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Hardware accelerators are an active field of research in computer architecture as one solution

to overcome hurdles such as dark silicon. A host processor interfaces with an accelerator and

offloads the time­consuming computations onto it. BlackParrot is one such accelerator host being

developed at the Bespoke Silicon Group. The initial performance comparisons of BlackParrot with

other similar RISC­V processors are promising, and it is validated in silicon through a tapeout in

12 nm technology. BlackParrot is currently an industrial­strength ASIC Design, but ASIC flows

are not readily available to individual users outside research groups that want to use BlackParrot in

their designs. Open­source ASIC flows mitigate this to a certain extent, but taping out a chip is a

costly exercise. An alternative to ASIC design is to use simulation only to validate the design, but

this does not provide silicon validation and is an issue for long­running benchmarks which could

run for days. In order to provide users with a silicon option for their designs using BlackParrot,

the most viable option is an FPGA system. FPGAs allow rapid design iterations and provide an

opportunity to prototype the system in real hardware. This thesis examines two tracks of building

out BlackParrot’s FPGA environment: i) by integrating BlackParrot into the OpenPiton memory

system and validating it on an FPGA, and ii) by creating an in­house system using the Zynq­7000

SoC available on specific FPGAs and supporting hardware cosimulation for the BlackParrot design.



Contents

List of Figures

List of Tables

1 Introduction 1

2 Background 2

2.1 BlackParrot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 OpenPiton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Bring Your Own Core (BYOC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 ParrotPiton 9

3.1 BlackParrot L1 Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Flexibility in Cache and CE Design . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Motivation for single core optimization . . . . . . . . . . . . . . . . . . . 13

3.2.2 Allowing plug­and­play operation . . . . . . . . . . . . . . . . . . . . . . 13

3.2.3 Multiple widths and associativity combinations . . . . . . . . . . . . . . . 15

3.2.4 Write­through option enabled in the same cache . . . . . . . . . . . . . . . 16

3.3 Cache Engines for BlackParrot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Unified Cache Engine (UCE) . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.2 Local Cache Engine (LCE) . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Setting up for integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Way mapping the BlackParrot D$ with the BPC . . . . . . . . . . . . . . . 25

3.4.2 L2 Atomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 P­Mesh Cache Engine (PCE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Full system integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Baremetal Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



3.7.2 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Linux Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.9 Bugs and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Limitations of Previous Methods 37

5 ZynqParrot 38

5.1 Choosing the FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Choosing the connections to use . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.1 AXI4­Lite Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.2 FIFO with AXI4­Lite interfaces on both ends . . . . . . . . . . . . . . . . 46

5.4.3 BlackParrot Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4.4 BlackParrot UART read issue . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 Version 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.6 Software setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6.1 Directory structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.6.2 Header files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.6.3 Testbench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.7 Validation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Conclusions and Future Work 56

7 Acknowledgments 58

References 60

Appendix 68



List of Figures

1 BlackParrot Pipeline [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Coherence Networks [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 BlackParrot Tile [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 OpenPiton Architecture [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 BYOC System Architecture [17] . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6 Options for interfacing the memory system with the core [17] . . . . . . . . . . . . 7

7 ParrotPiton logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

8 Data memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

9 Different BlackParrot configurations . . . . . . . . . . . . . . . . . . . . . . . . . 18

10 UCE FSM functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

11 LCE Request FSM functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

12 LCE Command FSM functionality . . . . . . . . . . . . . . . . . . . . . . . . . . 23

13 Way Mapping between D$ and BPC . . . . . . . . . . . . . . . . . . . . . . . . . 26

14 PCE FSM functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

15 ParrotPiton tile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

16 Three­core ParrotPiton booting Linux . . . . . . . . . . . . . . . . . . . . . . . . 35

17 Zynq­7000 SoC Block Diagram [28] . . . . . . . . . . . . . . . . . . . . . . . . . 40

18 Zynq­7000 System­Level Address Map [28] . . . . . . . . . . . . . . . . . . . . . 41

19 Version 1 ZynqParrot design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

20 Version 2 ZynqParrot design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

21 Version 3 ZynqParrot design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

22 AXI R/W to Write module and FSM . . . . . . . . . . . . . . . . . . . . . . . . . 51

23 Future extension to ZynqParrot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

24 Testing directory setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

25 Example single D­Cache testbench . . . . . . . . . . . . . . . . . . . . . . . . . . 68

26 Testbench supporting multiple caches . . . . . . . . . . . . . . . . . . . . . . . . 70



List of Tables

1 Cache request structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Cache request metadata structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Width and associativity combinations . . . . . . . . . . . . . . . . . . . . . . . . 16

4 RISC­V Atomic instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 FPGA Utilization for different ParrotPiton configurations (BlackParrot is contin­

uously evolving so this is a snapshot in time) . . . . . . . . . . . . . . . . . . . . 33

6 ParrotPiton hierarchical utilization (BlackParrot is continuously evolving so this

is a snapshot in time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 FPGAUtilization for two BlackParrot configurations (BlackParrot is continuously

evolving so this is a snapshot in time) . . . . . . . . . . . . . . . . . . . . . . . . 39

8 ZynqParrot Address Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9 FPGA Utilization for the ZynqParrot system with the default BlackParrot configu­

ration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

10 ZynqParrot hierarchical utilization . . . . . . . . . . . . . . . . . . . . . . . . . . 55

11 SPEC2000 benchmarks running on ZynqParrot . . . . . . . . . . . . . . . . . . . 55

12 SPEC2006 benchmarks running on ZynqParrot . . . . . . . . . . . . . . . . . . . 55

13 Trace replay instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



1 Introduction

Since the advent of the RISC­V [1] open­source instruction set architecture (ISA), there has been a

steady increase in the number of processors [2–6] built using this ISA across academia and industry.

At the same time, hardware accelerators are an active field of research since specialization is a

viable solution to overcome the dark silicon problem [7], with accelerators designed for various

applications [8–12]. The BlackParrot processor aims to be an accelerator host multicore system.

As shown in [2], the per­core performance of BlackParrot is very competitive compared to

other similar RISC­V processors. BlackParrot is silicon­validated in 12 nm technology, and ASIC

Design continues to be a significant focus. However, while these chips could be used within the

research group, supporting only an ASIC flow does not attract many users because tapeouts are

prohibitively expensive. Another option is to support a simulation­only setup for the validation of

designs using BlackParrot. While simulation is the first step towards ensuring correct functionality,

it is an issue for long­running benchmarks, some of which could run for days. These issues require

further exploration into other alternatives for extending the community reach of BlackParrot, and

Field Programmable Gate Arrays (FPGAs) are an attractive option due to their reprogrammability,

capacity for fast design iterations, and reasonable costs.

This thesis describes these two tracks, encompassing my major contributions to the research

group, namely:

• Integration of BlackParrot into OpenPiton (ParrotPiton) that involves designing a transducer

between the two systems and bringing up Linux on the integrated system. This track helps

BlackParrot to update its integration infrastructure and undergo testing with another system,

thereby uncovering any issues previously not seen.

• Creation of a setup for BlackParrot with hardware cosimulation on boards containing the

Zynq­7000 SoC (ZynqParrot), allowing users to simulate the design and run it on the board

using the same testbench written in C++.
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2 Background

This section describes the major components used in this thesis.

2.1 BlackParrot

BlackParrot [2, 13] is an open­source, Linux­capable, 64­bit RISC­V multicore processor. The

principles behind the core design are Be Tiny, Be Modular, and Be Friendly. Area minimization

is one of the main focuses of this core. A tiny core is beneficial in ASIC design and low­cost

FPGAs since it fits in a smaller area, leaving more room for custom logic and accelerators. The

second principle places emphasis on modularity and latency insensitive interfaces for connecting

different modules. Using latency insensitive interfaces allows the designer to not rely on specific

timing handshakes, avoid potential bugs and reduce the verification scope. Being friendly and

open­source offers external contributors an opportunity to help develop the system.

The BlackParrot core is an 8­stage in­order pipeline, shown in Figure 1 (reproduced from orig­

inal work [2]). There are three parts to the design: Front End (FE), Back End (BE), and Memory

End (ME).

The FE is responsible for PC generation and instruction access through the Instruction Cache (I­

Cache). All architectural state is speculative here and commands from the BE control PC generation

(apart from sequential fetching). The FE is also responsible for performing branch prediction.

Figure 1: BlackParrot Pipeline [2]

2



The BE contains modules that execute the different RISC­V instructions, structured as multiple

functional units. It includes the integer ALU, multiplication unit, floating­point unit, a system unit

containing the different Contol and Status Registers (CSRs), and the memory unit containing the

Data Cache (D­Cache).

The FE communicates instructions to the BE using an issue queue, and the BE issues com­

mands such as PC redirections to the FE using a command queue. Both these interfaces are latency

insensitive.

The ME contains the cache coherence logic for multicore BlackParrot and a lightweight state

machine handling L1 requests for the single­core configuration. The BedRock Programmable Mi­

crocode Cache Coherence Engine (CCE) maintains cache coherence by implementing a directory­

based, race­free design, and supporting the MOESIF family of protocols. The ME can optionally

connect to a distributed and shared L2 Cache.

The multicore BlackParrot configuration is a 2­D mesh connection of routers, each containing

one core, one CCE and a slice of the L2 cache. Each CCE controls part of a globally partitioned

address space. There are three networks connected between routers for the coherence operations

called the Request, Command, and Response networks, as shown in Figure 2 (reproduced from the

BlackParrot 2020 RISC­V Summit Slides available at [13]).

Figure 2: Coherence Networks [13]
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Figure 3 (reproduced from the BlackParrot 2020 RISC­V Summit Slides available at [13])

shows a single BlackParrot tile with the coherence router. The L1 cache design is split such that

the datapath and SRAM control signals are in a single module (the cache itself), and the control

path consisting of the L2/DRAM request and response logic is in another module called the Cache

Engine (CE). The figure shows a Local Cache Engine (LCE) which is used in conjunction with

the CCE. The LCE requests a given cacheline through the request network, and the request gets

routed to the CCE handling this cacheline. The CCE sends a command to any of the controllers

based on the cacheline status in the directory. Once an LCE receives a command, it performs the

necessary operations and responds through the response network. The complex cache coherence

logic is contained within the CCE, whereas the LCE acts as a transducer between the cache and the

CCE. A concentrator is responsible for arbitrating between the two LCEs and the CCE. The Local

Cache Engine is explained in detail in Section 3.3.

