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Recent developments in architecture research warrant the need for efficient host cores to inter­

act and manage multiple accelerators in a system­on­chip design. Existing designs suffer from low

configurability, rely on non­standard or proprietary tooling, or require sophisticated mechanisms to

interact with accelerators. BlackParrot [1] is a 64­bit Linux­capable, open­source multicore proces­

sor that aims to break these barriers to become an accelerator host processor used in state­of­the­art

SoCs. One of the critical requirements to achieve this goal is modifying the core quickly to suit

the application’s needs. The work presented in this thesis discusses ways to optimize BlackParrot

for integration with diverse architectures. While BlackParrot offers sufficient configurability to

host standalone accelerators in its memory system, it did not have the tools to integrate with larger

system designs. The creation of the BlackParrot unicore and the standard cache interface between

the L1 cache and its controller, presented in this thesis, allows BlackParrot to integrate with designs

with minimal modification. Its parameterizable cache, along with a multi­cycle fill strategy, has

enabled the creation of a tiny core that can find uses in systems with physical limitations. The utility

of these modifications, among others, was validated by integrating BlackParrot with HammerBlade

and OpenPiton.
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1 Introduction

The end of Dennard Scaling [2] and the ’Utilization Wall’ have forced computer architects to ex­

plore domain­specific architectures [3]. Apple’s M1 processor features multiple accelerators for

graphics, security and machine learning on the same chip. Google’s TPU [4] accelerates machine

learning workloads and Microsoft uses FPGAs (Project Catapult) to accelerate cloud­based ser­

vices and AI. The academic and research communities have many examples showing the growth

of hardware specialization [5–11].

The growing popularity of accelerator SoCs requires host processor cores optimized for interacting

with and managing multiple accelerators. Current commercial cores provide interfaces that are not

configurable for the needs of the user and require elaborate mechanisms to communicate with an

accelerator which adds overhead to the system’s performance. Additionally, they are expensive

and inaccessible for research and to the open­source communities. BlackParrot [1] is a free and

open­source, Linux capable RISC­V multicore that aims to break these barriers and become the

default host core in state­of­the­art accelerator SoCs.

While [1] shows that BlackParrot provides the best­in­class performance, area and energy efficiency

in comparison to popular open­source and commercial RISC­V cores [12–14], its configurability

was limited. BlackParrot’s multicore system offered the flexibility to add and remove customized

tiles for memory, accelerator and I/O to the network as long as they adhered to the network pro­

tocol. This flexibility was, however, only at the system level. The aim was to enable the core

itself to be flexible. There are multiple academic, industrial and open­source research projects that

require a core to connect to a pre­existing network. Other projects have restrictions on on­chip (sil­

icon/FPGA) resources for a host core. In both cases, the lack of core­level configurability resulted

in resorting to solutions that motivated the development of an accelerator host core in the first place

(i.e. using commercial cores with sophisticated mechanisms to interact with the accelerator).
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This thesis summarises my contributions to the research group and addresses BlackParrot’s con­

figurability at the core level by motivating the need for an efficient unicore, creating a standard

interface to make the system more plug­n­play friendly and adding features to the cache including

size parameterization, modifications to the iterative filling strategy, and sub­bank masking to make

the memory systemmore configurable. It provides a detailed overview of three standard controllers

that BlackParrot supports of which I personally contributed to the development of the controller for

the unicore and the transducer for the OpenPiton integration. I conclude by presenting two real­life

examples of using these developments ­

• A size­configurable core, codenamed TinyParrot verified to synthesize using an open­source

45nmprocess node and a low­cost FPGA.BlackParrot’s size configurability creates an ecosys­

tem for a broader base of users to include on­chip accelerator host cores in their designs.

• An accelerator host core codenamed HammerParrot for a tiled manycore architecture spe­

cialized for machine learning and graph analytics where BlackParrot’s tininess and flexibility

improves overall system performance.
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2 Background

2.1 BlackParrot

BlackParrot [1, 15] is a 64­bit RISC­V multicore processor designed to function as an accelera­

tor host in state­of­the­art SoCs. It is an 8­stage pipelined, in­order, single­issue processor that

implements the I (Integer), M (Multiply), A (Atomic), F (Single­precision Floating Point), and D

(Double­precision Floating Point) extensions of the RISC­V ISA [16]. BlackParrot is a Linux­

capable processor supporting three privilege modes (Machine, Supervisor, User) and RISC­V’s

SV39 virtual memory system [16]. BlackParrot consists of 3 major components ­ the Front End,

the Back End, and the Memory End to enforce modularity in the design. The Front End consists of

the PC generation unit, instruction fetch, and branch prediction logic. The Back End has multiple

execution lanes, each handling instructions belonging to a different class like integer, floating­point,

branching, load/store, Control Status Register (CSR) access, and exception handling. BlackParrot’s

Front End injects instructions into the Back End through the Issue Queue, and the Back End com­

municates information such as branch decisions and PC redirections back to the Front End via the

Command Queue. On events like a cache miss or an exception, the issue queue rolls back to the

last committed instruction and replays the instructions once the miss/exception has been resolved.

Figure 1 illustrates the core microarchitecture. The Memory End consists of the directory­based,

race­free, programmable cache coherence engine or a lightweight FSM­based cache controller and

an L2 slice. The BlackParrot multicore consists of multiple core tiles, each consisting of the core,

L1 caches, and controllers, and a cache coherence engine backed by an L2 slice, all arranged in

a scalable 2­D mesh network topology, codenamed Bedrock, that supports diverse tile types and

interfaces to aid in easy integration with accelerators. BlackParrot offers the best­in­class perfor­

mance, area, and energy efficiency [1] on silicon and extensively uses BaseJumpSTL and modern

software engineering practices to ease adoption and achieve its goal of becoming the default host

in accelerator SoCs.
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Figure 1: BlackParrot core microarchitecture [1]

2.2 BaseJump STL

Modern software programming languages like C/C++ provide repositories of commonly used, thor­

oughly validated, and highly optimized data structures and algorithms as a Standard Template Li­

brary (STL) to aid in the agile development of software. BaseJumpSTL [17, 18] aims to achieve

the same for hardware development by providing highly composable building blocks that allow the

designer to devote more time to the development of their microarchitecture. The library provides

many synthesizable modules ranging from simple logic gates, flip flops, and counters to more com­

plicated structures like caches and memory controllers while also hosting many non­synthesizable

building blocks to aid in design verification. All building blocks are written in SystemVerilog fol­

lowing a consistent set of coding guidelines that enhances readability while still employing best

practices to achieve Pareto optimal power, performance, and area. BaseJumpSTL ensures the user

does not have to worry about timing diagrams by providing a standardized, latency­insensitive

handshaking interface and allows for quick design space exploration through extensive parameter­

ization. The hardware modules are process node agnostic, and the library provides a specializa­

tion layer to fine­tune implementations to a specific technology. These features make the library

amenable for quick adoption, as evidenced by the multiple research projects that have taped out

chips using this library as the foundation.
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3 Motivation for the BlackParrot Unicore

As stated previously, BlackParrot is an efficient multicore with system­level configurability that

supports the integration of coherent and non­coherent, standalone accelerators. Figure 2 shows a

single­core tile in the BlackParrot multicore system. Bedrock, a standard interface for the network

and memory system, supports this integration.

Figure 2: A core tile in the BlackParrot multicore system. LCEs are the Local Cache Engines and
a CCE is the directory­based Cache Coherence Engine [1].

However, not only system­level configurability is enough, but also core­level configurability is

necessary to expand the scope of BlackParrot as an accelerator host and cater to more full­featured

systems that require host core(s) to connect to a network. The first roadblock in this path was the

lack of an efficient single­core implementation of BlackParrot.

A study that measured the area of BlackParrot’s core tile (The snapshot of BlackParrot used for this

experiment is commit: c8c67bedb5) exposed the area inefficiency of the core tile for a single core

BlackParrot. Figure 3 shows the results of this experiment. The core occupies only 64% of the

total area, while the directory controller and the network components consume the rest. These are
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components that are not required in the single­core implementation. They add to the overall power

consumed by the core tile, the cycles incurred during memory operations, and make the system

more complex than necessary.

