s t3, f0

bne t3, t1, fail

addi t1, t1, 4

addi t0, t0, 16

bne t1, t2, read_loop
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This code modification using the new instructions allows the 4 word-sized load/store to
be replaced with a singular SIMD load/store. The speedup via VCS Simulation report is
seen below.

Standard Core SIMD Core Speedup

10781000ps 5420000ps 1.989

Table 4.2: asm dmem test report

The calculations seen below approximate the change in loop instructions in the SIMD
core. Via these calculations a speedup of 2.117 is seen, in-line with what is expected.

SIMD:

256 loops×11 instructions+256 loops×6 instructions = 4352 total loop instructions (4.1)

Standard:

1024 loops×4 instructions+1024 loops×5 instructions = 9216 total loop instructions (4.2)

4.2.2 asm memcpy test

With asm dmem test, the reads and writes are from DMEM, and as a result, asm dmem test
can use SIMD operations. Conversely, asm memcpy test also reads and writes from DRAM
and in these cases SIMD operations cannot be used. Read and writes from DRAM are
what the Vanilla Core considers a “remote” operation and it receives the data from the
network rather than the local scratchpad DMEM. Below is an example of converting the
dmem to dram loop in asm memcpy dram where 4 FLW instructions can be replaced with
a single FLS instruction. Note that the subsequent 32 fsw instructions are not viable for
SIMD due to the fact they are storing to off-chip DRAM.
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Listing 4.3: Standard loop

dmem_to_dram_loop:

flw f0, 0(t0)

flw f1, 4(t0)

flw f2, 8(t0)

flw f3, 12(t0)

flw f4, 16(t0)

flw f5, 20(t0)

flw f6, 24(t0)

flw f7, 28(t0)

flw f8, 32(t0)

flw f9, 36(t0)

flw f10, 40(t0)

flw f11, 44(t0)

flw f12, 48(t0)

flw f13, 52(t0)

flw f14, 56(t0)

flw f15, 60(t0)

flw f16, 64(t0)

flw f17, 68(t0)

flw f18, 72(t0)

flw f19, 76(t0)

flw f20, 80(t0)

flw f21, 84(t0)

flw f22, 88(t0)

flw f23, 92(t0)

flw f24, 96(t0)

flw f25, 100(t0)

flw f26, 104(t0)

flw f27, 108(t0)

flw f28, 112(t0)

flw f29, 116(t0)

flw f30, 120(t0)

flw f31, 124(t0)

fsw f0, 0(t1)

fsw f1, 4(t1)

fsw f2, 8(t1)

fsw f3, 12(t1)

fsw f4, 16(t1)

fsw f5, 20(t1)

fsw f6, 24(t1)

fsw f7, 28(t1)

fsw f8, 32(t1)

fsw f9, 36(t1)

Listing 4.4: SIMD loop

dmem_to_dram_loop_SIMD:

fls f0, 0(t0)

fls f4, 16(t0)

fls f8, 32(t0)

fls f12, 48(t0)

fls f16, 64(t0)

fls f20, 80(t0)

fls f24, 96(t0)

fls f28, 112(t0)

fsw f0, 0(t1)

fsw f1, 4(t1)

fsw f2, 8(t1)

fsw f3, 12(t1)

fsw f4, 16(t1)

fsw f5, 20(t1)

fsw f6, 24(t1)

fsw f7, 28(t1)

fsw f8, 32(t1)

fsw f9, 36(t1)

fsw f10, 40(t1)

fsw f11, 44(t1)

fsw f12, 48(t1)

fsw f13, 52(t1)

fsw f14, 56(t1)

fsw f15, 60(t1)

fsw f16, 64(t1)

fsw f17, 68(t1)

fsw f18, 72(t1)

fsw f19, 76(t1)

fsw f20, 80(t1)

fsw f21, 84(t1)

fsw f22, 88(t1)

fsw f23, 92(t1)

fsw f24, 96(t1)

fsw f25, 100(t1)

fsw f26, 104(t1)

fsw f27, 108(t1)

fsw f28, 112(t1)

fsw f29, 116(t1)

fsw f30, 120(t1)

fsw f31, 124(t1)
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Listing 4.5: Standard loop cont.