Figure 3: BlackParrot Tile [13]
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2.2 OpenPiton

OpenPiton [14, 15] is an open­source multithreaded manycore processor. It is a tiled design that

uses the OpenSPARC T1 core with custom uncore components (such as the caches, cache coher­

ence protocol, 2­D mesh Network­on­Chip NoC). The 2­D mesh design and Coherence Domain

Restriction [16] allow OpenPiton to scale up to 500 million cores. The OpenPiton design is shown

in Figure 4 (reproduced from original work [14]).

Figure 4: OpenPiton Architecture [14]

Multiple units, each containing a 2­D mesh of tiles, connect to chipset logic through a network.

The chipset contains off­chip components such as DDR memory, Ethernet, SD Card, and UART.

Each tile contains an OpenSPARC T1 core, an L1.5 Cache, an L2 Cache, a Floating Point Unit

(FPU), arbiters, and routers. The L1.5 cache is a write­back cache between the core’s L1 cache and

the shared L2 cache of OpenPiton Network. There were two reasons for the development of this

cache. Firstly, the OpenSPARC core utilized a write­through L1 cache tightly integrated with its

pipeline. Write­through caches are a source of bottlenecks in distributed cache frameworks since

they have a very high bandwidth requirement to the next level in the cache hierarchy. Secondly, the

cache requests and communication had to be compliant with the OpenPiton cache coherence net­

work interface. Rather than modify the L1 cache in the core to overcome the above two problems,

the OpenPiton developers decided to include a private L1.5 cache for each core. This write­back
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cache avoided overwhelming the memory systemwith messages and allowed OpenPiton to connect

the core easily with the cache coherence network.

The L2 cache is a distributed cache shared across all tiles and is inclusive of both private caches

(L1 and L1.5). The L2 is the point of coherence in the memory system, and coherence is maintained

using a directory­based MESI protocol.

2.3 Bring Your Own Core (BYOC)

BYOC [17, 18] is an extension of the OpenPiton framework, which allows different cores to con­

nect to the OpenPiton memory system. This enables heterogeneous ISA research and provides a

platform for direct comparison of cores using different ISAs. Figure 5 shows an example BYOC

system (reproduced from original work [17]).

Figure 5: BYOC System Architecture [17]

The standard cache coherence system provided to all the connected cores is called P­Mesh. The

memory system contains the BYOC Private Cache (BPC), three NoC networks, and a portion of

the distributed LLC. The chipset allows connections to peripherals like DDR Memory, Ethernet,

UART, SD card, and accelerators.

Since this system should cater to different cores connecting to it, one question is where to create

the interface point. With the assumption that the BYOC framework provides a distributed LLC,
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the developers compare three different interface points. The first option is to provide the entire

cache hierarchy, including the L1 cache, to the cores. This option is impractical since the L1 cache

provided would have to account for all the variants, such as virtual or physical tagging and indexing.

Further, since L1 caches are usually tightly integrated with the core, requiring the core to interface

with another (general) cache could have performance implications. The second option is to provide

only the LLC to the cores. This option places a burden on the user connecting a core to the system

by requiring them to understand many details of the coherence protocol and incorporate them in

their private caches. The third option is to provide a private cache, local to the framework, and

expose an interface to the user. In this case, the connecting core does not need to know details

about the coherence protocol, and the framework does not need to (itself) support different types of

caches. The developers chose to implement this option for its benefits over the other two. Figure 6

illustrates the three options (reproduced from original work [17]).

Figure 6: Options for interfacing the memory system with the core [17]

The Transaction Response Interface (TRI) provides a uniform memory system interface to all

the cores. The different cores need to design a transducer that converts the core­specific signals

to those understood by the interface to connect to the system. However, the core must have a

write­through data cache, resulting from the choice to implement a simple TRI that avoids the ex­

tra write­back operation upon invalidation of a dirty line in the core’s L1 cache. The L1 cache thus

becomes transparent to the BPC.
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The BPC is a write­back cache to avoid excessive amounts of data flow to the next level. The

BPC stores only data from the L1 D­Cache, with the L1 I­Cache requests bypassed to the next level.

It has to be inclusive of the D­Cache so that all lines in L1 are accessible for invalidation. The BPC

tracks the L1 way information using a Way Map Table (WMT). The WMT allows flexibility in

the BPC eviction policy while sending invalidations to the correct way in the L1 cache. The BPC

currently uses a fixed instruction cacheline size of 32 bytes and a data cacheline size of 16 bytes to

support the OpenSparc T1 core. Configurable cacheline sizes for the BPC are a work in progress.
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3 ParrotPiton

ParrotPiton is the integration of the BlackParrot core into the BYOC framework. The motivations

for this integration were three­fold and mutually beneficial to the two systems. Firstly, this would

extend BlackParrot’s community reach. The OpenPiton system has a larger community accumu­

lated over the years, which would allow more people to discover the BlackParrot core and use it.

Secondly, it would add a validated core with best­in­class performance and energy efficiency to the

BYOC framework. Thirdly, we could leverage the BYOC framework to compare BlackParrot’s

performance with other cores. This comparison could be with other RISC­V cores or with cores of

other ISAs.

Figure 7: ParrotPiton logo

Some of the TRI specifications for the connecting cores are as follows:

• L1 D­Cache (if any) should have a 16­byte cacheline width and 4­way set associativity and

should be smaller or equal in size to the BPC

• L1 I­Cache (if any) should have a 32­byte cacheline width and 4­way set associativity

• L1 D­Cache should be write­through

• The core should handle remote invalidations and interrupts and support L2 atomics

Remote invalidations and L2 atomics are explained in Section 3.4. Keeping these requirements

in mind, we take a look at the BlackParrot L1 cache organization.
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3.1 BlackParrot L1 Caches

This section describes the BlackParrot L1 caches as of this commit (https://github.com/black­

parrot/black­parrot/tree/414747b05833f429c418af6502f13a327ef4df67). Section 3.2 describes the

original caches at the start of the ParrotPiton integration (at the commit https://github.com/black­

parrot/black­parrot/tree/900ce4ff5fef907eaa3a5506503513814e810b91) and the changes made to

allow the integration.

The I­Cache (I$) and D­Cache (D$) have similar pipelines and basic design philosophies. Both

caches are virtually indexed, physically tagged (VIPT) set­associative caches. The set associativity

is configurable as 1, 2, 4, or 8, and the cacheline block width is configurable as 8, 16, 32, and 64

bytes. Both caches contain support for iterative fills and evictions in the single­core configuration

with a constraint on fill width between double word width (64 bits) and the cacheline width.

There are three SRAMs in each cache: one each for storing the i) data, ii) tag and coherence

state, and iii) Least Recently Used (LRU) and dirty information. The data memory is banked with

as many banks as the associativity, with the data width within each bank not being less than 64­

bits. An index in each bank stores the corresponding data in a single way. Writes to the banks are

interleaved as given in the following equation (word offset denotes the specific 64­bit segment in

the cacheline block):

Bank ID = Word offset + Way ID (modular arithmetic)

This design speeds up a load and a cacheline write. A read operation of the same index in

each bank provides the same 64­bit data in the cachelines stored in each way. The tag matching

is straightforward at this point and points to the correct data (if available). A write operation in

the interleaved manner allows a cacheline write to complete in one cycle. Figure 8 illustrates this

design for a 4­way data memory.

The tag memory stores the physical tag and coherence state of the data in each way of an index.

The status memory stores the LRU and dirty bit information for each index. The caches are fetch­

on­write and write­allocate caches, meaning that the store misses fetch the data from the next level
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Figure 8: Data memory organization

before the actual write occurs. BlackParrot handles cache misses by replaying the operation once

the cache indicates that the requested data has been filled.

There are some differences between the I$ and D$, which are explained briefly below.

I­Cache

The I$ has a two­stage pipeline. Before the first stage, the address information is latched on the

positive edge of the clock. The first stage is called Tag Lookup (TL). In this stage, the tag memory

and all banks of the data memory for the specific index are read. By reading the data memory in

parallel with the tag memory, we can save a cycle in the event of a hit. The tags read across all the

ways for that element are compared with the physical tag from the Translation Lookaside Buffer

(TLB). This information is latched on the positive edge of the clock. The second stage is called Tag

Verify (TV). In this stage, the data in the tag match way is muxed out and sent to the core pipeline.

If a miss is detected, a request is sent to the Cache Engine (CE). The CE functionality is explained

in Section 3.3.

D­Cache

The D$ has a three­stage pipeline. Before the first stage, the address and opcode information

is latched on the clock’s negative edge. The first stage is TL, the same as the I$. However, the

information is latched on the negative edge of the clock. The second stage is TV, the same as the

I$. The data for a 32­bit or 64­bit load hit is sent to the core pipeline as “early_data” and latched

11



on the next positive edge. For sub­word operations and floating­point loads, there is a third stage

called Data Mux (DM). This stage contains a multiplexer that picks out the correct byte(s) for

integer loads and has a recoding unit for floating­point loads.

The D$ uses the negative edge of the clock for the TL and TV stages so that a 32­bit or 64­

bit load can complete within two cycles of the request rather than three. The initial half cycle is

sufficient time for the index calculation before reading the memories in the TL stage. The final half

cycle is sufficient time for the hit data to be latched on the next positive edge since it is a smaller

multiplexer only picking between 32­bit or 64­bit data, rather than including 8­bit and 16­bit data.

The D$ has a write buffer that holds the write data from the TV stage until the data memory

is free from incoming loads. This buffer supports store forwarding to prevent data hazards. The

D$ also supports executing atomic operations at the L1 level. There are three types of atomic op­

erations: Load Reserved/Store Conditional (LR/SC), Fetch­and­Logic, and Fetch­and­Arithmetic

Operations. A reservation register in the cache stores the requested address and its validity after

the LR operation. This register provides the valid reserved address for the SC operation if the

coherence system did not clear it. In order to aid SC progress, a backoff mechanism blocks any

invalidations for a specified number of cycles to allow the SC operation to complete following the

reservation. A small ALU inside the cache executes the other atomic operations.

3.2 Flexibility in Cache and CE Design

Originally, BlackParrot I$ and D$ were fixed at 32 KB size, with a 64­byte cacheline width and

8­way set associativity. Further, the LCE was tightly coupled to the CCE and was the only CE

option available.