Figure 3: Area breakdown of a single BlackParrot core tile (no L2 slice). The area numbers were
generated using the Global Foundaries 14nm process node. Note: BlackParrot is a continuously
evolving processor core and the version used here was accessed on Jan 31, 2020.

A unicore systemminimally needs the core pipeline, the L1 caches, and their controllers and expose

a suitable interface to the rest of thememory system. Additionally, an integration­optimized unicore

needs to provide the necessary configurability to communicate with its connected system efficiently.

A standard interface between the L1 cache and its controller can achieve the required configurability

while satisfying the minimum requirements of the unicore. The following sections describe how to

do this in a maximally efficient and modular way.
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4 BlackParrot Cache Optimizations for Integration

4.1 Design Overview

BlackParrot contains an Instruction Cache (I$) and a Data Cache (D$). The rest of this section

gives an overview of the current version of the D$ (commit: 414747b058) since the I$ inherits the

base design from the D$.

BlackParrot’s D$ is a Virtually Indexed, Physically Tagged (VIPT), write­back (default) and write­

allocate cache that can be configured in different ways as shown in Table 112

Cacheline Size (bytes) Associativity Sets Cache Size (kB)

64

8­way 64 32
4­way 64 16
2­way 64 8

Direct Mapped 64 4

32
4­way 128 16
2­way 128 8

Direct Mapped12 128 4

16 2­way 256 8
Direct Mapped12 256 4

8 Direct Mapped12 512 4

Table 1: Different cache configurations

The cache consists of three primary memories ­ data, tag, and stat and each memory has one

read/write port. The data memory holds the cached data. It has one bank per way in the cache,

and the cache lines are interleaved among the banks to speed up cache line access. Each double­

word (8 bytes) from a cache line is written to a separate bank in the data memory. The bank ID of

this write is governed by Equation 1. The interleaving of a single cache line across multiple banks

helps to read a single index in the data memory, retrieving the same 64­bit doubleword of every

cache line across all the ways while still giving the benefit of writing an entire cache line at once.

Figure 4 illustrates this interleaving for a 4­way cache. Before evicting a cache line, it must be
1These configurations are valid but untested
2 Support for more configurable Direct­Mapped caches is a work in progress (link)
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de­interleaved, and this is achieved by rotating the entire cache line to the right by the appropriate

number of double words.

Bank ID = Way ID+ DWord Offset (1)

Figure 4: Data Memory Organization

The tag memory holds the tag and the coherence state for a cache line. The D$ uses a practical

implementation of the Least Recently Used (LRU) replacement policy called tree pseudo­LRU [19]

that encodes the LRUway of the cache. The pseudo­LRU tree is traversed in a breadth­first manner,

and each bit in this format encodes the direction of traversal (to compute the LRU way ID) for that

node. A 0 indicates to go left in the tree, and a 1 indicates to go right in the tree. Figure 5 and

Table 2 illustrates the LRU format and how it maps to a way ID. When a way is accessed, the LRU

information is updated by traversing the tree for the referred way and creating a mask to update the

current LRU way. Effectively this process flips the bits while traversing the tree and guarantees

that the referred way is not the LRU way. Figure 6 shows how the LRU way is updated given the

referred way ID. The stat memory holds this LRU tree state and the dirtiness of the cache line.

Any read to the stat memory passes through the LRU tree decoder to obtain the way ID, and any

read/write to a given way encodes the referred way ID and writes it to the stat memory. Therefore,
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encoding and decoding the LRU way prevents the need for a read­modify­write operation to the

stat memory.

Figure 5: The LRU encoding format for an 8­way set­associative cache. The figure shows that the
current LRU way is way 3 (marked in green)

LRU Encoded Format Way ID
xxx_0x00 Way 0
xxx_1x00 Way 1
xx0_xx10 Way 2
xx1_xx10 Way 3
x0x_x0x1 Way 4
x1x_x0x1 Way 5
0xx_x1x1 Way 6
1xx_x1x1 Way 7

Table 2: LRU encoded format (MSB­first) to Way ID conversion for an 8­way associative cache.
‘x’ denotes a don’t care.

The D$ has a pipelined datapath consisting of 3 pipeline stages ­ Tag Lookup (TL), Tag Verify

(TV), and Data Mux (DM).

The cache decodes the incoming cache packet, and the data and decoded packet are registered at the

negative edge of the clock giving only half a cycle for address calculation since the packet arrives

on a positive edge of the clock. Figure 7 shows the partitioning of a cache address.
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Figure 6: Updating the LRU tree from Figure 5 for an 8­way set­associative cache when the referred
way has ID 3. The figure shows that the new LRU way is way 4 (marked in green)

Figure 7: Address breakdown for the cache

In the TL stage, the cache reads the tag and data memories simultaneously and detects a hit or a

miss. This information, along with the data read from the data memory, is stored to the pipeline

register on the negative clock edge, giving an entire cycle for this stage. The physical tag for the

cache translated by the Translation Lookaside Buffer (TLB) and the Physical Memory Attributes

(PMA) also arrives in this stage and is latched. The data is muxed down to the correct double word

or word in the TV stage and injected into the core pipeline on a positive clock edge giving the

cache half a cycle to mux the data making its hit time two cycles for double word and word ops.

Half cycles for address calculation and data multiplexing are sufficient since they involve either bit
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slicing or a single mux operation, while an entire cycle is required for memory reads. The LRU

information in the stat memory is updated during the TV stage. If there was no hit in the cache,

then the miss information is sent to the controller in this stage. The double word selected in the TV

stage is muxed down for sub­byte operations or recoded for floating­point operations in the DM

stage to reduce the critical path.

The cache also contains an in­built ALU used to perform atomic operations at the L1 level. The

supported operations include AND, OR, XOR, ADD, MIN, and MAX. However, the cache can

offload these functions to the next level of the memory system through uncached operations.

The cache also has a write buffer that stores the incoming write data until the data memory becomes

free from the incoming loads. The incoming loads also snoop the write buffer for valid data while

determining a hit, preventing data hazard stalls.

BlackParrot’s caches are currently blocking and can handle only one miss at a time. The cache

sends a miss request to the controller and waits until a response is received.

The I$ design is similar to the D$ design. It only supports load operations and does not use a

combination of positive and negative clock edges, which makes its hit time three cycles. The

positive and negative clock edge trick does not benefit the I$ because of a feedback path from the

output of the I$ to its input due to the branch prediction logic.

The cache datapath is partitioned into a fast path and a slow path. The fast path describes the cache

datapath during a hit as described above. The slow path describes the logic required to handle a

miss and fill the cache with data from the next memory level. The L1 cache­controller interface

forms the backbone to create an area­efficient single­core and improve the core’s overall integration

potential. The following section gives a detailed overview of the capabilities of this interface.
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4.2 Cache Interface

The following requirements are imposed to define an interface that caters to the current and future

goals of the processor,

1. It must service all combinations of caches and controllers. requiring that the cache/controller

only adhere to the interface.

2. The interface must support an exhaustive set of operations to support various use cases.

3. On the cache side, it must be agnostic to the type of cache (e.g., blocking/non­blocking,

coherent/non­coherent) and must also be easily configurable to support different cache con­

figurations and organizations.

4. On the controller side, the interface should offer a low overhead so that transducing does not

become a bottleneck in the system.

5. The interface must implement latency insensitive handshaking to hide cache and controller

timing information.

4.2.1 Cache to Controller Interface

The interface from the cache to the controller handles the requests from the cache. It should contain

all information required by the controller to handle the request. The request interface currently

(commit: 414747b058) has the fields given in Table 3. Requests can be of different types, and

Table 4 highlights the different types supported by the current version of the interface.

