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Abstract
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Computer Science and Engineering

Michael Bedford Taylor
Computer Science and Engineering

Deep learning has revolutionized speech and audio processing, bringing a step change in the state-of-
the-art for tasks such as speech recognition, speech separation, and audio event detection. However, these
developments have mainly focused on offline processing of speech and audio, with limited emphasis on
applications involving very low lookahead waveform-to-waveform transformations. My research tackles
two classes of such problems on opposite ends of the spectrum regarding latency requirements and problem
complexity.

At the lower end of latency tolerance, we propose semantic hearing, a set of methods for semantically
customizing one’s perceived acoustic environment, requiring signal-level understanding with a latency as
low as 20 milliseconds between an output audio chunk and the corresponding input chunk. On the other
end, we developed spoken language models that enable full-duplex voice interaction, requiring human-
level understanding of real-time spoken dialogues. Furthermore, we investigate modeling with raw acoustic
representations of input speech, in contrast to prevalent speech representations referred to as semantic units.
We show that understanding acoustic representations improves the robustness of spoken dialogue models in

noisy scenarios where interfering speech is present.
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Chapter 1

Introduction

Like with many challenging problems in vision and text domains, deep learning has produced ground-
breaking results in speech and audio processing. Speech recognition with has seen tremendous break-
throughs using neural networks with supervised |Graves et al. [2006]; Hannun et al.| [2014], self-supervised
Baevski et al.| [2020] and with weakly supervised Radford et al|[2023]] methods. On the other hand, deep
learning has made advances in text-to-speech to such an extent now that the generated voice is indistinguish-
able from natural human voice |Le et al.|[2023]]; [Wang et al.|[2023a]. Neural networks have been shown to

be very effective in sound classification and sound event detection Mesaros et al.|[2018a, [2019] as well.

A special class of audio tasks involve audio transformations, where both the input and the output are
audio waveforms. This includes tasks such as blind source separation Hershey et al.|[2016]; |[Luo and Mes-
garani| [[2019b]); [Défossez et al. [2021]], target source extraction [Delcroix et al.| [2022b]; /molikova et al.
[2019]] and speech-to-speech translation Barrault et al.| [2023]]; Jia et al.| [2019]. Audio transformations can
be categorized as causal or non-causal transformations depending on the temporal relationship between input
and output waveforms. Causal audio transformations assume a common time frame of reference between
input and output, and a result, at any point in time output signal can only depend on input signal until that
point in time. Because, in a shared time frame of reference future audio samples do not exist, with respect
to the current time step in the output signal. Examples of tasks involving non-causal transformations are au-
dio summarization He et al.| [1999], audio editing |Wang et al.|[2023c]|, offline transcription and translation

Radford et al.|[2023]]. Whereas noise cancellation, streaming speech-to-speech translation and LLM-user
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Figure 1.1: Audio transformations are audio processing tasks where both input and output are audio signals.
A step change in performance as deep learning methods became popular.

voice interactions ar examples of causal audio transformations. Deep learning has achieved exceptional re-

sults in non-causal versions of these tasks [Chen et al. [2023]; Barrault et al.| [2023]). Figure [I.T] shows the

performance improvement in speech separation over time with a metric equivalent to signal-to-noise ration,

so higher is better. we can notice the jump in performance around the time deep learning started to become
the method of choice.

Similar growth has not been seen in an important class of audio transformations that can be classified
as real-time audio transformations. A key characteristic of real-time audio transformations is, input and
output audio share the same exact time frame of reference. Unlike offline audio processing tasks where only
the scale of time axis has to be preserved, here the shift in time axis has to be preserved as well and any
shift in the time axis caused by our model would perceived as latency by the user. Shared time frame of
reference has two interesting consequences in the relation between input and output audio signals: causality

and equality in duration.

* Causality: Output at any timestep can only depend on input until that timestep as in a real-time setting,

input beyond the current timestep does not exist.