There were a few problems with this setup, both for single­core and integration purposes. As

shown earlier, a BlackParrot core, a CCE, and the coherence router existed within a tile. A single

core BlackParrot configuration was still constrained to use the LCE and CCE with the coherence

routers connected in a loopback fashion such that all the messages would return to the same tile.

This setup added significant hardware and performance overhead.
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3.2.1 Motivation for single core optimization

An initial experiment dealt with making BlackParrot optimized for single­core operation. The

CCE essentially became an FSM that forwarded memory requests from the LCE to the next level

by removing the directory and the routers. This change resulted in an area reduction of about 29%,

indicating that optimizing for a single core would be a beneficial task. However, this design still

used the LCE before the FSM, which added an unnecessary step between the two levels of memory.

In order to avoid the LCEs altogether and design an FSM that delivers cache requests to the next

level, supplies the response data back to the cache, and handles the write­back cases, the cache and

the CE had to be decoupled with a standard interface that allowed connecting different CEs for

different configurations.

3.2.2 Allowing plug­and­play operation

The original interface contained latency insensitive request and response paths. The cache misses

would communicate misses to the CE through the request path, and the controller would request

the next level for the data, which was then supplied back to the cache through the response path.

The original request interface contained individual signals indicating load, store, miss, uncached

operation, among others, connected from the cache to the CE. This interface was unwieldy to use

since any additional functionality (such as write­through or L2 atomic support) would add more

signals to the interface.

A second issue was that the cache miss tracking and cacheline locking logic were present in the

LCE. Cache miss tracking allows the cache to indicate when it is ready to service requests from the

core. It was not ideal to place this logic in the LCE since every CE would have to implement the

miss tracking and communicate it to the cache.

Cacheline locking is used on an LR hit, giving the core some additional cycles to complete the

following SC operation. By locking a particular cacheline, any invalidation command to that line

would be stalled until a specified number of cycles, thereby avoiding a scenario where the cacheline

bounces from core to core and is evicted before the SC succeeds. This logic is only relevant if the
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L1 cache executes LR/SC instructions. Again, it is not ideal for this logic to be present in the LCE

since every other CE would need to implement the locking logic.

These issues and a need for a standard interface across different configurations prompted some

changes in the request interface as described below.

The request interface was converted into two structures for the cache request and its metadata,

containing the information as illustrated in Tables 1 and 2.

Field Description
Message type Indicates the type of request.

Hit Indicates whether this address was a hit.
Used for uncached requests

Data Store data
Used for uncached and writethrough stores.

Size Indicates the size of the request.
Can be between 1 byte and 64 bytes.

Address Address of the request
Subop Indicates the sub operation.

Used for L2 atomics

Table 1: Cache request structure

Field Description
Hit or replacement way Indicates the way that was hit

or the way to be replaced
Dirty Indicates whether the way was dirty

Table 2: Cache request metadata structure

Uncached requests are for addresses that are not cached, as indicated by the system address

map. In the BlackParrot address space, all addresses outside the DRAM address range are un­

cached, meaning that any data loaded from or written to these addresses do not enter the cache data

memory. However, the requests still move through the cache request datapath. L2 atomics are

atomic instructions executed in an ALU at the L2 level.

The miss tracking logic and locking logic was moved to the cache module so that the CE would

only be responsible for

• sending the request to the next level
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• taking the correct action upon receipt of a response (such as a write to the data memory,

invalidation, write­back of dirty data)

The response path contained three packets talking to the data memory, tag memory, and status

memory.

• The data memory packet contained the index, the way ID, data for a cacheline fill, and the

opcode indicating a read, write, or uncached operation.

• The tag memory packet contained the index, way ID, tag, and the opcode indicating a set,

invalidate, or clear operation.

• The status memory packet contained the index, way ID, and the opcode indicating a read,

clear, or dirty bit clear operation.

All the three response paths also had separate buses communicating their corresponding data

to the CE. These paths were not altered during the interface changes.

These changes set the stage for a plug­and­play type of design since any CE could connect to

the BlackParrot cache, and any cache could be connected to the BlackParrot CE as long as they

met the interface specifications. It was also an essential milestone in the integration process since

we now had the tools to design a transducer that bridges BlackParrot and OpenPiton. The logic

required for meeting the other requirements of the TRI is described next.

3.2.3 Multiple widths and associativity combinations

An ideal cache supports parameterizable cachelinewidth and associativity. Different configurations

could then be achieved without manually changing the RTL for each one, thereby improving the

adaptability of the cache to different situations. For example, BlackParrot in an ASIC Design could

probably afford to use the largest cache size along with the largest width/associativity combination.

However, in a different setting, such as a smaller, low­cost FPGA, a smaller cache would be a better

option to allow more logic utilization for the accelerators connected to BlackParrot. In addition,
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BYOC integration required specific cacheline widths and associativities that BlackParrot did not

support at that stage. The solution was to add parameterization to the existing cache design with

minimal RTL changes. Version 1 added support for the widths and associativities as shown in

Table 3. Version 2 added support for a direct­mapped cache with an 8­byte cacheline width.

Configuration Cacheline Width (in bytes) Associativity Cache Size
Baseline 64 8 32 KB
Medium 32 4 16 KB
Small 16 2 8 KB

Table 3: Width and associativity combinations

The number of combinations was constrained because a bank in the data memory of the cache

had to be at least 8 bytes wide. This allowed a double word (64­bit data) to fit in a single bank,

thereby avoiding a multi­index read or write for a double word instruction.

3.2.4 Write­through option enabled in the same cache

Writethrough caches are relatively uncommon in shared­memory multicore configurations since

they add significant overhead to memory bandwidth. Each store to such a cache would trigger a

write to the next level. Since the write­through use case was not required previously, BlackParrot

did not support it. However, as explained earlier, BYOC requires a write­through L1 cache so

that all the cache operations are transparent to the BPC. Therefore, the next step was to add this

capability to the D$ so that the requirement could be satisfied with minimal RTL changes and an

added message type in the cache request structure.

A design decision was the choice between using the fetch­on­write, write­allocate policy (load­

ing the cacheline from memory on a store miss and allocating the address written to by the store

in the cache) and adding a no­fetch­on­write policy for the write­through use case. In order to

reduce the traffic to the next level, a no­fetch­on­write policy seems better, but a deeper analy­

sis is required to understand if it is a change worth making in the context of systems that use the

BlackParrot write­through cache.

There are three different policies within no­fetch­on­write: write­validate, write­around, and
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write­invalidate [19]. Write­validate implies that the data write into the corresponding cacheline

occurs with only the corresponding write valid bits turned on. By doing this, we are achieving

no­fetch­on­write with write allocate functionality. However, there are a few issues with this de­

sign in the BlackParrot setting. The main issue would be the requirement of sub cacheline valid (or

coherence) bits in the tag memory, which would add significant area overhead, going against Black­

Parrot’s Be Tiny motto. Theoretically, byte store misses could use fetch on write, and word/double

word store misses could use the write validate policy, reducing the number of extra bits required per

cacheline. However, this would still be an invasive change in the cache design for an uncommon

use case, so it does not seem like a viable option.

Write­invalidate implies that the data memory write occurs in the same cycle as the tag memory

read, and the cacheline is invalidated if the tag did not match. This policy is helpful in direct­

mapped write­through caches because a tag mismatch implies that the cacheline contains data from

two different addresses, so the invalidation removes the potential of the core loading incorrect data.

Further, the old cacheline data is already consistent with the lower levels in the memory hierarchy,

and the new data is written to the next level (since the cache is write­through), resulting in consistent

memory values. However, this policy is not suited to BlackParrot because of two reasons. Firstly,

it provides a benefit only in a specific use case (direct mapped write­through cache), and it would

not work for any higher associativity (since we do not know in which way to write the new data).

Secondly, the BlackParrot cache reads the data memory and tag memory in the same cycle since it

is a VIPT cache. Supporting a data memory write in conjunction with the tag memory read would

require an invasive change in the cache design, which seems unnecessary to support a specific use

case.

Write­around implies that the store data on a miss bypasses the L1 cache completely and is

written to the next level. This option would be the easiest to integrate into the BlackParrot cache

because it would be a matter of parameterizing the store miss logic and modifying the request

message type accordingly. However, for the BYOC integration, we decided to continue with the

fetch­on­write policy to get the system running initially. A future experiment could involve check­
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ing if the write­around policy offers a performance benefit for ParrotPiton.

A cache testbench tested the write­through functionality with directed tests that stressed the D$

pipeline in different ways after the cache accepted a write­through store. An appendix at the end

of this thesis explains the cache testbench.

3.3 Cache Engines for BlackParrot

This subsection describes the two cache engines used in BlackParrot, the single­core optimized

Unified Cache Engine (UCE) and the Local Cache Engine (LCE) used in the multicore design.

These cache engines can be used in the system, as shown in Figure 9. A description of the UCE

and LCE follows.

Figure 9: Different BlackParrot configurations
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3.3.1 Unified Cache Engine (UCE)

The UCE is one of the cache controllers used in BlackParrot. Optimized for single­core opera­

tion, this controller is responsible for sending the requests from the I$ and D$ to the next level

and supplying back the responses. The UCE FSM implements the following states (as shown in

Figure 10):

Figure 10: UCE FSM functionality

• reset: The FSM starts in this state during reset. Upon exiting, it starts clearing the cache.

• clear: This state clears the cache tag and status memory by iterating over all the indexes.

• ready: This state receives the request from the cache and decides the action required based

on the type of request. If the request was an uncached store for an address not present in the

cache or a write­through store, the data is sent to the next level, and the UCE is ready to accept

the subsequent request in the next cycle since the cache is not expecting a response. When

the response does arrive, a silent acknowledgment occurs. For any other request, different

states are triggered, as explained below.
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• flush_read, flush_scan, flush_write, flush_fence: These states are triggered when the con­

troller receives a cache flush request. This request indicates that the cache has received a

fence command, which requires the L1 and its next level (L2/DRAM) to contain consistent

data. The controller proceeds to read each index of the cache successively, scan the dirty

bit field to identify which way(s) contain(s) dirty data and obtain this data from the cache,

write it to the next level, and indicate to the cache once the scanning of all ways and indexes

is complete.

• uc_writeback_evict, uc_writeback_write: These states are triggered when an uncached

request (load, store, or L2 atomic) is for an address that is present in the cache. The hit, hit

way, and dirty fields mentioned in the structures above are utilized in these states. If the

address was a hit in the cache, the data in the hit way is evicted (with a writeback if it was

dirty).