SystemVerilog structs and enums help package the request into a packet(s) that the cache can trans­

mit. The interface uses a valid­then­ready (a.k.a valid­yumi) [17] handshake to transmit packets

to the controller. The cache asserts the valid signal when it wants to send a request and keeps the

valid signal high until the controller sends back an acknowledgment by asserting the yumi signal.
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Field Description
msg_type Type of Request
addr Physical address
size Request size (1 byte ­ 64 bytes)
data Data (for uncached, write­through and atomic ops)
subop Sub­opcode
hit Hit information

Table 3: Cache request packet

Operation Sub­op Description
miss_load ­ Load miss
miss_store ­ Store miss
wt_store ­ Writethrough store
uc_load ­ Uncached load
uc_store ­ Uncached store

uc_amo

­ Atomic operation
amolr Load reserved
amosc Store conditional

amoswap Atomic swap
amoadd Atomic add
amoxor Atomic XOR
amoand Atomic AND
amoor Atomic OR
amomin Atomic minimum
amomax Atomic maximum
amominu Atomic unsigned minimum
amomaxu Atomic unsigned maximum

cache_flush ­ Cache flush (for fencing operations)
cache_clear ­ Clears the cache tag and stat memories

Table 4: Operations supported by the interface

This handshake is preferred over a ready­then­valid handshake [17] because the controller imple­

mentation can choose to accept specific packets at different points in its operation. For example,

the controller can handle uncached and write­through stores while waiting to respond to a previous

independent load.

In addition to transmitting a request packet, the controller might also require metadata to service

the request. This metadata may not be available in the same cycle for a high­performance cache

design. If the controller requires metadata to service the miss, the metadata can arrive at any cycle

13



later than or equal to the original cache request. The metadata packet has a valid­only handshake

which means that the controller must register the metadata on the cycle that it is sent. The cache

must eventually provide the metadata required for the controller to handle the request, and the

latency between the original request and the metadata packet must be a fixed, known constant for

all request types and under all backpressure conditions. Currently, the metadata packet contains the

fields shown in Table 5.

Field Description
hit_or_repl_way Hit (for invalidations) or replacement way (for evictions)

dirty Dirty bit for the corresponding way

Table 5: Cache request metadata packet

4.2.2 Controller to Cache Interface

The interface from the controller to the cache handles the responses to the cache’s requests and

coherence operations and invalidations to the cache. It acknowledges receiving a cache request

and sends back any data to service the requested operation (e.g., a load miss request is serviced by

sending back a cache line) that read/write from the cache memories. Additionally, commands from

the memory system to update the coherence state or invalidate a cache line can also be sent via this

interface. SystemVerilog structs and enums are exploited to provide a user­friendly way to transmit

this information from the controller to the cache. The interface requires a valid­then­ready (a.k.a

valid­yumi) handshake to send packets to the cache. Cache designs would prioritize servicing the

incoming requests from the core over the response packets, both of which access the cache memory.

Therefore, to address any structural hazards, the cache interface should handle this backpressure,

and a valid­yumi handshake is best suited for this job. A cache can send three response packets,

one for each kind of memory in the cache. These ports are independent to allow for flexibility in

the cache fill strategy and the controller implementation. A description of the fields of the three

interfaces are given in Tables 6, 7 and 8.
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Field Description
opcode Read/Write cached/uncached data memory
index Cache index
way_id Cache way
data Data

Table 6: Data memory packet

Field Description
opcode Read/Write/Clear tags and/or coherence state
index Cache index
way_id Cache way
tag Physical tag
state Coherence state

Table 7: Tag memory packet

Field Description
opcode Read/Clear the LRU and/or dirty bits
index Cache index
way_id Cache way

Table 8: Stat memory packet

Apart from responses to requests, the controller also sends back signals to indicate the controller’s

status. Since a single cache request could trigger multiple fills based on the cache fill strategy, the

controller is required to assert a cache_req_complete signal for one cycle when the cache request is

complete. The interface also supports credit­based flow control by communicating the amount of

credits left in the controller for requests via cache_req_credits_full and cache_req_credits_empty.

Empty signifies that all downstream operations are complete and the controller is ready to receive

more requests, while full indicates that the controller cannot accept any more requests.

BlackParrot also implements a rudimentary version of the critical word first technique in its cache,

filling the request address first. To indicate that the critical words and tag are being sent, the

cache_req_critical_data and cache_req_critical_tag signals are asserted.
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4.2.3 Miss Tracking and Cache Locking

The interface does not support passing miss tracking information between the cache and its con­

troller, and therefore the cache is responsible for tracking the status of all outstanding misses. The

cache should rely on the cache_req_complete signal and other metadata (such as miss ID) to re­

solve the corresponding miss. The controller can also perform other functions while handling a

miss, such as service other requests. The interface assumes that all the intelligence required to

perform such optimizations lies within the controller.

BlackParrot additionally implements a cache locking mechanism to allow forward progress on

LR/SC operations. Load Reserved (LR) and Store Conditional (SC) operations are primitives used

to implement synchronization structures like locks. When a core reserves a cache line, the core

should be given some time to progress in the critical section of the program and prevent incom­

ing invalidations from breaking the core’s reservation and creating a situation where the lines keep

jumping between cores’ caches. The cache is locked on a successful load reservation operation to

prevent cache line ping­ponging. A counter starts counting up to some pre­determined maximum

value, and the cache is deemed ’locked’ and does not process any incoming response packets from

the controller during counting. If the corresponding store conditional is successful, or the counter

reaches its maximum value, then the cache is ’unlocked’. The maximum value of this counter can

be configured to prefer local or remote operations over the other.

4.3 Iterative Filling/Eviction

BlackParrot’s default configuration uses an 8­way, 32KB cache with a 64B cache line. Cache line

filling and eviction are done at the cache line granularity, meaning that 64B chunks of data are

transferred at any point in time. Filling/evicting lines this way was sub­optimal because ­
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1. It is not practical to expect full cache lines to be available from the lower levels of the memory

system because of the network’s flit size and wormhole streaming3.

2. It occupies silicon die area and requires more energy. The downstream logic in the memory

system uses multiple buffers and FIFO queues to handle different data processing rates be­

tween modules. Moving 64B chunks of data would therefore require large buffers and FIFO

memories.

One of the immediate solutions would be to pick another cache configuration that BlackParrot

supports. For example, using a 2­way, 8KB cache can handle data chunks required by systems

such as OpenPiton (Sec. 5.3) while still moving data around in cache line width. However, this

still does not solve the issue with the physical network limitation and decreases the cache’s hit rate

since it is less associative and smaller in size.

The solution was to implement an iterative filling strategy. By supporting partial fills in the L1

caches, power consumption and area utilization can be minimized. However, miss latency in­

creases since each fill/eviction incur more cycles. The increase in miss latency can be amortized

by implementing critical word first or early restart mechanisms in the cache. BlackParrot supports

a rudimentary version of the critical word first mechanism where the controller fills the cache with

the requested address first, but the core remains stalled until the miss request is complete.

An additional field, fill_index, was introduced into the data memory response packet in the cache

interface to implement iterative line filling. This index tells which position in the cache line the fill

data is supposed to replace. The fill widths can be a minimum of 8 bytes and a maximum of 64

bytes and can be no smaller than the bank width. The controller can even fill multiple data memory

banks at the same time. When a cache request packet is received, the controller first fetches the data

for the address requested (i.e., the critical word) and then proceeds to fill all the other sub­blocks

within the cache line iteratively. Figure 8 shows the sequence of operations required to fill a single

cache line.
3NoC symbiosis breaks this barrier with some modifications to the system configuration [20]
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Figure 8: Iterative filling of a cacheline. Each colored box in the cacheline indicates the portion of
the line that is being filled. The red box indicates the critical word.

4.4 Sub­bank Filling/Eviction

The iterative filling method described above enforced that the fill width can be a minimum of the

bank width. BlackParrot’s minimum bank width is 8 bytes since the maximum data width that the

core can request is 8 bytes. However, most systems expose interfaces that follow standard protocols

such as AXI, AXI­lite, Wishbone, or other pre­existing IP, some of which require 32­bit data buses

to transmit and receive data. Additionally, cache designs with no banking shuttle cache lines around

which as stated earlier was sub­optimal. To accommodate for the IP requirements/banking strategy

while still reaping benefits of iterative filling, sub­banking is introduced.