fsw f10, 40(t1)

fsw f11, 44(t1)

fsw f12, 48(t1)

fsw f13, 52(t1)

fsw f14, 56(t1)

fsw f15, 60(t1)

fsw f16, 64(t1)

fsw f17, 68(t1)

fsw f18, 72(t1)

fsw f19, 76(t1)

fsw f20, 80(t1)

fsw f21, 84(t1)

fsw f22, 88(t1)

fsw f23, 92(t1)

fsw f24, 96(t1)

fsw f25, 100(t1)

fsw f26, 104(t1)

fsw f27, 108(t1)

fsw f28, 112(t1)

fsw f29, 116(t1)

fsw f30, 120(t1)

fsw f31, 124(t1)

In asm memcpy dram there are 19798 total instructions and 2048 of them are local loads/-
store that are converted to SIMD load/store instructions. The 2048 FLW/FSW instructions
are converted into 512 FLS/FSS instructions. Using Amdahl’s law and assuming the speedup
is 4x, the expected speedup is 1.081. However the table below shows a different story.

Standard Core SIMD Core Speedup

17603000ps 16493000ps 1.06730127933

Table 4.3: asm memcpy dram results

Almost 2% of the overall speedup is missing. The Vanilla Core’s handling of remote loads
must be further understood to find the unexpected slowdown. The semantics of a remote
load is that the core sends out a remote request, and “scores” the desired register address of
remote load data. The SIMD Vanilla Core supports non-blocking loads but incoming remote
loads are not promised to be in order via the on-chip response network. Consequently, there
are situations where SIMD store instructions are waiting for an out of order remote load.
This will stall the upcoming SIMD store instruction until the remote load is completed.
Figure 4.2 shows a sequence of 8 SIMD stores after a series of remote loads. The float
dependency wire indicates that for the next cycle the core must stall due to the fact the data
to be stored is not ready yet via remote load.
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Figure 4.2: Remote Load Delay for SIMD Store

The added stalls incurred by remote loads means that the speedup of SIMD stores after
remote loads is 2x rather than 4x (and can be even lower depending on order of remote
loads). The average speedup of SIMD instructions will now be 3x due to the fact SIMD
loads are 4x and SIMD stores are 2x. Using these values, Amdahl’s law results in a speedup
of 1.0714 which is in line with the speedup measured.
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4.2.3 SGEMM

The Single precision General Matrix Multiplication (SGEMM) is a common benchmark that
is implemented in the hb hammerbench[46] suite by The Bespoke Silicon Group. It simu-
lates HammerBlade architecture using the CUDA-lite[100] programming model previously
described. This benchmark relies heavily on local FLW and FSW instructions making it an
attractive recipient of a SIMD makeover. SGEMM can be ran using a variety of settings, but
all benchmarking was done using SGEMM 512,2 (512x512 matrix multiplication, 2 passes).

Instruction Standard Core SIMD Core

local flw 151519232 67108864
local fsw 50331648 0
local fls 0 21102592
local fss 0 12582912

Table 4.4: Instruction count for SGEMM

One difficulty with the SGEMM benchmark (and any hb hammerbench benchmark) is
that the CUDA-lite model is explicitly written in C/C++. While it was trivial to alter
the assembly (asm) benchmarks, the CUDA-lite code required a separate avenue of attack.
Due to the current compilers limitations within the current HammerBlade toolchain, inline
assembly would be troublesome with how registers are allocated. The most efficient way to
add SIMD instructions to this benchmark is by object dumping the existing kernel (code
that runs on each tile) and rewriting portions of it in separate assembly functions and linking
the functions in C. Below is an example of a rewritten portion of the SGEMM Kernel.

kernel.cpp:

// load the psum

bsg_unroll(SUB_DIM)

for (int py = 0; py < SUB_DIM; py++) {

bsg_unroll(SUB_DIM)

for (int px = 0; px < SUB_DIM; px++) {

psum[py][px] = sub_block_out[(py*BLOCK_DIM)+px];

}

}

SIMDkernel.cpp:

// load the psum

load_psum_s(sub_block_out);

The disassembly from these code snippets is as follows:

36



kernel.dis:

psum[py][px] = sub_block_out[(py*BLOCK_DIM)+px];

c4c: 0007a687 flw fa3,0(a5) # 100000 <_bsg_elf_vcache_size+0x80000>

c50: 0047a787 flw fa5,4(a5)

c54: 0087a607 flw fa2,8(a5)

c58: 00c7a707 flw fa4,12(a5)

c5c: 0407a587 flw fa1,64(a5)

c60: 0447a507 flw fa0,68(a5)

c64: 0487a007 flw ft0,72(a5)

c68: 04c7a087 flw ft1,76(a5)

c6c: 0807a887 flw fa7,128(a5)

c70: 0847ae07 flw ft8,132(a5)

c74: 0887ae87 flw ft9,136(a5)

c78: 08c7af07 flw ft10,140(a5)

c7c: 0c07af87 flw ft11,192(a5)

c80: 0c47a407 flw fs0,196(a5)

c84: 0c87a307 flw ft6,200(a5)

c88: 0cc7a807 flw fa6,204(a5)

SIMDkernel.dis:

// load the psum

00000a8c <load_psum_s>:

#include "bsg_manycore_asm.h"

.text

.global load_psum_s

load_psum_s:

fls f0, 0(a0)

a8c: 00055007 fls ft0,0(a0)

fls f4, 64(a0)

a90: 04055207 fls ft4,64(a0)

fls f8, 128(a0)

a94: 08055407 fls fs0,128(a0)

fls f12, 192(a0)

a98: 0c055607 fls fa2,192(a0)

There are 5 separate linked assembly functions in the SIMD SGEMM kernel, allowing
84410368 FLW instructions to be converted into 21102592 FLS instructions, and 50331648
FSW instructions into 12582912 FSS instructions. This accounts for 23.53% of all instruc-
tions. Using Amdahl’s law and understanding that not all of the 4x speedup will be experi-
enced from stores following remote loads, a speedup of 1.13 is achieved.

Standard Core SIMD Core Speedup

6613918 cycles 6337718 cycles 1.04358035495

Table 4.5: SGEMM Speedup
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In the core utilization statistics Table 4.6 there is suddenly an increase in ADDI, JAL, and
JALR instructions. This is because when the assembly functions are called, the compiler
must first calculate each operand, then JAL to the function location embedded into the
assembly, and finally JALR back to the code from the function call. This accounts for
7.75% lost speedup. If this “lost” speedup is added to the simulation speedup the speedup
is 1.12, which is what is expected.

Instruction SIMD Count SIMD Percent Standard Count Standard Percent

local flw 67108864 13.10% 151519232 26.47 %
local fsw 0 0.00 % 50331648 8.79 %
local fls 21102592 4.12% 0 0.00 %
local fss 12582912 2.46% 0 0.00 %
addi 69826664 13.63% 55443879 9.68 %
jal 11550720 2.25% 0 0.00 %
jalr 11550720 2.25% 0 0.00 %
fmadd 268435456 52.39% 268435456 46.89 %
local ld 682791 0.13% 18113 0.00 %
local st 690345 0.13% 530476 0.09 %
bne 10862434 2.12% 10862420 1.90 %
blt 1043 0.00% 1048 0.00 %
bge 3072 0.00% 3072 0.00 %
slli 1050149 0.20% 2501 0.00 %
add 2256511 0.44% 1271473 0.22 %
sub 1158 0.00% 2048 0.00 %
lui 595265 0.12% 7242 0.00 %
or 384 0.00% 384 0.00 %
and 384 0.00% 384 0.00 %
fence 128 0.00% 128 0.00 %
barsend 128 0.00% 128 0.00 %
barrecv 128 0.00% 128 0.00 %
remote st global 128 0.00% 128 0.00 %
remote flw dram 2097152 0.41% 2097152 0.37 %
remote seq flw dram 31457280 6.14% 31457280 5.49 %
remote fsw dram 524288 0.10% 524288 0.09 %

Table 4.6: SGEMM Core Utilization
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Chapter 5

Cost Analysis

To fully understand the impact of the Vanilla Core proposed modifications, the power and
energy characteristics must also be analyzed. As seen in the Tile Floor Plan in TSMC 16nm
2.7 the IMEM, DMEM, and register file take up 62% of the overall tile area[15]. Consequently,
the IMEM and DMEM will be the primary focus regardings the area and power changes.