• send_critical: This state is triggered if the request is a load or a store miss, an uncached

load, or after an uncached request goes through the evict and writeback states. Here, the

request is sent to the next level. For an uncached load or store request, the corresponding

request is sent, and the FSM moves to wait for the data (load) or gets ready to accept the

subsequent request (store). For a cached load or store miss, the request for a load from the

critical address is sent first, employing the ”critical word first” optimization.

The UCE contains support for a multi­cycle fill of data into the cache and multiple requests

to the next level following the ”critical word first” policy. An address counter is initialized

with the specific ”block” location requested within the cacheline, and the first request is sent

in this state. The address is incremented appropriately for subsequent requests and wraps

around to the start of the block if required.

• writeback_evict, writeback_read_req, writeback_write_req:

These states are triggered if the first request was sent, but the cacheline was dirty. The cache­

line is read, and the dirty bit is reset in the evict state, and the data from the cache is registered
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for later use. The following addresses are requested, and the responses are sent to the cache

in the writeback_read state. Once all the sub­blocks are filled, the dirty data previously

registered is sent to the next level in the writeback_write state.

• read_req: This state is triggered if the first request was sent and the cacheline was not dirty.

The following addresses are requested, and the responses are sent to the cache. Once all the

sub­blocks are filled, the UCE becomes ready to accept requests again.

• uc_read_wait: This state is triggered after an uncached load request is sent to the next level.

The response data is sent to the cache when available, and the UCE becomes ready to accept

requests again.

3.3.2 Local Cache Engine (LCE)

The LCE is a cache controller used in BlackParrot’s multicore configuration. It contains two mod­

ules, the LCE Request and the LCE Command. The LCE Request module is responsible for han­

dling the request from the cache and sending the appropriate packet to the CCE. The LCECommand

module is responsible for handling the commands from the CCE or other LCEs, taking the appro­

priate action on the cache, and sending back the responses to the originating module. The two state

machines are described below.

LCE Request

Figure 11 shows the states in the LCE Request FSM. These perform the following operations:

• reset: The FSM starts in this state during reset. Upon exiting, it becomes ready to accept

new requests from the cache.

• ready: This state receives the request from the cache and decides the action required based

on the type of request. If the request was an uncached store, the data is sent to the CCE, and

the UCE is ready to accept the subsequent request in the next cycle since the cache is not

expecting a response. When the response does arrive, the credit counter (which tracks the

21



Figure 11: LCE Request FSM functionality

number of outstanding requests) is silently updated. For any other request, different states

are triggered, as explained below.

• cached_req: This state is triggered when the controller receives a cached load or store miss.

The controller proceeds to send the request in the LCE request packet format to the CCE and

moves back to ready when it is accepted.

• uncached_req: This state is triggered when the controller receives an uncached load request.

The controller proceeds to send the request in the LCE request packet format to the CCE and

moves back to ready when it is accepted.

LCE Command

Figure 12 shows the states in the LCECommand FSM. These perform the following operations:

• reset: The FSM starts in this state during reset. Upon exiting, it moves to clear the tag and

status memory in the cache.
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Figure 12: LCE Command FSM functionality

• clear: This state clears the tag and status memory for each index of the cache and moves to

the ready state once all indexes are cleared.

• ready: This state handles the commands shown in the Figure upon receipt as follows and

remains in the same state:

– sync: Sends back a sync acknowledgment to the CCE

– set_clear: Clears the tag and status memory in the given index

– inv: Invalidates the tag memory at a given index and way by setting the coherence state

as invalid and sends back an invalidate acknowledgment once it is completed.

– set_state: Writes the given coherence state to the tag memory at the given index and

way.

– uc_store_done: Dequeues the command and indicates to the LCE Request module that

the uncached store operation is done

– uc_cmd_data: Sends the uncached data to the cache and indicates to the LCE Request
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module that the uncached load operation is complete.

This state also handles the following commands and moves to the corresponding state for

handling the response:

– st_and_wakeup: Sends the coherence state to the tagmemory andmoves to the coh_ack

state.

– tr: Reads the data memory at the given index and way and moves to the tr state.

– st_tr, st_tr_wb: Reads the data memory, sets the given coherence state in the tag mem­

ory and clears the dirty bit in the status memory at the given index if the command is

not write­back. Once all the operations are done, moves to the tr state.

– wb, st_wb: Reads the status memory at the given index and way to determine if the

block is dirty. Additionally, if the command includes st, it sets the coherence state in

the tag memory. Once all operations are done, moves to the wb state.

• coh_ack: This state is triggered when a coherence acknowledgment is to be sent over the re­

sponse network. Once the CCE receives the response, the FSM is ready to accept commands

again.

• tr: The data is transferred to the target LCE, and the FSM is ready to accept commands if

no write­back was required. In the event of a write­back, it moves to the wb_stat_rd state.

• wb_stat_rd: This state reads the status memory to determine if the line at the given index

and way is dirty. It moves to the wb state when the data from the status memory arrives.

• wb: This state checks if the line is dirty and determines the next steps. If the line is not dirty,

the FSM is ready to accept new commands from the next cycle. If the line is dirty, it moves

to wb_dirty_rd state.

• wb_dirty_rd: This state reads the data memory at the given index and way to write back the

data to the next level. It also clears the dirty bit in the corresponding status memory index.
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Once both operations are complete, it moves to the wb_dirty_send state.

• wb_dirty_send: This state sends the write­back response to the CCE and is ready to accept

new commands from the cycle after the response is received.

The LCE Request and Command modules connect to the CCE, which handles the cache coher­

ence operations using a directory­based approach. The BlackParrot CCE can either be used as a

programmable microcode engine or an FSM that handles the coherence operations. The internal

details of the CCE are outside the scope of this thesis.

3.4 Setting up for integration

The previous sections described the prior work required to start the process of integrating Black­

Parrot into OpenPiton. At this stage, there were two design choices to be made before the actual

integration.

3.4.1 Way mapping the BlackParrot D$ with the BPC

The BlackParrot I$ could directly connect to the TRI since the required configuration was available.

However, for the D$, there were two options ­ 8 KB size, 16­byte cacheline width, and 2­way

set associativity, or 16 KB size, 32­byte cacheline width, and 4­way set associativity. While the

set associativity matches in the second option, the cacheline width is larger, which would require

multiple fills for every request. Further, the cache is twice the required size, resulting in half the

cache being unused to maintain inclusivity with the BPC. The first option offered the same size and

cacheline width but smaller set associativity. The way mapping was handled as follows.

The 8 KB BlackParrot D$ contains 256 indexes, whereas the 8 KB BPC contains 128 indexes.

This implies that two ways of the BPC would fit into one way of the D$. Figure 13 illustrates

this design. The D$ is at the top with an 8­bit index and 4­bit block offset, and the BPC is at the

bottom with a 7­bit index and 4­bit block offset. The numbers indicate which way of BPC maps to
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which section of the D$. A description of the translation between the BlackParrot way ID and the

OpenPiton way ID follows.

Figure 13: Way Mapping between D$ and BPC

Requests

The address and replacement way ID sent to the BPC are given below:

Address ­ cache_req.addr

Way ID ­ {cache_req.addr[11], cache_req_metadata.hit_or_repl_way}

where cache_req and cache_req_metadata are the request structures of the BlackParrot caches

described earlier. By using the top bit of the cache index, each way of the L1 D$ is divided into two

ways in OpenPiton. This conversion allows the BPC to be agnostic about the actual orientation of

the ways in the L1 cache.

Remote invalidations

The BPC sends a 12­bit index and a 2­bit way ID to the connected core. As the name suggests,

the address sent by BPC is bits 15 to 4 of the actual address. A reverse conversion of the above is

required to send the invalidation command to the correct cache index and the way. The index and

way ID sent to the L1 SRAMs are given below:

26



Index ­ {l15_transducer_inval_way[1], l15_transducer_inval_address_15_4[10:4]}

Way ID ­ l15_transducer_inval_way[0]

3.4.2 L2 Atomics

OpenPiton required LR/SC to execute at the BPC level and other atomics to execute at the L2 level.

Table 4 shows the RISC­V atomic instructions. All instructions are of two types ­ word (32­bit)

and doubleword (64­bit).

Atomic type Operations included

LR/SC LR
SC

Swap swap

Logic
and
or
xor

Arithmetic

add
min
max
minu
maxu

Table 4: RISC­V Atomic instructions

At the time of this integration, the BlackParrot core did not support the swap, logic, and arith­

metic atomic operations in hardware. These instructions were instead emulated in software. Sup­

port was added for these instructions in the instruction decoder, and the requests were bypassed

straight through the D$ to the CE. Further, the LR/SC hardware in the D$ was disabled to allow

execution at the BPC level.

No return L2 atomics are optimizations when the atomic operation’s destination register is the

zero register. This allows the core to send the request and move on to the next instruction since it

does not require a response.
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3.5 P­Mesh Cache Engine (PCE)

The PCE design includes the above design decisions and is the main integration module. It contains

an FSM that handles the different cache requests and BYOC­specific commands such as remote

invalidations. It is important to note that P­Mesh is big­endian, whereas BlackParrot is little­endian.

This requires a conversion in any data sent from BlackParrot to the BPC and vice versa. Further,

the PCE logic performs different operations in the same module if the PCE connects to the I$ or

the D$.

The PCE FSM is illustrated in Figure 14 and performs the following operations:

Figure 14: PCE FSM functionality

• reset: The FSM starts in this state during reset. Unlike the BlackParrot CEs, an int_ret

command from the OpenPiton memory system moves the FSM to the clear state. OpenPiton

is programmed to send this command to each core connected to it.

• clear: The FSM clears the tag and status memory for all indexes before moving to the ready

state.
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• ready: This state receives the request from the cache and decides the action required based

on the type of request.

– For a write­through store, the FSM sends the data to the BPC, and the PCE is ready to

accept a request in the next cycle since the cache is not expecting a response. When the

response from the BPC does arrive, the module silently acknowledges it.

– For uncached stores and no return L2 atomics, the FSM sends the corresponding BYOC

request and moves to the uc_store_wait state.

– For all other requests, the FSM moves to the send_req state.