The iterative filling strategy is extended with minor tweaks to implement sub­bank filling and evic­

tion. The semantics of the fill_index field in the data memory packet was modified to indicate a

sub­bank index. The cache can then use this index value and the pre­determined fill size to calcu­

late the correct masks to write into the right data memory bank.

18



BlackParrot’s caches currently support the fill widths and bank widths shown in Table 9.

Widths supported
Bank 64, 128, 256, 512
Fill 64, 128, 256, 512

Table 9: Bank and Fill Widths supported

Supporting a fill width of 32 bits in BlackParrot required somemore careful thought. Firstly, Black­

Parrot’s uncached load and store operations need a maximum of 64 bits. Secondly, many of the

peripherals supported by BlackParrot communicate using 64­bit data. Adding Serial­In­Parallel

Out (SIPO) modules on the request path and Parallel­In­Serial­Out (PISO) modules on the response

path can resolve both the above issues when the fill width is 32­bits. Because almost all of Black­

Parrot and its peripherals communicate in 64­bits, this would add a reasonably significant overhead

to the entire system to support a single bus/accelerator.

Therefore to reconcile the two, BlackParrot will support only a minimum of 64­bit fills, and in order

to support 32­bit protocols like AXI­lite, the BP↔ IP transducer should have PISOs on the request

path and SIPOs on the response path. BlackParrot has three Link Protocols ­ BP Lite (Similar to

AXI­lite), BP Stream (Similar to AXI­Stream), and BP Burst (Similar to AXI­4) to address this. A

brief overview of these protocols can be found in [21] but a detailed overview is out of scope for

this thesis.
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5 Cache Controllers

BlackParrot’s new standardized cache interface can support different cache controllers for different

use cases provided they adhere to the interface specification. Currently, there are three controllers

for three different use cases.

The Unified Cache Engine (UCE) is used with BlackParrot’s unicore configuration and is the de­

fault controller used in BlackParrot. The Local Cache Engine (LCE) is used with BlackParrot’s

multicore configuration to communicate with the Cache Coherence Engine (CCE), the directory

controller. The P­Mesh Cache Engine (PCE) used with ParrotPiton (BlackParrot with OpenPiton)

transduces BlackParrot’s requests (responses) into the Transaction Response Interface (TRI) re­

quests (responses). A deep dive into each of these controllers is presented in the following sections.

5.1 Unified Cache Engine (UCE)

The Unified Cache Engine or UCE is the default L1 cache controller used with a single core Black­

Parrot. It is a lightweight FSM that:

• Handles load and store misses in the L1 cache via multicycle fills and evictions.

• Handles uncached loads and stores.

• Handles invalidations to cache lines requested in uncached mode.

• Forwards atomic memory operations to the next level of the memory system.

• Supports both write­back and write­through protocols.

• Supports credit­based flow control to handle fences.

Figure 9 shows the controller with all its states currently. Each of the controller’s states is ex­

plained briefly below. The states’ names follow the Bespoke Silicon Group, SystemVerilog coding

guidelines [22] ­
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Figure 9: Unified Cache Engine (UCE)

• Reset (e_reset): Initial state of the controller

• Clear (e_clear): Clears the cache tag and stat memories

• Ready (e_ready): The controller waits in this state to receive requests.

• Flush Read (e_flush_read): The controller moves to this state on a fence request. In this

state, the controller reads the stat memory to check the dirty bits for the cache line.

• Flush Scan (e_flush_scan): The controller reads the data and tag memories if the cache line

is dirty in the Flush Read state. It also clears the dirty bit. If the line was not dirty, nothing

needs to be done, and the controller moves to the next cache line.

• Flush Write (e_flush_write): The dirty lines read from the cache are written back to memory

iteratively.

• Flush Fence (e_flush_fence): After reading all the lines andways andwriting the dirty lines to

memory, this state signals the cache that the controller operation is complete and the controller

moves back to the ready state.
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• Uncached Writeback Evict (e_uc_writeback_evict): If there was an uncached request to the

controller and the line already existed in the cache, then it must be evicted from the cache

before handling the uncached request. In this state, the controller reads the stat memory to

check if the line is dirty.

• Uncached Write Request (e_uc_writeback_write_req): In this state, the controller iteratively

writes the cache line back to memory.

• Send Critical (e_send_critical): The controller moves to this state for any other request ­

cached load/store, uncached load, and atomic requests (uses the same datapath as uncached

requests to the cache). It fetches the critical word for cached requests or sends the uncached

load/atomic request to the memory.

• Read Request (e_read_req): The controller moves to this state if the line to be evicted is

clean; the controller iteratively fills the cache line.

• Writeback Evict (e_writeback_evict): If the line was dirty, the controller reads the data and

tag memory for the dirty data and tag.

• Writeback Read Request (e_uc_writeback_read_req): The controller iteratively reads the

memory to fill the cache line.

• Writeback Write Request (e_uc_writeback_write_req): The controller iteratively writes the

evicted line to memory.

5.2 Local Cache Engine (LCE)

The Local Cache Engine or the LCE is the default L1 cache controller in the BlackParrot multicore.

It can also function as the controller for a coherent accelerator cache. The LCE is responsible for

initiating the coherence requests and responding to coherence commands from the Cache Coherence

Engine (CCE) through the Bedrock cache coherence system. The CCE tracks the coherence state

of all the blocks maintained by all the LCEs in the system. Each CCE is responsible for a portion
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of the total physical address space. Figure 10 gives a simplistic view of the BlackParrot multicore

system.

Figure 10: Bedrock Network [15]

Bedrock consists of three networks that allow point­to­point communication between tiles on the

Bedrock network. The three networks are namely, Request, Command, and Response. The LCE

initiates a coherence request using the Request network and services any command from the CCE

through the Command network. Any responses to the CCE commands go via the Response network.

The three networks have the following priority

Response > Command > Request

to prevent deadlock (formally proven to be correct via CMurphi [23], a model checking algorithm

built on top ofMurphi from Stanford). Amessage from a low priority network can trigger amessage

on a high priority network but not the other way around. The Bedrock LCE­CCE interface fully

specifies the packet and command types supported by the interface.

The LCE does not currently support the iterative filling mechanism. However, downstream logic

serializes the data into packets before sending them over the network.
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Multicycle fill support in the LCE requires additional modifications to the CCE, a work in progress.

Figures 11 and 12 show the FSMs that handle requests and commands respectively. The command

FSM also triggers the required responses or other commands (e.g., cache to cache transfers).

Figure 11: LCE Request Controller

Each of the states of the request and command FSMs is explained briefly below. For the request

FSM ­

• Reset (e_reset): Initial state of the controller

• Ready (e_ready): The controller waits in this state to receive requests. The requests can

be cached loads/stores and uncached loads. Uncached stores are immediately sent out and

acknowledged.

• Send Cached Request (e_send_cached_req): The controller sends a request on the LCE re­

quest network for a cache line. While doing so, it also specifies if it requires exclusive access

to the line or otherwise.

• Send Uncached Request (e_send_uncached_req): The controller sends a request to load data

in uncached mode.
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Figure 12: LCE Command and Response Controller

For the command FSM ­

• Reset (e_reset): Initial state of the controller

• Clear (e_clear): Clears the cache tag and stat memories

• Ready (e_ready): The controller waits in this state for commands from the CCE. Table 10

shows the commands that could be received by the controller.

• Coherence Acknowledge (e_coh_ack): Send acknowledgements after receiving load data or

wakeup command.

• Cache to Cache Transfer (e_tr): Send an LCE command to another cache to transfer a cache

line. If the block was dirty and the state of the line is updated to ’Invalid’, then transfer

ownership to the other cache. Else, write the data back to the memory.

• Writeback Stat Mem Read (e_wb_stat_rd): Read the stat memory to check if the line is dirty

after cache to cache transfer.
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• Writeback (e_wb): If the data is clean, send a null response; otherwise, read the dirty data.

• Writeback Dirty Data Read (e_wb_dirty_rd): Reads the dirty data and tag from the cache

memories.

• Writeback Dirty Data Send (e_wb_dirty_send): Send the dirty data to the memory.