5.1 Area

Increasing the DMEM width while decreasing depth creates a 27% increase in overall DMEM
Area [38]. Considering that the DMEM is one of the largest contributors to overall tile area,
this is somewhat undesirable. Not only does the overall area increase, but the increased
width causes the Y length to be over 10 times longer than the X length which will be a
limiter, especially if looking to optimize the tile for area.

depth:256, width:128 depth:1024, width:32

X length (microns) 20.789 53.045
Y length (microns) 266.496 82.176
Area (microns2) 5540.185344 4359.02592

Table 5.1: DMEM Area
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5.2 Power

The second aspect of the cost analysis is to understand the change in power after imple-
menting SIMD modifications. To do this two primary power sources will be considered: The
IMEM and DMEM. The IMEM is the 4KB instruction cache and the DMEM is the local
4KB scratchpad used for all local loads/stores.

SIMD DMEM Standard DMEM IMEM

Read Power(mA) 5.66E-03 2.21E-03 2.83E-03
Write Power(mA) 6.08E-03 2.82E-03 3.58E-03

Read Power per bit(mA) 4.42E-05 6.92E-05 n/a

Table 5.2: DMEM & IMEM read/write power

While the overall power per read and write is significantly higher in the SIMD DMEM, it
is actually more efficient in reading per bit. Both the IMEM and DMEM are static random-
access memory (SRAM). The SRAM energy in the HammerBlade tile takes about 35% of the
total energy to execute one scalar load/store[56] which implies that a decrease or increase in
power will heavily affect the power characteristics of a full HammerBlade array. Given this
knowledge, there will be a “breakeven point” where if a program can convert a percentage
of its load/stores into SIMD loads/stores it will save energy rather than use more energy.

To accurately calculate this the total power used by single-word load/stores and SIMD
load/stores must be understood. This is done by summing up the read and write power from
IMEM, and read power for loads or write power for stores. Shown in Table 5.3 are the total
power values for individual load/stores and 4x load/stores.

SIMD Core Standard Core

FLW(mA) 12.07E-03 8.62E-03
FSW(mA) 12.49E-03 9.23E-03

4xFLW(FLS) (mA) 12.07E-03 34.48E-03
4xFSW(FSS) (mA) 12.49E-03 36.92E-03

Table 5.3: Instruction Power from IMEM DMEM

Using these values it can be computed that as long as 38.18% of load instructions and
34.86% of store instructions are able to be converted to SIMD, power will reach net zero. Note
that these are load/store exclusive, meaning that if 38.18% of load instructions are converted
that would cover the power cost of all remaining load instructions to a net zero; the same is
true for stores. The related code for calculating this can be found in the appendix. Using
SGEMM 512 as an example, out of the 201850886 total load/store instructions 134742022
were able to be converted to SIMD instructions-66.75%. Using the data from the Table 5.3,
5.4878E05 mA of power is saved.
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5.2.1 Banked DMEM alternative

To decrease the cost of single word load and store instructions, the SIMD DMEM can be
”banked”. The DMEM is split into two 64 wide 256 deep identical DMEM units rather than
the single 128 wide 256 deep DMEM unit. This is an alternative approach to the existing
SIMD DMEM and is not supported by the current Vanilla Core SIMD modifications.

SIMD DMEM Standard DMEM Banked DMEM

Read Power(mA) 5.66E-03 2.21E-03 2.95E-03
Write Power(mA) 6.08E-03 2.82E-03 3.21E-03

Read Power per bit(mA) 4.42E-05 6.92E-05 4.61E-05

Table 5.4: Various DMEM configuration read/write power

The banked DMEM would only turn on the respective unit that contains the location
required for a single word load/store. For SIMD instructions, both DMEM units would be
turned on. As seen in Table 5.4, our single word instructions would incur a power cost that
is significantly lower than the larger single-unit SIMD DMEM. However, the power cost of
SIMD instructions would be substantially larger than the single-unit SIMD DMEM due to
the need to power on both DMEM units.