• uc_store_wait: This state is triggered when an uncached store or no return L2 atomic request

is sent to the BPC. OpenPiton expects the core to wait until a non­idempotent operation

completes, due to the possibility of request reordering in the memory system. In order to

adhere to this, all non­idempotent operations wait for the corresponding response in this

state. This modification potentially results in a performance reduction in the system since

the L1 cache is ready to send subsequent requests, but the memory system is not ready to

accept them.

• send_req: This state is triggered when the PCE receives any request other than the ones

mentioned above, handled as follows:

For all requests apart from LR (load or store miss, uncached load, SC or atomic logic, or

arithmetic operations), the FSM sends the corresponding request to the BPC, with the appro­

priate changes in the data and way ID. It moves to the respective states as shown in Figure 14

if the next level accepts the request.

For an LR request, a backoff mechanism is implemented. A backoff mechanism is neces­

sary for a multicore system to avoid cacheline bouncing and ensure forward progress. For

example, consider a situation where all the cores request a single cacheline to perform an LR

operation. This cacheline could be reserved for a core when requested, but the reservation
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could cease before the corresponding SC request can complete due to an LR request from

another core. In this situation, the cacheline reservation bounces from one cache to another,

with none of the caches completing an SC request successfully.

The backoff mechanism involves a counter in the PCE that is started upon a failed SC request.

This counter prevents the core from sending a subsequent LR request until a specified limit

is reached. By having such a mechanism, at least one core will successfully complete an

SC request, thereby releasing the other cores to follow suit. There are more sophisticated

mechanisms such as exponential backoff, which could be a good future exploration.

• uc_read_wait: This state waits for the uncached data to arrive from the BPC, sends the data

to the cache, and moves to the ready state when the data is accepted.

• amo_lr_wait: This state waits for the LR data to arrive from the BPC, sends the data to the

cache, and moves to the ready state when the data is accepted.

• amo_sc_wait: This state waits for the SC data to arrive from the BPC, checks the data to

identify if the linear backoff should start (if the data is not 0), sends the data to the cache, and

moves to the ready state when the data is accepted.

• amo_op_wait: This state waits for the logic or arithmetic atomic operation data to arrive

from the BPC, sends the data to the cache, and moves to the ready state when the data is

accepted.

Remote invalidations are handled outside the PCE FSM, since the PCE needs to accept these

commands regardless of what operation it is currently performing. OpenPiton provides four types

of invalidations: dcache_inval, icache_inval_all_way, icache_inval, and dcache_inval_all_way.

Of these, the first two are currently used in ParrotPiton.

When an invalidation is received, the PCE sends the corresponding command to the cache

SRAMs. It clears all ways for the I$ and sets the coherence state of the converted index and way

ID for the D$. The transaction is complete when the L1 cache responds with the acknowledgment.
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3.6 Full system integration

Figure 15 shows a ParrotPiton tile inside the full OpenPiton system. Both I$ and D$ connect to

their own PCEs. On the request path, a fixed priority arbiter chooses the request to send to the

BPC, and a FIFO holds back­to­back requests (in the case of write­through stores). A FIFO holds

back­to­back responses routed to the correct PCE based on the response type on the response path.

Figure 15: ParrotPiton tile

OpenPiton is integrated with another RISC­V core, Ariane [5]. The memory system uses the

Core Local Interrupt Controller (CLINT) and the Platform Level Interrupt Controller (PLIC) of the

Ariane core for generating interrupts. BYOC exposes three different interrupt signals, timer inter­

rupt, software interrupt (which is also called Inter Processor Interrupt (IPI)), and external interrupt.

All three signals are connected directly to the BlackParrot interrupt handling logic.

3.7 Baremetal Testing

ParrotPiton was tested in simulation and FPGA. Initial testing involved the RISC­V test suite (phys­

ical, virtual, physical with timer interrupts, atomic) and a suite of C tests provided by OpenPiton

that tested operations such as atomics and interrupts in single­core and multi­core configurations.

31



3.7.1 Simulation

Simulation testing was the initial strategy to identify any bugs during the integration process. All

facets of the PCE were tested: LR/SC, other atomics, invalidations (in multi­core configurations),

and regular cache operations. The interrupt test enabled the interrupts by writing to appropriate

CSRs, waited for the interrupt and cleared it, and repeated this operation for the specified number

of times. All the tests passed in simulation leading to the next phase of testing on the FPGA since

OpenPiton provides an FPGA infrastructure, and the goal was to boot Linux on ParrotPiton using

the FPGA eventually.

3.7.2 FPGA

OpenPiton provides two commands for use with an FPGA. The protosyn command builds a bit­

file for the specified core, and the pitonstream command allows programs to be streamed through

UART onto the FPGA. The core, along with the memory system, executes the program and streams

the print data through UART onto the screen. The target FPGA for ParrotPiton was Genesys 2.

After adding a floating­point unit (FPU) to BlackParrot, the ParrotPiton setup failed to meet

timing at the OpenPiton specified frequency of 66.67 MHz. The problem was insufficient FPU re­

timing performed during the Vivado [20] implementation. Retiming is a strategy wherein registers

inside a design are moved around to improve its critical path. For the FPU, the retiming strategy

is to add several registers at the output, and the synthesis tool identifies the spots within the design

to move the registers based on the timing constraints supplied. A synthesis tool such as Synopsys

Design Compiler® handles this without issues, but Vivado was unable to do the same. Trying dif­

ferent directives did not fix the issue, so the frequency had to be reduced to 30 MHz. This will be

fixed to allow all cores connected to the OpenPiton system to run at the same frequency.

Running the protosyn command with a single BlackParrot core generated a bitfile, and the same

programs used in the simulation were used for testing on the FPGA. All the programs used for sim­

ulation ran on the board and generated the expected outputs. Table 5 shows the utilization results for

single­core, dual­core and three­core ParrotPitonwith this BlackParrot state (https://github.com/black­
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parrot/black­parrot/tree/22da9a8e76ce78eb54ddf6f945a6879d0c4baf57) on the Genesys 2 FPGA

(xc7k325tffg900­2).

Configuration Logic LUTs LUTRAMs SRLs FFs RAMB36 RAMB18 DSP48
Single­core 69,333 3,242 128 50,465 37 30 12
Dual­core 117,787 4,784 223 72,063 68 56 23
Three­core 156,997 6,326 316 93,880 99 82 34
Single­core 34.02% 5.07% 0.2% 12.38% 8.31% 3.37% 1.43%
Dual­core 55.34% 7.48% 0.35% 17.68% 15.28% 6.29% 2.74%
Three­core 77.03% 9.88% 0.49% 23.03% 22.25% 9.21% 4.05%

Table 5: FPGA Utilization for different ParrotPiton configurations (BlackParrot is continuously
evolving so this is a snapshot in time)

Table 6 shows the hierarchical utilization for some of the major components of the ParrotPiton

system.

Component Logic LUTs LUTRAMs SRLs FFs RAMB36 RAMB18 DSP48
ParrotPiton 69,333 3,242 128 50,465 37 30 12
BlackParrot core 19,823 822 95 7,105 6 25 11
L2 cache 14,516 0 0 7,372 21 1 0
FMA 2,814 0 71 165 0 0 11
D$ 1,801 180 0 980 0 16 0
I$ 861 182 0 1,707 0 8 0
Regfiles 763 0 0 492 5 0 0

Table 6: ParrotPiton hierarchical utilization (BlackParrot is continuously evolving so this is a
snapshot in time)

An additional step was to run six SPEC2000 benchmarks [21, 22] on this system. The bench­

marks were gzip2, vpr, parser, bzip, crafty and mcf. These benchmarks worked in BlackParrot as

well at this stage, so they were the natural next step. These benchmarks uncovered a bug that was

not triggered by previous integration tests, and worked on the board after a fix.

3.8 Linux Capability

Getting Linux to run on the ParrotPiton system was the next step in the process. There were a few

steps before testing it on the board:
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• ParrotPiton had to run with the bootrom option enabled in BlackParrot to use the bootrom

provided by OpenPiton.

• OpenPiton­provided Linux image was given to the OpenSBI [23] framework used by Open­

Piton in order to generate a payload written to an SD card. This SD card would be used in

the Genesys 2 FPGA setup.

After several iterations, debugging in simulation became challenging because every Linux sim­

ulation took about 22 hours, giving a large output waveform file to parse. Litmus tests were helpful

at this point to isolate the bugs and fix them with reasonable waveforms and simulation times.

“A litmus test is a small parallel program designed to exercise the memory model of a parallel,

shared­memory computer” [24]. Litmus tests are generated using the Litmus Tool [24] and CHERI­

Litmus [25], a lightweight clone of the Litmus Tool that allows litmus tests to run on baremetal

configurations.

The litmus tests isolated a few bugs and all the tests then successfully ran on the FPGA. After

identifying a couple more bugs through the Linux simulation waveform, Linux booted on single­

core, dual­core, and three­core ParrotPiton. Figure 16 shows the ParrotPiton Linux boot screen for

the three­core version.

3.9 Bugs and Conclusions

Some of the major bugs discovered during testing were:

• During the addition of the floating­point unit into BlackParrot, the data sent to the CE through

the cache_req structure was not changed to use the recoded floating­point data. Using raw

data for cache requests in the write­back cache is sufficient since the only request using the

data was the uncached store. Any data write­back would be sent as a response to a CE request

over a different path. However, in the ParrotPiton system, every store was write­through, so

the floating­point data was incorrectly stored to the next level. After a potential invalidation

of the (correct) data in the L1 cache, the value loaded from the same address was incorrect.
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Figure 16: Three­core ParrotPiton booting Linux

This was identified using the vpr benchmark in simulation and corrected by sending the

recoded data for a write­through store.

• A data problem was discovered while performing endian swapping in the PCE. Before the

SC data was sent to the L1 cache, it had to undergo endian swapping. Initially, for a 4­byte

request, only the upper half of the big­endian data was swapped, and zeros were concatenated

as the remaining bits in the little­endian data. This resulted in a problemwhen the SC address

corresponded to the lower half of the big­endian data since the L1 cache would perceive it

to have successfully completed the SC (since the data was 0) even if SC had failed at the L2

level. This was identified using an LRSC litmus test in simulation and fixed by using the
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lower bits during endian swapping, even for a 4­byte size.

• BlackParrot used a replay mechanism for all cache operations that did not return when ex­

pected. This included load and store misses, uncached loads, and, importantly, L2 atomics.