Command Description
Sync Register existence of LCE with CCE

Invalidate Invalidate a cache line
Set state Set cache line state
Load data Data in response to a load
Writeback Writes dirty data back to the memory while setting the state
Transfer Transfer data to another cache with optionally setting state and writeback

Table 10: LCE Command Types

For a more detailed description of the interface, its capabilities, and the Bedrock system in general,

refer to the Interface Specification and Bedrock Guide for BlackParrot [15].

5.3 P­Mesh Cache Engine (PCE)

OpenPiton’s Bring Your Own Core (BYOC) [24–26] is a cache­coherent manycore framework

designed to interact with processor cores of different ISAs and microarchitectures. In order to

provide a common medium of communication between the cores and decouple the core from the

memory system, the framework provides a standard interface called the Transaction Response In­

terface (TRI). Figure 13 illustrates the interface and the memory system. This interface handles

loads (both instruction and data), stores and atomic operation requests while forwarding invalida­

tions and responses from the coherence system to the cores. A core that integrates with this system

is only required to have an optional write­through L1 cache and a transducer to convert between

the core’s and the framework’s message and data types.

The P­Mesh Cache Engine (PCE) is the default L1 cache controller used for ParrotPiton, a system

that integrates BlackParrot into OpenPiton’s Bring Your Own Core framework. The PCE is respon­
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Figure 13: The Bring Your Own Core (BYOC) system with supported cores and peripherals [25]

sible for converting the BlackParrot standard interface messages into messages understood by the

TRI.

The BYOC framework uses an L1.5 inclusive write­back cache as the initial point of coherence.

This cache is a 4­way set associative and 8 KB big and has 16­byte cache lines. The L1.5 maintains

the cache lines from the L1 D$ and forwards the L1 I$ lines to the L2 memory. The L1.5 contains a

way map table that keeps track of the ways used in the L1 D$ and maps them to the ways occupied

in the L1.5, thereby presenting a uniform interface to the OpenPiton coherence system.

The OpenPiton memory system expects the core’s L1 D$ to be write­through and have the exact

specifications as the L1.5, i.e., 4­way, 8KB cache with 16­byte cache lines. The core’s L1 I$ is

expected to be 4­way, 16KB with 32­byte cache lines. The I$ organization has an exact match in

BlackParrot’s table of supported cache configurations (Table 1), but the D$ organization does not.

The next best D$ organization that partially resolves this mismatch is the 2­way, 8KB cache with

16­byte cache lines. This cache has twice as many indices and half as many ways as the L1.5. To

present the illusion of a 4­way cache, we divide the cache into four logical ways, mapped as shown

in Figure 14.

The conversion between BlackParrot D$’s way and index to the L1.5 way and index are summarised
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Figure 14: Way mapping in the PCE between L1 D$ (top) and L1.5 (bottom). The address bits
shown can be used to index into the logical ways in BlackParrot

in Tables 11 and 12.

Interface Request Address Request Way
L1→ PCE Address (40 bits) Way ID (1 bit)
PCE→ L1.5 {Address[39:4], 4’b0000} (40 bits) {Address [11], Way ID} (2 bits)

Table 11: Mapping L1 requests to the L1.5

Interface Response Index Response Way
L1.5 Responses

L1.5→ PCE
PCE→ L1 Request Address[11:4] (8 bits) Request Way ID (1 bit)

L1.5 Remote Invalidations
L1.5→ PCE Inv. Index (7 bits) Inv. Way ID (2 bits)
PCE→ L1 {Inv. Way ID[1], Inv. Address[11:0]} (8 bits) Inv. Way ID[0] (1 bit)

Table 12: Mapping L1.5 Responses and Invalidations to the L1

OpenPiton is a big­endian system, whereas BlackParrot is a little­endian core. Therefore, any

data transfers between the two systems should have their endianness swapped. The PCE is also

responsible for swapping the endianness of the data.
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The P­Mesh Cache Engine can handle the following operations ­

• Loads for both the I$s and D$.

• Write­through stores to the L1.5 D$.

• Forwarding arithmetic and LR/SC atomic operations to the L2 and receive the response.

• Uncached loads and stores.

• Remote invalidations from the OpenPiton coherence system.

Figure 15 shows the PCE’s control FSM. Note that the figure does not illustrate the invalidation

support because remote invalidations can coincide, and therefore cannot be captured by a dedicated

state(s) in the control FSM. The PCE can take invalidations irrespective of its current state. A FIFO

also orders the responses, and therefore, there will not be a condition where an invalidation and a

normal response arrive simultaneously, thereby losing one of the packets. The FSMs states are

briefly described below ­

• Reset (e_reset): The controller needs to wait for a reset interrupt from the L2 to move out of

this state.

• Clear (e_clear): Clears the cache tag and stat memories

• Ready (e_ready): The controller waits in this state for commands from the cache. Write­

through and uncached stores are forwarded to the L1.5 in this state.

• Uncached Store Wait (e_uc_store_wait): The controller waits for acknowledgment from the

memory system before proceeding further. Such a state is required to ensure non­idempotent

operations complete since these operations could be potentially reordered in the memory

system. Atomic operations that write to the zero register also behave the same way.

• Send Request (e_send_req): The controller sends a uncached load, cached load or an atomic

LR, SC or atomic op (AND, OR, XOR, ADD, SWAP, MAX(U), MIN(U)) requests in this

state.
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• Uncached Read Wait (e_uc_read_wait): The controller waits for an uncached load.

• Read Wait (e_read_wait): The controller waits for a cacheable load response.

• Atomic LR wait (e_amo_lr_wait): The controller waits for the load reserved operation to

complete.

• Atomic SC wait (e_amo_sc_wait): The controller waits for the store conditional operation

to complete.

• Atomic OP wait (e_amo_op_wait): The controller waits for the atomic op operation to com­

plete.

Figure 15: P­Mesh Cache Engine (PCE)
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6 Verification Strategy

A SystemVerilog testbench is used to verify the correct functioning of the cache. The testbench

uses BaseJumpSTL’s verification methodology called trace replay. The trace replay mechanism

is a synthesizable verification technique that allows the designer to execute test traces even after

taping out the chip.

The methodology uses a ROM that stores test traces. These traces embed in them an opcode that

controls the operation of the trace replay module. A trace replay module reads the ROMs’ traces

and uses the embedded opcode to execute the desired function. Some of the supported operations

include ­

• SEND: Send the trace as input to the Design Under Test (DUT).

• RECV: Receive output from the DUT and compare against the trace for correctness.

• WAIT: Wait for one cycle.

• CYCLEINIT: Initialize a cycle counter.

• CYCLEDEC: Decremement a cycle counter.

• DONE: End test

• FINISH: Finish simulation by calling $finish.

• NOP: No operation.

The D$ and the I$ have separate testbenches, but the D$ testbench is used to explain all the features.

Relevant parts of the core pipeline were emulated in the testbench to ensure the testing proceeds

under real operating conditions. Figure 16 shows the unicore testbench setup. Traces are written by

hand and loaded into the trace ROM. The traces contain D$ packet information, the physical tag, and

a bit to denote if the request is cached/uncached along with the opcode for the trace replay module.

The trace replay module fetches the traces from the ROM and enqueues requests into BlackParrot’s
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issue queue. The issue queue outputs one element per cycle unless there is a miss, in which case

it issues the trace that caused the miss until the miss resolves. The cache receives the packet and

operates as specified in Section 4.1. The physical tag and uncached bit are injected into the cache

after a single cycle to mimic the TLB and PMA modules in the core. The output FIFO is dequeued

at random time instants to create artificial backpressure. The trace replay module compares the

dequeued data against the expected value to check for functional correctness. The fake memory

can additionally use Verilog DRAM simulation models, which will be useful to check for timing

correctness. The handwritten traces are written to trigger specific conditions and were quite helpful

in identifying bugs when writing cache lines back to the memory.