* Equality in duration: Input and output audio signals would have exactly the same length because at any
point in time, both input and output signals would have elapsed same amount of time in the shared time

frame of reference.
Real-time audio transformations have some important applications. As shown in figure[I.2} in the very
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Figure 1.2: Applications of real-time transformations with different latency constraints and complexity.
This report details methods for two classes of such real-time audio applications on the opposite ends of the
spectrum.

low-latency regime, we have applications like noise-cancellation, hearing aids and enhanced hearing. And
applications with relatively looser latency constraints, but significantly more complex are speech-to-speech
translation and voice assistants. This report first presents several methods proposes for capabilities col-
lectively referred to as semantic hearing |Veluri et al.| [2023alc, [2024a]]. Semantic hearing systems allow
us program acoustic scenes in real-time, giving users the ability to chose what they want to hear in a live
acoustic environment. Models developed for these tasks are intended to be deployed on wearable headsets
and have the potential to both improve the quality of life for people with hearing disabilities as well as give
us some hearing abilities we do not inherently possess. The following chapter discusses methods for de-
veloping full-duplex voice agents that require high-level understanding of human conversations Veluri et al.
[2024b|. Finally, we investigate a key limitation in spoken language models trained with semantic speech
representations that are speaker invariant [Hsu et al.| [2021]]; [Liu et al| [2023]]. These representations treat
all speech uniformly, including background speech interference. This makes it challenging for the dialogue
model to distinguish the speaker it should listen to, from the interfering speaker. We show that in real-
world situations where there is interfering speech, spoken dialogue models trained to understand acoustic

representations are more robust to noisy speech.
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Chapter 2

Semantic Hearing

Imagine you are in a park with pleasant sounds of birds chirping, but also cacophony of a nearby construction
site, or you’re in a busy restaurant trying to talk to the person before you, or you are walking in a busy
street with mostly traffic noise, but also important sounds like car honks and emergency sirens. In all
these scenarios, our brain is working hard to focus on the sounds or speech of interest while ignoring the
interfering sounds [Jafari et al. [2019]. Wouldn’t it be nice to have a device extract the sounds of interest and
reduce the cognitive load for us? This chapter discusses several techniques towards achieving the above set
of capabilities, collectively referred to as semantic hearing. Semantic hearing systems are intended to be
deployed on hearable devices that enables them to, in real-time, focus on, or ignore, specific sounds from

real-world environments, while also preserving the spatial cues.

This task involves extracting an audio component from a given audio mixture in a streaming fashion.
Several deep learning methods have been proposed for similar tasks |Ochiai et al.|[2020]];[Luo and Mesgarani
[2019b|; |Libera et al.| [2024], but they only do offline processing and do not demonstrate real-time streaming
capabilities. In particular, the prior works need access to a large block (> 1 s) of audio samples. In contrast,
real-time streaming applications impose significant algorithmic and computational constraints, requiring
networks to operate on small blocks (< 10 ms) with a limited number of lookahead samples for each block.
To address this, we propose the first real-time binaural neural network for target sound extraction [Veluri

et al.| [2023alc].

We then propose methods to extend the capabilities of above system to also provide the user with the
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Figure 2.1: Semantic hearing applications. a) Users wearing binaural headsets can attend to speech while
blocking out only the vacuum cleaner noise, b) block out street chatter and focus on the sounds of birds
chirping, c¢) block out construction noise yet hear car honks, and d) a meditating user could use headsets to
block out traffic noise outside yet hear alarm clock sounds.

ability to chose which person they want to hear, in a noisy environment. We refer to this capabilty as target
speech hearing. But unlike with the target sound extraction, where everyone has a consistent set of sounds
they might want to hear (door knocks, car honks etc.), each user might want to different set of people, and
as result in is impractical to bake in target speaker’s voice characteristics into the neural network weights.
This create a unique user interface problem with no trivial way for the user let the system know who they
want to hear. We propose a novel method of using headset wearer’s gaze as cue for the target speech hearing
system. Finally, we discuss how we could train target sound extraction and target speech hearing models to
generalize to different acoustic environement and wearers.

We first start with an overview of related work, then describe our system requirements, and then present
the network architecture we use for real-time binaural target sound extraction on smartphones. Next, we

present our training methodology that generalizes our design to real-world use.

2.1 Background

Over the last decade, noise-canceling headsets and earbuds have undergone significant improvements, which
now allow for more effective attenuation of all sounds in the environment. In fact, our experiments, where
we play white noise to a human subject wearing a pair of Sony WH-1000XM4 headphones, show the im-
pressive attenuation capabilities of these modern systems (Fig. 2.2). We identify this as an opportunity that
provides us with an acoustic clean slate to introduce back target binaural sounds of interest from the envi-
ronment. To the best of our knowledge, none of the prior work has explored semantic hearing capabilities
for hearables. In the rest of this section, we describe related work in hearable systems, signal processing and

machine learning for audio, and interaction tools.
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Figure 2.2: Noise reduction achieved with Sony WH-1000XM4 headphones — with and without active noise
cancellation turned on — measured using an in-ear microphone inside the headphone cup. The reduction
is measured relative to a microphone recording outside the ear cup. The spuriously large values at low
frequencies (< 100 Hz) are due to the in-ear microphones picking up the wearer’s blood pulse.