If the atomics execute at the L1 level, the memory state is not changed until a cacheline

eviction, and the atomic operation does not complete until the cacheline is brought into the

L1 cache, implying idempotency. With remote (L2) atomics, the cache uses the same replay

mechanism, but the memory state is changed at the lower level before the L1 cache loads

it by performing a replay. One of the interrupt tests exposed a scenario where an atomic

swap request by one core was interrupted by a timer interrupt before the result entered the

L1 cache. At this stage, the corresponding memory location had changed the value from 0 to

1, potentially indicating that a lock was acquired. However, since the interrupt flushed the

pipeline, the core re­issued the atomic swap request upon resumption, but the value received

was 1 instead of 0, indicating to the core that the lock was in place. This led the core to try

acquiring the lock repeatedly, which never materialized. This was fixed by blocking timer

interrupts until the completion of an outstanding cache operation.

• A bug was discovered in the LR implementation of OpenPiton. This was detected using

the dual­core Linux simulation waveform of ParrotPiton. The bug was fixed and allowed

ParrotPiton to boot Linux on a dual­core and three­core configuration.

The entire integration exercise provided valuable information for BlackParrot:

• It was amenable for integration with different systems after adding a plug­and­play model

for the CE.

• It became more robust since many bugs were identified and fixed during the integration.

• L2 atomics were implemented in BlackParrot soon after the integration.
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4 Limitations of Previous Methods

The previous section described the integration of BlackParrot into the OpenPiton memory system.

Around the same time, BlackParrot was also integrated into another framework called Litex. Litex

is an SoC builder that provides the infrastructure to create SoCs with or without CPUs easily. How­

ever, both these integrations have a few issues:

• Constant maintenance of the integrated system is required as both the components (Black­

Parrot and OpenPiton/Litex) might change regularly.

• Users might need to contact two different groups if they run into any problems while using

the system.

BlackParrot did have an FPGA infrastructure for running larger benchmarks, but it involved

using a PCIe interface. From the research group’s experience, PCIe is very hard to get right and

very hard to debug if problems arise. Instead of a PCIe­based setup, it would be beneficial to create

an in­house FPGA setup using a simpler protocol like AXI [26], that is easy to use in different

settings like research groups and students using BlackParrot in a class. The research group could

use this FPGA setup for running Linux and spec benchmarks through a continuous integration flow,

and students could use this setup for class projects, expanding BlackParrot’s community reach. This

led to the creation of the ZynqParrot [27] infrastructure, which set up BlackParrot on a Xilinx FPGA

containing the Zynq­7000 Processing System.
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5 ZynqParrot

This section describes the ZynqParrot system. Any FPGA containing the Zynq Processing Sys­

tem (PS) [28] that runs Linux will be suitable to implement this system. The idea is to implement

BlackParrot in the Programmable Logic (PL), connect it to the Zynq PS, and run the tests on the PS

Linux, which communicates with the PL via AXI ports. This setup would avoid PCIe altogether

since the GitHub repository can be directly cloned in the Linux running on the PS, and the com­

munication to the PL is through the simpler AXI protocol. Another advantage in ZynqParrot is

that a desktop is no longer required to run tests on the FPGA since the ARM core on the board can

function as the desktop. The bitfiles are sent to the file system of the core over Ethernet. Once the

FPGA is programmed with the correct bitstream, the core can run the testbench.

The idea of using the PS to control a processor implemented in the PL has been explored earlier

in [29], where the PS communicates with a dual­core RISC­V processor in the PL. Although the

structure of this system is similar, there are some key differences between this system and Zynq­

Parrot. Firstly, all communication between the PS and the PL is through shared DRAM addresses.

As will be shown in Section 5.2, this is not ideal in the BlackParrot setting since i) messages from

BlackParrot can cause race conditions with the PS and ii) BlackParrot requires direct connections

with the PS. Further, constant polling of the shared memory locations by the PS could lead to

contention and a potential performance implication. Secondly, the RISC­V cores in [29] are not

capable of running an operating system on them, whereas the goal in ZynqParrot is to enable a

Linux boot using BlackParrot on the FPGA. This requires a different approach to the interfaces

between the PS and the PL.

5.1 Choosing the FPGA

The two requirements for choosing the FPGA were the availability of the Zynq PS and a cost be­

tween $100 and $150 so that the design could reach more users. The PYNQ Z­2 FPGA [30] is

a board designed to support the Python Productivity for Zynq (PYNQ) framework and fit these
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requirements well. The PYNQ [31] framework is an open­source Xilinx project that allows users

of the Zynq SoC the opportunity to run their programs in Jupyter Notebook and interact with the

hardware in the PL. Although the ZynqParrot infrastructure described in this thesis used this FPGA,

the underlying design would work for any Zynq­based FPGA. Table 7 shows the BlackParrot uti­

lization results (both raw and percentage) for this part (xc7z020clg400­1) for both the default (32

KB L1 caches and a 64 KB L2 cache) and small (8 KB L1 caches and a 64 KB L2 cache) Black­

Parrot configurations. Both these utilization numbers use the BlackParrot state at this commit

(https://github.com/black­parrot/black­parrot/tree/f5cbac361c8099b18b9b665c00bc02f691b654d4).

The main difference between these two results is the amount of BRAM used since the L1 caches

are four times smaller in the second design.

Configuration Logic LUTs LUTRAMs FFs RAMB36 RAMB18 DSP48
Default 30,796 1,360 12,945 6 145 11
Small 23,899 1,102 10,234 6 85 11
Default 57.89% 7.82% 12.17% 4.29% 51.79% 5%
Small 44.92% 6.33% 9.62% 4.29% 30.36% 5%

Table 7: FPGAUtilization for two BlackParrot configurations (BlackParrot is continuously evolv­
ing so this is a snapshot in time)

5.2 Choosing the connections to use

BlackParrot’s external interfaces

BlackParrot exposes three interfaces to external logic:

• Outgoing port: BlackParrot sends a command to the external logic and expects a response.

This port is used when BlackParrot sends a read or write command to the UART or denotes

that the program has finished.

• Incoming port: BlackParrot receives a command from the external logic and provides a

response after processing it. This port is used to set the configuration registers, load the

program to the DRAM through the L2 cache, and send user input to BlackParrot for a UART

read command.
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• DRAM port: BlackParrot sends a read or write request to the DRAM and waits for the

response.

These ports can be used either with BlackParrot­specific interfaces or as AXI ports. The outgo­

ing and incoming ports connect to I/O <­> AXI converters and become AXI4­Lite ports, and the

DRAMoutput port connects to the L2 cache packet<­>AXI converter and becomes an AXI4 port.

Zynq

Figure 17 shows the Zynq PS. There are two General Purpose AXI ports (denoted in red at the

bottom left of the figure) with PS as the master and PL as the slave, and two with PL as the master

and PS as the slave. Further, four High­Performance AXI ports (denoted in green at the bottom

right) with 64­bit data connect to the DDR3 controller.

Figure 17: Zynq­7000 SoC Block Diagram [28]
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Figure 18 shows the PS address map. Based on the settings used, the Zynq PS ports map to the

following physical addresses:

• DDR: 0x00000000 ­ 0x3FFFFFFF

• M_AXI_GP0 ­ 0x40000000 ­ 0x7FFFFFFF

• M_AXI_GP1 ­ 0x80000000 ­ 0xBFFFFFFF

Figure 18: Zynq­7000 System­Level Address Map [28]

The PS allows the user to allocate DRAM space for the PL to access. The allocation returns

a virtual and physical address corresponding to the start of the allocated region. The PS can use

the virtual address for access and send the physical address to the PL for correct address translation.
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AXI4­Lite Protocol

The AMBAAXI protocol supports high­performance, high­frequency system designs for com­

munication between Manager (master) and Subordinate (slave) components. It has separate read

and write address and data channels. The AXI4­Lite protocol is a subset of the full AXI4 protocol,

with all transactions having a burst size of 1 and all data accesses using the full width of the data bus

(32­bits or 64­bits). The specification [26] contains in­depth information about the AXI4 protocol

signals and timing diagrams.

Identifying connectable interfaces

The BlackParrot AXI interface would be the best choice for the ZynqParrot system since the

PS communicates using the AXI3 protocol.

The following connections are immediately apparent:

• PS M_AXI_GP1 ­> BlackParrot incoming port AXI. The PS port follows AXI3, and Black­

Parrot follows AXI4­Lite, requiring a converter between them.

• BlackParrot DRAM port AXI4 ­> PS S_AXI_HP0. The HP port allows 64­bit data, the

minimum data width supported by the BlackParrot L2 cache. BlackParrot follows AXI4,

and the PS port follows AXI3, requiring a converter between them.

The converter used in this system is the Xilinx AXI SmartConnect [32]. This IP allows multiple

master AXI devices to communicate withmultiple slave AXI devices while performing the required

protocol conversion. For the first connection mentioned above, only the protocol conversion is

necessary since it is a 1:1 connection.

The remaining connection is the outgoing port of BlackParrot. There are two options here:

• Connect the BlackParrot port to the S_AXI_GP0 port and map the connection to the DDR

or OCM

• Use a FIFO in the PL that can be written by the BlackParrot port and read by the PS M_AXI

port
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The first option seems to be the most intuitive since the BlackParrot outgoing port is a master

AXI interface, and the PS S_AXI port is a slave interface. However, even if the address mapping

is such that the data goes to the DDR or the OCM, there are two issues.

• BlackParrot currently sends a UART write request to a single UART address (0x101000). If

the requests go to a single DRAM location, there is a possibility of missed reads by the PS

due to race conditions. The program working would depend on the relative latency between

BlackParrot sending a request and the PS reading it, which is not acceptable.

• Even if BlackParrot is modified to send UART requests to consecutive locations, it is limited

by the DRAM space allocated for this purpose. Further, it has no way of knowing if the PS

read the data at older locations before overwriting them.

The second option is not apparent at first but offers an easy way for BlackParrot to guarantee

that the PS receives every request. Every request is converted into an AXI write and packed into

the 32­bit data, indicating the address and data (for a UART write). If the FIFO is full, BlackParrot

stalls until space is available. If the FIFO is empty, there could be additional logic to send garbage

data so that the PS AXI request does not stall. This FIFO is designed using the AXI Peripheral

creation option provided by Vivado and borrowing the FIFO design from BaseJump STL [33]. It

is connected to the M_AXI_GP0 port of the PS and the BlackParrot outgoing port using the AXI

SmartConnect.