SIMD Core Standard Core Banked DMEM Core

FLW(mA) 12.07E-03 8.62E-03 9.36E-03
FSW(mA) 12.49E-03 9.23E-03 9.62E-03

4xFLW(FLS) (mA) 12.07E-03 34.48E-03 18.72E-03
4xFSW(FSS) (mA) 12.49E-03 36.92E-03 19.24E-03

Table 5.5: Instruction Power from IMEM DMEM

Using a banked DMEM, we would only need to convert 15.82% of load instructions and
8.11% of store instructions to reach our power breakpoint. In SGEMM 512, the banked
DMEM would save 5.05382E05 mA of power. This is less power saved than with the single-
unit SIMD DMEM but is more robust against increased power consumption from single
word instructions. The two main downsides to using a banked DMEM are that the DMEM
address logic will need to be changed to support SIMD load/stores accessing both units and
that there is a slight area increase compared to the single-unit SIMD DMEM (5971 and 5540
microns2 respectively).
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The HammerBlade manycore architecture relies on high-throughput workhorse compute tiles,
primarily via the RISC-V Vanilla Core. This thesis proposes a low-weight extension to the
Vanilla Core that can not only improve the throughput of the SIMD Core compute tile but
also decrease its power profile. First, the hardware was extended to support two instructions:
FLS and FSS. This was done by creating parallel lanes along the standard FLW and FSW
instructions and required control logic to support the widened data bus. Next, GCC was
altered to allow for the use of the FLS and FSS instructions through custom assembly files.
Multiple SPMD and HammerBlade benchmarks were altered and analyzed to understand
the performance gained by the SIMD extension. Lastly, the power and area of the proposed
changes were analyzed to further understand the cost of this modification.

This modification adds increased throughput for applications with high data-level paral-
lelism with the potential for large power savings depending on the percentage of the appli-
cation that can be converted to SIMD instructions. The primary drawback of this design
is the increased area. With that in mind this SIMD core may not become the standard
compute tile for the HammerBlade architecture, but can instead blend in seamlessly as a
“soft” accelerator depending on the intended use of the HammerBlade system.

6.2 Future Work

While largely successful, there are a number of directions this work can go in the future.
Listed below are a few ways that this work can be furthered and refined.

• SIMD core area and switching power: One largely unexplored area of this thesis
is the area and power cost of the proposed changes outside of the SRAM. This may
impact the efficacy of the modified SIMD design

• Compiler support: The benchmarks chosen gave promising results, but can be fully
investigated once the compiler modification is complete.

• Striding: Most common algorithms, if not storing to adjacent memory addresses, are
storing to common intervals throughout memory. With the current design this is not
feasible, and likely would require multiple DMEMs on chip to support.

42



• Place and route: This design was not fully pushed through the RTL flow. Completing
this would further the understanding of the power and area costs of the proposed design.

• Vector register: Many current SIMD processors contain a vector register that is solely
responsible for vector instructions (FLS, FSS). This was not in the scope of this thesis,
and I expect the area required for another vector register to outweigh the potential gain
in a manycore system.

These potential modifications would further the understanding of how SIMD instructions
could transform the HammerBlade Manycore architecture.
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Chapter 7

Appendix: Python Code for Power
Analysis

7.1 Python Code for Power Analysis

To properly calculate the ratio of instructions required to ”break even” power-wise was
calculated using this simple python script:

from decimal import Decimal

def TestValues(totalInstructions):

totalInstructions = int(totalInstructions)

minStore = 0

minLoad = 0

calcStore = -1

calcLoad = -1

for num in range(totalInstructions):

if minStore == 0:

calcStore = CalcStore(num, totalInstructions - num)

if calcStore > 0:

minStore = num

if minLoad == 0:

calcLoad = CalcLoad(num, totalInstructions - num)

if calcLoad > 0:

minLoad = num

print("-----")

print("total instructions: " + str(totalInstructions))

print("minimum simd stores for positive delta : " + str(format_percentage(minStore /

totalInstructions)))

print("minimum simd loads for positive delta : " + str(format_percentage(minLoad/

totalInstructions)))

print("-----")

def CalcStore(simd, normal):

return Decimal(Decimal("5.6025") * simd - Decimal("3.45") * normal)

def CalcLoad(simd, normal):

return Decimal(Decimal("6.1075") * simd - Decimal("3.26") * normal)

def format_percentage(decimal_number, decimal_places=2):

percentage = "{:.{}%}".format(decimal_number, decimal_places)

return percentage
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def main():

choice = input("enter total instructions: ")

TestValues(choice)

if __name__ == "__main__":

main()
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