Figure 16: Single core cache testbench

The same testbench was also extended to test the caches in a multicore environment. Multiple D$s

are arranged in a manner as shown in Figure 17. Each unit in this testbench (A unit consists of an

issue FIFO, the cache, its controller, along with the trace replay modules) runs the same predefined,

handwritten traces to trigger specific conditions.
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Figure 17: Multicore cache testbench
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7 Case Study: TinyParrot

The focus of this case study addresses the issue of having an accelerator core for a system despite

many pre­existing physical limitations. The efficient unicore strips away unnecessary multicore

components and saves area. A study was conducted to investigate the area occupied by the different

components of the core. BlackParrot was synthesized for an ASIC process node and an FPGA. The

area reports and utilization numbers revealed that the cache SRAMs and the downstream buffering

in the default BlackParrot configuration contributed significantly to the area.

This problemwas addressed with the contributions made in this thesis by switching to smaller cache

organizations and exploiting the iterative filling/eviction with sub­banking. With these area opti­

mizations in place, BlackParrot can scale to smaller sizes, thereby expanding the range of systems

that can use BlackParrot as a host core. The following sections present the synthesis results for a

45nm ASIC process node and an FPGA, along with any challenges that had to be overcome in this

exercise.

7.1 ASIC Synthesis

Bespoke Silicon Group has a well­established ASIC tool flow to convert SystemVerilog/Verilog

RTL to GDSII layout. BlackParrot with different cache organizations was synthesized using this

tool flow as a backbone and an open­source 45nm library, FreePDK45 [27]. The core BlackPar­

rot RTL along with the necessary changes (a combination of commit: c945954e7c and commit:

e5723c681a) for the different cache optimizations was merged and synthesized using a pre­existing

physical design methodology.
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7.1.1 Challenge(s)

Without any intervention, the synthesis tool converts memories into a 2­D array of flip flops. Flip

flops are huge gates requiring almost 20 transistors to realize them. The synthesis process that uses

flip flops as memory bit cells would also take a long time to finish with large memories. Therefore,

memory macros or black boxes generally replace flip­flop­based memories to enable faster synthe­

sis and occupy lower die area. A RAM generator is a tool that converts a memory specification

(depth of memory, width of memory) into a macro, made up of 6 transistor SRAM cells packed

together tightly along with any interface logic. The synthesis compiler takes as input these pre­

generated memory macros and other RTL to compile the design. The synthesis tool views these

memory macros as black boxes, thereby significantly saving compilation time. Additional opti­

mizations from BaseJumpSTL, such as width­banking and depth­banking, helped create smaller,

square memories optimized for area. For this case study, a RAM generator from the Bespoke Sil­

icon Group, bsg_fakeram was used to generate the different RAMs in the design. However, one

limitation of this RAM generator was that it could generate only single­ported memories. Black­

Parrot’s integer register file requires 1 write port and 2 read ports, while its floating­point register

file requires 1 write port and 3 read ports. BaseJumpSTL modules that realized n­read and 1­write

memories using 1­read and 1­write memories, partially solve the mismatch in the number of ports

required. A new BaseJumpSTLmodule was created to convert the 1R1W (dual port) memories to a

1RW (single port) memory that this RAM generator could generate. Figure 18 gives an illustration

of this design.

The key idea here is to use two 1RW memories of the exact specification as the 1R1W memory

and maintain an additional register for each element in the memory that tells where the next write

should go.
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Figure 18: Dual­ported memories using single­ported memories

7.1.2 Synthesis Results

With the necessary design optimizations in place and minor modifications to the synthesis flow,

area runs were conducted, and the results summarised. Figure 19 shows the area breakdown of a

single core BlackParrot, with different cache organizations. For each case, 64­byte, 32­byte, and

16­byte cache lines, respectively, and an 8­byte fill width were used.

7.2 FPGA Synthesis

A tool flow to synthesize BlackParrot using Xilinx Vivado for a specific FPGA target and simulate

the synthesized netlist using Synopsys®VCS was created. For the work presented in this thesis,

the FPGA utilization reports for BlackParrot with different cache organizations are generated using

the Vivado synthesis tool flow. The target FPGA was a Xilinx Artix­7 FPGA (XC7A200T) [28].
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Figure 19: Area breakdown of BlackParrot with different cache organizations in the FreePDK 45nm
process node. Note: BlackParrot is a continuously evolving processor core and the version used
for this assessment was accessed on Dec 2, 2020.

Table 13 summarises the utilization for BlackParrot with different cache configurations (commit:

708ae8fb76). For each case, 64­byte, 32­byte, and 16­byte cache lines, respectively, and an 8­byte

fill width were used.

Cache Organization LUTs Block RAMs (36Kb) DSP48 Flip Flops
32KB, 8­way 24752 (18.39%) 46.5 (12.74%) 11 (1.49%) 10402 (3.86%)
16KB, 4­way 22335 (16.59%) 26.5 (7.26%) 11 (1.49%) 8594 (3.19%)
8KB, 2­way 21231 (15.77%) 16.5 (4.52%) 11 (1.49%) 7681 (2.85%)

Table 13: FPGA Utilization breakdown of BlackParrot with different cache organizations. Note:
BlackParrot is a continuously evolving processor core and the version used for this assessment
was accessed on May 12, 2021.

BlackParrot is ASIC­optimized, and the utilization numbers shown in Table 13 is this ASIC­optimized

version of the core synthesized for an FPGA. By devoting more attention to mapping the core more

efficiently onto the FPGA, the utilization can be decreased further.

Moreover, the area utilization reports and the cost of Xilinx FPGAs indicated that users of the core
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would only have to spend $100 to buy an Artix­7 (XC7A50T) FPGA of which TinyParrot would

occupy approximately 50%, the rest of which could be used to fit in their own accelerator.

38



8 Case Study: HammerParrot

Traditionally, CPUs and GPUs (or similar manycore architectures) are separate chips on the moth­

erboard that communicate over sophisticated bus protocols like PCIe. This setup is advantageous

for the reasons listed below ­

• Integrated CPU and GPU chips usually favor the CPU and use the GPU as a tinier co­

processor typically weaker than a dedicated GPU. Dedicated chips have more space for more

processor cores or functionality.

• Dedicated GPU cards need high bandwidth channels to DRAM, which is not quite possible

on an integrated chip.

However, the problem with this approach is,

• Communication at the board level requires a sophisticated bus protocol which is typically

harder to set up and verify. PCIe is a popular choice for such a bus architecture which warrant

dedicated teams in large companies to ensure functionality. The number of PCIe experts is

even lower for open source and academic research projects.

• The bus protocol increases the latency of communication between the host CPU and the GPU.

• Dedicated chips for CPUs and GPUs provide higher performance at the expense of higher

power consumption.

HammerBlade (referred to as the manycore in short) [29] is a Tiled Manycore designed for ma­

chine learning and graph analytics workloads. It builds on the MIT RAW [30] processor and the

511 RISC­V core Celerity architecture [31]. High­level software written in PyTorch/GraphIt maps

their operations to the manycore hardware architecture using CUDA­lite and an intermediate repre­

sentation layer designed for HammerBlade [32]. The programmer uses the SPMD (Single Program
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Multiple Data) programming model to program the manycore. More information about the system

architecture will follow in later sections.

Like any other traditional host­accelerator setup, the HammerBlade manycore relied on an off­chip

x86 host CPU. Figure 20 shows the current setup that connects the host CPU and the HammerBlade

manycore.

Figure 20: HammerBlade with off­chip x86 host core

Previous comments on hosting accelerators and CPU and GPU integration concerns can be allevi­

ated by using an open­source, customizable host core like BlackParrot. It offers flexible integration

and benefits from being a tiny core that shares the same die area as the HammerBlade manycore.

The proximity provides the flexibility of adding scalable, specialized hardware modules that can

achieve peak system performance compared to complicated off­chip buses such as PCIe. This re­

sulting system is codenamed HammerParrot.
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8.1 HammerBlade System Architecture

The HammerBlade manycore is a sea of tiles connected by a 2­D mesh network. The tiles on the

network can be of three types ­ Compute, Accelerator, and Memory. Each tile, in addition, contains

an endpoint interface that manages communication with other tiles.