Additionally, the PS writes a base address register to communicate the physical address of the

allocated DRAM to the PL logic. An AXI GPIO [34] module supplies the data written by the PS

in its register to the PL.

The connections described above are used in Version 1 of the ZynqParrot design.

5.3 Version 1

Figure 19 shows the Version 1 ZynqParrot design. All the connectionsmentioned previously appear

in the figure along with their protocol type. Before connecting BlackParrot as the Design Under
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Test (DUT), a trivial module was added as the DUT to test the interfaces. This DUT contained the

following:

• AXI4­Lite BRAM Controller connected to a Block RAM module (to test the direct PS to

BlackParrot connection).

• Loopback connection to the DRAM from PS M_AXI_GP1 port to S_AXI_HP0 port (to test

the BlackParrot to DRAM connection).

• Simple FSM with AXI4­Lite master interface generating the sentence ”Hello from PL” (to

test the BlackParrot to FIFO connection).

Figure 19: Version 1 ZynqParrot design

A Python code using the PYNQ­provided APIs tested the connections on the FPGA and con­

firmed their working. However, this designwas highlyXilinx IP­centric, potentiallymaking debug­

ging more difficult. The ideal setup would allow for simulation of the DUT using an open­source

simulator such as Verilator [35] with an emulated PS AXI port interface before testing the design on

the board. The PS AXI port emulation would provide confidence to the users that a design working
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in simulation is likely to work on the board, as long as the address mappings are correct. Further,

BlackParrot is tested in Verilator so it would be a better option than Vivado simulation.

These issues prompted further experiments to identify a better setup, resulting in Version 2 of

the ZynqParrot design.

5.4 Version 2

Figure 20 shows the Version 2 design for ZynqParrot. The PL modules reside in a single Vivado

IP Integrator (IPI) block. The changes from the above design are as follows:

• The AXI SmartConnects are limited only for converting the PS AXI3 connections to Black­

Parrot’s AXI4­Lite and AXI4 connections.

• Instead of using Xilinx IPs for GPIO and FIFO modules, a decoder module contains the

FIFO with both ends connected to an AXI4­Lite interface, the FIFO occupied count, and

offset registers.

Figure 20: Version 2 ZynqParrot design
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The address translations for the DRAM remain the same but are not shown explicitly in the

figure. By including the decoder module, the only Xilinx IPs used (apart from the PS) are the three

AXI SmartConnects. The fourth SmartConnect, which arbitrated between the PS and the DUT for

FIFO access, is replaced by creating a FIFO with AXI4­Lite interfaces on both the input and output

sides. This design provides an opportunity to design the PL modules, test them entirely in Verilator

simulation before adding the SmartConnect modules and the PS for implementation on the FPGA.

5.4.1 AXI4­Lite Decoder

The decoder module allows users to add a parameterizable number of Control and Status Registers

(CSRs) to which the PS can write address offsets, the above­mentioned FIFO, and its corresponding

flow counter, which is a BaseJump STL module that provides the number of elements currently in

the FIFO. It has one AXI4­Lite interface, and the AXI write and read addresses are decoded into

one­hot signals, which are used as the select signals for a one­hot multiplexer, all BaseJump STL

modules. The PS can read and write the registers, whereas it can only read the FIFO since the DUT

writes to it.

5.4.2 FIFO with AXI4­Lite interfaces on both ends

This FIFO allows an AXI4­Lite master to write to it and an AXI4­Lite master to read from it. The

difference between this FIFO and the Xilinx custom IP earlier is that there are two different AXI

interfaces in this module. Therefore, arbitration is not required, reducing the number of modules for

debugging. On the input side, the AXI master can only write to the FIFO. However, if the master

does read, zero is returned as the data without hanging. On the output side, the AXI master can

only read from the FIFO. However, if the master does write, the write is dropped without hanging.

The counter works in conjunction with the FIFO. When an element is enqueued, the counter is

incremented. Similarly, when an element is dequeued, the counter is decremented. The PS should

ideally read the count at regular intervals and only read the number of elements from the FIFO as

specified by the count.

46



5.4.3 BlackParrot Address Space

BlackParrot uses a 40­bit physical address split as follows:

• 0x0000000000 ­ 0x007FFFFFFF: Local addresses (<7­bit tile ID, 4­bit device ID, 20­bit

device address space>. An example device is the UART.

• 0x0080000000 ­ 0x0FFFFFFFFF: Cached DRAM addresses.

• 0x1000000000 ­ 0x1FFFFFFFFF: On­chip streaming accelerator address space.

• 0x2000000000 ­ 0xFFFFFFFFFF: Off­chip addresses

For the ZynqParrot design, the BlackParrot local addresses and cached DRAM addresses are

supplied by the same PS M_AXI port to avoid performing an extra MUX operation (required if

two different AXI ports supply the data for the two regions). An equal distribution would ideally

allow 512 MB for the DRAM address space and 512 MB for the local address space, since a single

PS M_AXI port can access 1 GB of address space.

The PS runs PetaLinux [36], which requires 64 MB of DRAM space, and the PYNQ Z­2 board

contains a DDR3 memory of size 512MB. BlackParrot can therefore use 256MB of DRAM space,

which is sufficient for most of the standard benchmarks.

Similarly, a 256 MB address space for the local addresses ensures access to 16 tiles since the

highest address accessible in this scenario is 0x000FFFFFFF, which includes 4 bits of the tile ID.

Due to hardware constraints of the board, it is improbable to require more than 4 bits for the tile

ID.

The two address spaces are combined to map to 512 MB of the PS GP1 port. The address maps

are shown in Table 8. An internal address translation is required since the Xilinx tool subtracts the

0x80000000 offset after moving through the GP1 port. This is also indicated in the table.
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Region Address seen by PS Address inside PL IPI Address Translation
DRAM 0x80000000 ­ 0x8FFFFFFF 0x00000000 ­ 0x0FFFFFFF Add 0x80000000
Local 0xA0000000 ­ 0xAFFFFFFF 0x20000000 ­ 0x2FFFFFFF Subtract 0x20000000

Table 8: ZynqParrot Address Mapping

5.4.4 BlackParrot UART read issue

The Version 2 design contains all BlackParrot interface logic except for the UART read request

logic. The only path for this request in the design is to the FIFO with AXI4­Lite interfaces at both

ends. As already mentioned, the input to this FIFO is write­only, but a read will return zero without

hanging. This issue is not immediately apparent since most standard tests used in BlackParrot

testing do not involve UART reads. However, consider the scenario where BlackParrot is running

Linux and requests user input. The user input would always be zero, without any intervention

possible by the user.

Version 3 of the ZynqParrot design fixed this issue using a new module and another FIFO.

5.5 Version 3

A store packer converts read requests from the BlackParrot outgoing port into write requests that

are then enqueued onto the FIFO. Further, we add another FIFO in the reverse direction that the PS

can write, and BlackParrot can read. The PS reads the request in the FIFO, deciphers it, performs

the required operation (print to the screen, obtain user input or terminate the program), and sends

the user input (if any) to the newly added FIFO. The store packer would contain a small FSM that

waits for the user input from the PS if the BlackParrot request was a UART read and responds to

BlackParrot once it receives the data.

Earlier, the FIFO enqueueing BlackParrot AXI requests had an AXI4­lite input interface. Now,

since all requests are converted into write packets that the PS deciphers, the FIFO can revert to

having an output AXI interface and a standard input interface of data and valid.

The entire process is described below. The FIFO enqueuing requests from BlackParrot is called

the output FIFO, and the FIFO enqueuing requests from the PS is called the input FIFO.
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• BlackParrot sends an I/O request (UART read/write, finish).

• The store packer converts this request into a 32­bit packet with a concatenation of<read/write

(1­bit), address (23­bits), data (8­bits)>.

• The 32­bit packet is enqueued onto the output FIFO.

• The PS reads the packet, decodes it in software, performs the necessary operation, and returns

data, if any, to the input FIFO.

• In the event of a read, the store packer responds to BlackParrot with the data.

The decoder module (called the shell in this version) contains the two FIFOs, a DRAM base

offset register and a newly added reset register that controls the BlackParrot reset signal along

with the AXI interface reset. Earlier, the only way BlackParrot could be reset was by reloading

the bitstream. This register allows the PS to control the BlackParrot reset through the testbench

without having to rely on the interface reset.

Figure 21 shows the version 3 ZynqParrot design. The store packer is denoted as BP r/w to

write in the figure.

A future version of ZynqParrot would benefit from using the AXI4­Lite outgoing port interface

since BlackParrot could easily interface with other accelerators and use a multicore configuration

with multiple I/O ports. Figures 22 and 23 show an example design.

5.6 Software setup

The main idea behind cosimulation is to provide users with an option to test their BlackParrot

system in simulation by mimicking the PS AXI interface as closely as possible. The strategy is

to create a single C++ testbench file and swap the include files based on the environment used.

Verilator converts the Verilog modules into a C++ equivalent triggered using the testbench for use

in simulation, whereas the same testbench is run on the Linux instance of the ARM core on the

FPGA to communicate with the PL.
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Figure 21: Version 3 ZynqParrot design

5.6.1 Directory structure

Figure 24 shows the directory structure in the ZynqParrot repository. As depicted, the same test­

bench is reused for both the simulation and the hardware by including different header files for

each environment.

5.6.2 Header files

The software API provides two header files, one for simulation and one for the FPGA. These two

files contain a class with largely the same methods so that the testbench can swap them based on

the environment. The common methods between the two files are as follows:

• axil_write: This method performs a write operation over an AXI port. In the simulation

environment, the actual AXI4­Lite functionality is emulated in the function, whereas in the

FPGA environment, it essentially becomes a write to a pointer that signifies the specific AXI

port.
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Figure 22: AXI R/W to Write module and FSM

• axil_read: This method performs a read operation over an AXI port. In the simulation en­

vironment, the actual AXI4­Lite functionality is emulated in the function, whereas in the

FPGA environment, it essentially becomes a read from a pointer that signifies the specific

AXI port.

• done: This method signifies the end of testing.

There are a few additional methods and operations in the FPGA environment:

• allocate_dram: The PS needs to allocate the required amount of DRAM for the PL to access.

This method performs the allocation and returns the virtual and physical pointer to the first

DRAM location. Currently, we have experimented with different DRAM sizes and found

that 64 MB works well. A plan is to try and extend this size since some programs need more

than 64 MB of DRAM.