8.1.1 Compute Tile

The compute tile in the HammerBlade manycore consists of a 5­stage pipelined, 32­bit RISC­V

processor. The core supports integer, atomic, and control instructions, among others, and has a

floating­point unit. Refer to the HammerBlade GitHub repository [29] for a full list of supported

instructions. Figure 21 shows the compute tile’s core pipeline.

Figure 21: Compute tile core pipeline

Each processor core has an I$ and data memory. The I$ is a 1024 entry, direct­mapped cache, and

the data memory is a 4KB, single­ported memory that the core can use as a scratchpad. The data

memory maps to a portion of the global address space, which other tiles on the network can access.

The core pipeline is a standard 5­stage pipeline with some modifications that allow remote loads

and stores to memory locations on other compute tiles or the global memory.

8.1.2 Memory Tile

The memory tile is also called a Victim Cache (V$). It has a pipelined datapath with configurable

associativity and cache size, with each cache line being an integer multiple of 32­bit words. The

cache follows a write­back, write­allocate, and fetch on write policy. V$s are placed at the north,

41



or south sides of the compute array and are backed by high bandwidth DRAM. The DRAM space

is striped across V$s in a cache line granularity. There can be multiple rows of V$s on the north

and south side as well. In this case, the cache line is striped from the inner to the outer rows.

8.1.3 Accelerator Tile

Accelerator tiles are tiles that can be used as an accelerator. These tiles are expected to occupy

nodes to the east and west of the compute array and connect to the compute array via I/O routers.

BlackParrot will act as an “accelerator” to the manycore and be connected to the east (and possibly

west) of the manycore array. A later section (Section 8.2) will give more details about how this

connection will be made.

8.1.4 Networking and Addressing

Tiles are connected with a 2­D mesh network. There are two physical networks ­ One network is

used to send requests, and the other network is used to receive responses with routing algorithms

that avoid deadlock. HammerBlade uses a 32­bit Partitioned Global Address Space (PGAS) with

an efficient addressing scheme that clearly defines nodes on the network. The HammerBlade many­

core uses a packet mechanism to communicate between tiles and global memory on the network.

Each packet contains the necessary information to remotely carry out the desired operation, the

address, and the tile coordinates. Response packets contain sufficient information to identify the

request that originally generated it. More information on the network and addressing schemes used

in HammerBlade can be found in [29].

8.2 HammerParrot Hardware

Figure 20 shows the hardware modules required by an x86 core to host HammerBlade. Since

BlackParrot will share the same die as the manycore, complicated bus protocols such as PCIe are
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no longer required, and the manycore bridge is the only hardware module left to be designed.

The x86­HammerBlade bridge consists of FIFOs that the host core uses to send and receive data

to/from the manycore. As mentioned earlier, the x86­HammerBlade system is PCIe based, and

the PCIe protocol imposes strict response latency requirements, which, if not adhered to, causes

the entire system to hang. The FIFOs in the bridge help to adhere to these requirements. The

x86­HammerBlade bridge inspired the design of the HammerParrot manycore bridge.

8.2.1 Bridge FIFO Interface

The HammerParrot manycore bridge consists of the traditional host FIFO interface (like the x86­

HammerBlade bridge) that can be written to and read from, using memory­mapped stores and

loads, respectively. A request packet constructed in software is written to the host request FIFO

as a series of 32­bit stores. The host request FIFO is modeled as a SIPO on the BlackParrot side

while the HammerBlade response and request FIFOs are PISOs. 4 32­bit stores create a 128­bit

packet that can be sent over the network as a manycore request packet. The manycore enqueues

the responses to these requests in the host response FIFO and BlackParrot retrieves them using four

32­bit loads. A similar operation is performed when the host chooses to accept manycore requests.

The host, however, does not generate responses to requests from the manycore. A manycore packet

is sent/retrieved using four 32­bit stores/loads instead of 2 64­bit stores/loads or a single 128­bit

store/load because the host software API exposes a packet interface that renders manycore packets

as a 4­element array of 32­bit unsigned integers.

8.2.2 Bridge MMIO Interface

One of the downsides of the x86 host interface was the inability to map the manycore into its own

address space, thereby not being able to access any location on the manycore directly. The x86

host core, therefore, had to rely on software address translation and packet creation which incurs

an overhead of 100s of cycles and an additional overhead of 1000s of cycles for transmitting the
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packet over PCIe.

BlackParrot overcomes these shortcomings by having the flexibility to parameterize its physical

address space to map the whole of the manycore’s 32­bit address space, allowing BlackParrot to

access everything inside the manycore like any other compute or accelerator tile. Any BlackParrot

address (with the high bit set to denote it is a manycore MMIO request) is viewed as an endpoint

address and can be translated to an address and tile coordinates that uniquely identify the desired

resource. BlackParrot’s single­core uses a Bedrock interface to the manycore bridge. The many­

core bridge readily converts Bedrock messages into HammerBlade packets. Furthermore, since,

BlackParrot is on the same network as the manycore, the overhead of the PCIe bus is eliminated,

thereby creating an interface that achieves peak performance. The software only has to execute a

single instruction (i.e., load/store) to communicate with the manycore.

Direct access into the manycore address space requires extra care, however. BlackParrot’s con­

figurable address space allows it to access any address in the manycore address space. However,

performing loads and stores to these addresses can receive responses in a different order because of

network latency. Requests to tiles farther away from BlackParrot on the network will take longer to

return with a response, while requests to closer tiles might return with a response immediately. A

reorder FIFO from BaseJumpSTL was used to handle out­of­order responses from the manycore.

Any outgoing request reserves an ID in the reorder FIFO when it is sent to the manycore network.

Responses can return in any order and populate the corresponding entry in the FIFO. The reorder

FIFO signals that it has a valid packet at its output only when the earliest ID’s request returns with

a response. BlackParrot currently supports a configurable number of such requests to be in flight

at the same time.

8.2.3 System­level Address Maps

Documentation in the HammerBlade Github repository [29] defines in detail the addresses that map

to different compute and memory tiles and how to construct them. Since BlackParrot would like
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to embed the entire manycore address space into its own, BlackParrot’s address space is config­

ured to use 42­bits. The manycore is designated as an off­chip ASIC that can communicate with

BlackParrot by setting the high bits in BlackParrot’s address space. Table 14 shows the full address

map.

Address Use
11_1000_0000_0PPP_PPPP_PPPP_PPPP_PPPP_PPPP_PPPP_PPPP Manycore Bridge FIFO

00_0000_yyxx_1PPP_PPPP_PPPP_PPPP_PPPP_PPPP_PPPP_PPPP
Global DRAM banks.
yyxx denotes DRAM
coordinates.

10_yyy_XXXX_XXXPP_PPPP_PPPP_PPPP_PPPP_PPPP_PPPP_PP00 Victim cache (V$)
address + tags.
yyy denotes the V$’s Y
coordinate
(north/south).
XXXX_XXX denotes
the X coordinate

11_0000_00YY_YYYY_YXXX_XXXX_PPPP_PPPP_PPPP_PPPP_PP00 Compute Tiles
YY_YYYY denotes
the Y coordinate
XXX_XXXX denotes
the X coordinate

Table 14: HammerParrot Address Map

BlackParrot fulfills the traditional host interface by performing memory­mapped stores and loads

to the manycore bridge. Table 15 defines the different addresses in the manycore bridge that map

to different FIFOs.

8.2.4 Top­level integration

Each BlackParrot tile occupies three nodes on the manycore network. All three nodes together form

the manycore bridge. One node contains the host FIFO and MMIO interfaces and used as a means

for the BlackParrot core to make/receive requests and receive responses. In the HammerParrot
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Address Use
0x1000 Write to the host request FIFO
0x2000 Check for available host request credits
0x3000 Read from the manycore response FIFO
0x4000 Check for available entries in the manycore response FIFO
0x5000 Read from the manycore request FIFO
0x6000 Check for available entries in the manycore request FIFO

Table 15: HammerParrot Bridge FIFO address map

system, BlackParrot uses a 32KB, 8­way cache with 64­byte cache lines with a fill width of 8 bytes

which means every request to DRAM will be a 64­bit load/store. However, the manycore can only

support 32­bit fills. Therefore, every request from BlackParrot is split into two requests to the

manycore and injected into the network at two different nodes to handle this mismatch. When both

the split requests return with their responses, the splitter combines them and sends a single 64­bit

data packet back to BlackParrot. The additional two nodes are occupied to accommodate this setup.