• free_dram: This method frees the allocated DRAM and should be called at the end of testing.

5.6.3 Testbench

The testbench for BlackParrot instantiates an object of the class described above and performs two

operations: set the configuration registers inside BlackParrot and write the program to DRAM

through the BlackParrot L2 cache. Once these operations are complete, the testbench waits for
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Figure 23: Future extension to ZynqParrot

data to arrive at the output FIFO and decodes the data to perform the correct operation. The two

functions specific to the BlackParrot testbench are described below:

• nbf_load: This function sets the configuration registers and loads the program into theDRAM

by using a .nbf (Network Boot Format) file available in BlackParrot. The nbf file contains a

packet with the address and data in each line. This function reads the file line by line, extracts

the address and data, and calls the axil_write method of the object with these values.

• decode_bp_output: This function receives 32­bit data and decodes the contents. As men­

tioned in the hardware section, a packet sent by BlackParrot is a concatenation of<R/W, 23­

bit address, 8­bit data>. If the packet is a UART write (R/W = 1 and address = 0x101000),

the data is printed onto the screen. If the packet indicates a finish (R/W=0 and Address

= 0x102000), the program is terminated. UART reads are currently not supported in this

function but can be added by asking for user input and writing the result to the input FIFO.

The testbench also contains multiple diagnostic tests aimed at testing each interface connection

in both simulation and actual hardware. The following tests are performed before BlackParrot is

initiated:
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Figure 24: Testing directory setup

• Writing and reading the CSRs in the decoder (tests the GP0 port connection).

• Writing to enough addresses in the DRAM through BlackParrot to trigger evictions from

the L2 cache and reading these addresses using the virtual addresses in the PS space (on

hardware) or through BlackParrot (in simulation) (tests the GP1 port connection for DRAM

addresses and HP0 port connection).

• Reading from themtime andmtimecmp registers (machine timer registers) inside BlackParrot

(tests the GP1 connection for local addresses).
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5.7 Validation and Results

This section provides the numbers and the status as of this state (https://github.com/black­parrot­

hdk/zynq­parrot/tree/498d90532c7ca768504cfd4c30dc3b62755dd6d8). It is important to note that

ZynqParrot is a continuously evolving system, so these results are valid only at this point in the

history. The testing of this system involved both simulations using Verilator and running the test­

bench on the PYNQ­Z2 FPGA. Table 9 shows the utilization results on the PYNQ­Z2 for the Zyn­

qParrot system with the default BlackParrot configuration containing 32 KB L1 caches and a 64

KB L2 cache. Table 10 shows the hierarchical utilization of ZynqParrot with some of the major

components of the system displayed. The basic “hello_world” program provided the initial confir­

mation that the system worked as expected. The next step involved running several SPEC2000 and

SPEC2006 benchmarks [21] on the FPGA. We also ran the beebs benchmarks [37] as a regression

on the board (all tests run with a single command) with the help of the reset register in the shell

module and confirmed its working.

FPGA Component Utilization Percent utilization
Logic LUTs 31,917 59.99%
LUTRAMs 1,652 9.49%
SRLs 433 2.49%
FFs 16,586 15.59%
RAMB36 6 4.29%
RAMB18 145 51.79%
DSP48 11 5.00%

Table 9: FPGA Utilization for the ZynqParrot system with the default BlackParrot configuration

Tables 11 and 12 show the instructions, cycles and Instructions per Cycle (IPC) values for the

SPEC2000 and SPEC2006 benchmarks running on ZynqParrot. The FPGA emulation speed is

around one billion BlackParrot cycles per minute, whereas the Verilator simulation speed is around

100,000 cycles per minute. The numbers in the table show that the longest running benchmark

(464.h264ref) would take about 200 minutes to complete on the FPGA, whereas even the smallest

benchmark in terms of cycles (175.vpr) would take around 270 minutes to simulate using Verilator.

ZynqParrot enables running this new class of tests that is impossible to do in simulation.

54

https://github.com/black-parrot-hdk/zynq-parrot/tree/498d90532c7ca768504cfd4c30dc3b62755dd6d8


Component Logic LUTs LUTRAMs SRLs FFs RAMB36 RAMB18 DSP48
ZynqParrot 69,333 3,242 128 50,465 37 30 12
D$ 3,751 191 0 2,117 0 64 0
BP­L2 converter 3,340 384 0 614 0 0 0
SmartConnects 2,933 224 338 3,842 0 0 0
L2 cache 1,797 454 0 1,987 0 64 0
I$ 1,476 183 0 1,373 0 16 0
FMA 1,256 0 71 165 0 0 11
Regfiles 763 0 0 492 5 0 0

Table 10: ZynqParrot hierarchical utilization

SPEC2000 Benchmark Instructions Retired Cycles IPC
164.gzip 1,234,135,782 1,968,599,120 0.627
175.vpr 23,452,462 27,906,352 0.840
177.mesa 437,214,657 562,967,056 0.777
183.equake 526,995,458 841,464,792 0.626
186.crafty 4,142,052,045 5,172,257,264 0.801
188.ammp 38,813,804 72,238,528 0.537
197.parser 227,585,917 289,582,784 0.786
256.bzip2 1,592,049,924 2,205,371,304 0.722
300.twolf 97,342,911 182,005,544 0.535

Table 11: SPEC2000 benchmarks running on ZynqParrot

SPEC2006 Benchmark Instructions Retired Cycles IPC
401.bzip2 3,175,874,105 4,210,062,456 0.754
410.bwaves 20,684,252,488 48,997,476,110 0.422
444.namd 64,051,683,912 104,703,424,500 0.612
445.gobmk 416,632,992 1,062,763,112 0.392
462.libquantum 176,152,994 203,135,528 0.867
464.h264ref 142,762,531,949 200,478,638,500 0.712
473.astar 23,673,222,279 42,845,912,910 0.553

Table 12: SPEC2006 benchmarks running on ZynqParrot
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6 Conclusions and Future Work

This thesis explained the requirement of a single­core configuration with a flexible cache design

and an interface between the cache and various cache engines. It also described how this helped

integrate BlackParrot into OpenPiton, including the design decisions made along the way. The

integration was complete with Linux booting on the integrated system for the one, two, and three

core configurations.

Once the ParrotPiton systemwas functional, we realized that creating an in­house FPGA system

would also be highly beneficial for external users trying out BlackParrot as an accelerator host in

their designs. The ZynqParrot system would eliminate the need for a desktop computer and the

accompanying PCIe connection to connect the FPGA, which is very hard to debug when a problem

arises. The ARMPS on the FPGA instead replaces the desktop computer and uses the AXI protocol

for the PS­PL connection, which significantly simplifies interfacing with the PS.

We compared different design choices to allow the ZynqParrot system to be cosimulated with

Verilator simulation and hardware support using the same testbench. The final design (at this point)

contained no Xilinx IPs apart from the SmartConnect modules performing the protocol conversion

between the PS and the BlackParrot module, which were not required for Verilator simulation since

this step emulated the PS connections and did not actually include the PS.

The creation of the ZynqParrot infrastructure makes BlackParrot more attractive to users due

to the ease of use and low­cost nature of the solution. Users can leverage this FPGA system to test

their accelerator designs in actual silicon instead of just simulation, leading to faster design times.

Some future steps are given below:

• Explore the write­around policy and its effect on ParrotPiton performance.

• Explore the interplay between non­blocking BlackParrot requests and theOpenPitonmemory

system.

• Explore more sophisticated backoff mechanisms in the PCE.
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• Explore alternatives for retiming the FPU and ensure that the frequency is brought back to

66.67 MHz.

• Convert the BlackParrot outgoing port interface into AXI4­Lite with the necessary changes

to the store packer.

• Extend the DRAM allocation size to 256 MB for ZynqParrot.

• Run Linux on BlackParrot in the ZynqParrot framework.
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Appendix

The cache testbench initially supported single cache testing using the setup shown in Figure 25.

Trace replay is a BaseJump STL module that reads traces from a ROM and sends the data to

the system connected to it. This module helps test functional correctness by sending a set of inputs

to the system and validating the outputs from the system. There are a small set of instructions that

the trace replay can decipher and act accordingly. These are provided in Table 13.

Figure 25: Example single D­Cache testbench

The user can create a trace file with multiple instructions indicating different input combina­

tions. A Python script converts the trace file into a ROM that can be accessed using addresses by

the trace replay as shown. The trace replay then decodes the trace data and takes the appropriate

68



Instruction Code Description
0000 Wait for one cycle
0001 Send data, that is the rest of the instruction
0010 Receive data, compare with rest of instruction
0011 Trace replay asserts its done signal
0100 Finish simulation
0101 Wait for cycle counter to reach 0
0110 Set a value for the cycle counter,

rest of instruction is the 16­bit value (clipped if larger)

Table 13: Trace replay instruction set

action as given by the table.

An issue queue (called rolly FIFO in the figure) stores the commands sent by the trace replay

and sends them to the cache. An output FIFO stores the hit data from the cache, and the trace replay

module can read this to perform the value comparison. This output FIFO is required because the

test could perform a stream of loads, all of which hit in the cache, before moving to the value

comparisons. This might be a result of our testing strategy and could be a point of exploration in

future work.

The cache is instantiated alongwith theUCE. TheUCE connects to the “fake” (non­synthesizable)

DRAM, which can be preloaded with values if necessary.

Version 2 of the testbench added support for testing multiple caches along with the cache co­

herence engine (CCE), as shown in Figure 26.

Each cache is connected to a trace replay module (with the ROM), along with the two FIFOs as

before. Currently, all the trace files are the same, so the output is guaranteed to be validated by the

trace replay module if the design is functional. A future extension would be to allow different trace

files for each trace replay module, which would complicate the validation step since the order of

operations to the same address would depend on the order in which the CCE services the request.

The differences between the single cache and multi­cache configurations are the cache engines

used, the concentrators, and the CCE. The LCE­CCE setup is required in the multi­cache config­

uration to test the coherence between caches. There are three concentrator modules, one each for

the request, command, and response networks. The request and response concentrator modules
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Figure 26: Testbench supporting multiple caches

essentially provide N­>1 arbitration between the caches (assuming there are N caches in the de­

sign). The command concentrator module provides (N+1)­>N arbitration (since the LCEs and the

CCE can issue commands). The CCE connects to the “fake” DRAM, which can be preloaded with

values if necessary.
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