Figure 22 shows the HammerParrot manycore bridge.

Figure 22: HammerParrot manycore bridge
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8.3 HammerParrot Software

8.3.1 HammerBlade­x86 Simulation Infrastructure

The HammerBlade software stack written in C/C++ is based on CUDA­lite hosted at [32]. The

library handles many things, including software­level address translation, sending and receiving

packets to the manycore hardware, writing and reading from tiles, creating tile groups and synchro­

nizing between tiles within a tile group, and allocating kernels to tile groups, and more. A system

would only have to implement a platform­specific API exposed by the library to run the CUDA­lite

host code. The API dictates how the platform communicates with the manycore and can be thought

of as a hardware abstraction layer that hides the underlying communication mechanism from higher

levels of software. However, this complicated software stack has only been compiled and tested

with an x86 host core running Linux and an Amazon EC2 F1 instance. Figure 23 shows how the

existing system was simulated using Synopsys VCS.

Figure 23: HammerBlade Simulation Infrastructure in VCS

The x86 host core executes CUDA­lite code until it needs to send/receive data to/from the many­

core. To send/receive data, the platform API uses a SystemVerilog Direct Programming Interface

(DPI) to communicate with hardware FIFOs. These FIFOs simulate the x86 manycore bridge that

connects and communicates with the manycore.
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8.3.2 Porting CUDA­lite to RISC­V

Replacing the x86 core with BlackParrot can proceed either by booting up Linux on BlackParrot in

simulation and running the CUDA­lite binary on top of Linux or running the binary in bare metal

mode. While the Linux route will emulate the final system, it is very time­consuming because it

takes many hours to a few days to boot Linux in BlackParrot in simulation. To run in bare metal

mode, the CUDA­lite library needed to be compiled using a lightweight implementation of the

standard C library called PanicRoom [33]. PanicRoom is a port of Newlib, a lightweight C library

for embedded systems, and some system calls for file I/O and a DRAM­based file system called

LittleFS. The CUDA­lite library was easy to port to PanicRoom save for a few missing libraries,

which were quickly resolved with help from experts. The next step was to then replace the x86

core in the simulation infrastructure with BlackParrot.

8.3.3 Software Validation using Dromajo HammerBlade

BlackParrot and HammerBlade are both continuously evolving machines. A direct integration

meant that if something goes wrong, one had to debug either the BlackParrot RTL, HammerBlade

RTL, or the software. To reduce this initial verification burden as well as to accelerate the software

porting effort, Dromajo [34], an open­source C++ reference model for a 64­bit RISC­V core from

Esperanto Technologies, was used. Dromajo is originally a RISC­V reference model used to verify

RTL correctness through RTL co­simulation. The BlackParrot project uses Dromajo extensively

to verify RTL correctness after every feature change. It works by executing each instruction when

the RTL commits an instruction and comparing results with the RTL. However, Dromajo can also

be used in a standalone mode which is exploited here.

Dromajo’s source code was modified to create the HammerParrot bridge in software to emulate the

HammerParrot set up as closely as possible. The Dromajo­HammerBlade bridge supports only the

traditional FIFO interface like the x86 system, and the MMIO support is a work in progress.
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8.3.4 Dromajo HammerBlade Simulation Infrastructure

Since Dromajo is still only a RISC­V software model, it cannot directly communicate with the hard­

ware running in the VCS simulation environment. Therefore, the packets from the Dromajo FIFOs

are communicated to the manycore hardware via the Direct Programming Interface like in the x86

case, which requires that the Dromajo source code be compiled with the VCS executable and an­

other x86 binary that interfaces between VCS and Dromajo through DPI. The x86 binary, in this

case, is called the “Simulator” (note: this is not VCS. Refer to Figure 23) that controls the many­

core clock. In this case, the Simulator will also execute N instructions in the Dromajo platform at

every manycore clock tick and poll the DPI interface for any request and response packets from the

manycore while transmitting any host request packets fromDromajo to the manycore. The platform

API also requires implementations for other functions that require polling the hardware directly for

data, such as the manycore configuration stored in a ROM (not mapped to the manycore address

space) or checking if the manycore has finished cycling through a reset or retrieving arguments

before calling main. Such requests are handled by sending and receiving packets to the Simulator,

which emulates the BlackParrot host that performs these operations. Figure 24 summarises this

whole setup.

Figure 24: Dromajo+HammerBlade Simulation Infrastructure in VCS

This cross­platform integration effort revealed many inconveniences in the HammerBlade simu­
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lation infrastructure. Therefore the Dromajo+HammerBlade integration was incredibly beneficial

for both projects and has set the stage for HammerParrot’s simulation infrastructure.
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9 Future Work

BlackParrot’s configurability has significantly improved with the work presented in this thesis;

however, there is still work pending. Optimizations to the cache such as iterative cache line fill­

ing/eviction and sub­banking have certainly created a means for BlackParrot to transfer data in

smaller chunks. However, the core continues to remain stalled during the fill/eviction, contributing

to an increase in the miss latency of the cache. Techniques such as critical word first can reduce

this performance penalty. BlackParrot needs to support true critical word first in its caches, rather

than the rudimentary version that is currently used. Some important questions to consider here are

• How to safely restart the core?

• How to handle the contention for the cache memories for an ongoing fill and core access?

• How to handle the case when the core tries to query a portion of the cache line being filled?

TinyParrot allows single­core BlackParrot to scale in size by modifying the cache organization.

While this offers area and power benefits, performance takes a hit. An in­depth analysis of the

system’s performance under real working conditions in its tiny configuration is necessary to un­

derstand the magnitude of the penalty. However, given that the tiny system has a smaller cache,

analyzing the cache access patterns in real workloads might be sufficient. Some high­impact solu­

tions in this space include making the cache non­blocking and adding the necessary support in the

controllers, which requires careful modifications to the core and crucial decisions, such as if the

cache will support hit­under­miss or miss­under­miss. A more straightforward solution that might

work from the start is increasing the TLB size to get better performance on virtual memory work­

loads. A simple configuration change in BlackParrot for the TLB size, could provides a significant

impact since most of the time is spent walking page tables in an actual VM workload.

With so many modifications required in the cache, a better testbench is also required. The current

testbench does not support randomized testing and requires designer intervention to create directed
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tests and place their results in the trace ROM. An upgrade to the testbench will include constrained

random testing, a more sophisticated and automated self­checking mechanism, and coverage analy­

sis to test the cache pipeline more thoroughly. The multicore cache testbench also needs test traces

that generate interactions between the different caches to check the memory consistency model.

BlackParrot’s overall system performance in the HammerParrot system can be improved further

with the cache optimizations mentioned above. A repeat of the TinyParrot case study also needs

to be conducted to understand the position of BlackParrot in ASIC and FPGA environments and

iterate further to achieve the required area efficiency with a minimal performance penalty.
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10 Conclusion

The work presented in this thesis optimizes BlackParrot for integration into accelerator­centric sys­

tems by improving its configurability. The standardized cache interface and the iterative filling

mechanism jointly contribute towards making the core tinier to fit on low­cost FPGAs or occupy

much less silicon area. The standard interface also allowsBlackParrot to plug into different environ­

ments with minimal overhead. Furthermore, its configurable address space and the standard inter­

face create an opportunity to reuse pre­existing components to achieve a scalable, high­performance

connection to a tiled manycore architecture.

BlackParrot is currently being ported to diverse FPGA architectures, and the HammerParrot system

will be taped out soon using the Global Foundries 14nm process node. With a few more optimiza­

tions in place to achieve the best performance possible, only integrating BlackParrot with more

standalone accelerators or into more accelerator SoCs will remain, bringing it one step closer to

achieving the goal of becoming the default accelerator host multicore in state­of­the­art SoCs.
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