Active noise cancellation and acoustic transparency. Active noise cancellation is a well-studied prob-
lem where outward-facing microphones are used to capture sounds Shen et al.| [2018]]. An anti-noise signal
is then transmitted to cancel all the external sounds and noise, which has more stringent delay requirements
than semantic hearing. Traditional noise cancellation systems required bulky headsets. However in recent
years lightweight in-ear earbud systems like the AirPods Pro can achieve reasonable noise-cancellation in

many practical scenarios [air| [2023]. Semantic hearing leverages noise-cancelling earphones to cancel all

sounds and then uses the mechanisms in this paper to program acoustic scenes in real-time.

The acoustic transparency mode for in-ear devices tries to imitate the sound response of an open-ear sys-
tem by transmitting the appropriate signals into the ear canal Jin et al.|[2022]]. Like active noise cancellation,
this is agnostic to the sound classes. Adaptive transparency on Apple airpods is designed to automatically
reduce the amplitude of loud sounds jadal [2023]]. While related, this does not allow the user to pick and

choose which sound classes to hear.

Speech systems. Prior systems have predominantly focused on improving the performance of speech-
related tasks for in-ear devices (e.g., Airpods), telephony (e.g., Microsoft Teams), and voice assistants (e.g.,
Google Home). This includes speech enhancement |Chatterjee et al.| [2022]]; McDonnell et al.[[2023]], target
speech extraction |[Eskimez et al.| [2022]]; Giri et al.| [2021]], and speech separation |[Subakan et al.|[2021]];[Luo
et al.| [2022]. Oftentimes, these systems collectively regard all non-speech sounds just as noise. In contrast,
semantic hearing requires understanding the semantics of various natural and artificial sounds in real-time,

in the presence of interfering sounds, and determining which sounds to allow and which to block, based on
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user input. Speech is one amongst many other sound classes in our system.

Neural networks for target sound extraction. Target sound extraction is the task of separating one
or a limited number of target sounds from a mixture of sounds. Compared with speech systems, this is an
underexplored problem in the audio machine learning community. However recent works have proposed
neural networks that can achieve target sound extraction where clues about the target sound are provided
either via audio |Delcroix et al.| [2022al]; (Gfeller et al.| [2021]], images |Gao and Grauman| [2019]; | Xu et al.
[2019]], text|Kilgour et al.| [2022]]; |Liu et al.| [2022]], onomatopoeic words |Okamoto et al.|[2022], or a one-hot
vectors [Ochiai et al.| [2020]. All these models are designed for offline processing of audio clips, where the
neural network has access to the entire audio file (> 1 s) and hence cannot support our real-time hearable

use-case.

The closest related work is our recent research on Waveformer Veluri et al.| [2023b]], which introduces a
neural network architecture for target sound extraction. Waveformer was shown to run in real-time on a desk-
top computer. Our work differs from Veluri et al.| [2023b] in two important dimensions. First, Waveformer
is a single-channel model that operates on a single microphone. In contrast, our target use-case requires
binaural processing across the two ears. Second, all prior work in this domain was evaluated on synthetic
datasets and has not been demonstrated on hardware in real-world scenarios. In contrast, we present the first
binaural target sound extraction system that can run in real-time on smartphones. We designed a training

methodology that allows our system to generalize to unseen indoor and outdoor real-world environments.

Hearable applications. Recent work has used in-ear sensors for health applications [Bui et al.| [2021]];
Chan et al.[[2019,2022] and activity tracking|Ma et al.|[2021]]; Prakash et al.| [2020]. Prior work has also ex-
plored various interaction modalities like ultrasound sensing Wang et al.|[2022b] and on-face interaction |Xu
et al.| [2020] for in-ear devices. The closest to our work is Clearbuds [Chatterjee et al.| [2022], which fo-
cuses on the task of enhancing the speech of the wearer using synchronized audio signals from two wireless
earbuds. This prior work is focused on speech enhancement and is complementary to our system. Further,
since the target application for Chatterjee et al.|[2022]] is telephony, it uses a 44.8 ms lookahead and has a

latency of 109 ms.

Audio-based tools. Prior work has explored the use of sounds |Yatani and Truong| [2012]; [Lu et al.

[2009]]; Mollyn et al. [2022]; [Laput et al.| [2018]]; Tonami et al.| [2022]; [Jain et al.| [2020bla] to perform
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Figure 2.3: System requirements. Different components that contribute to latency in binaural target sound
extraction.

activity recognition for wearables and smart home applications. These systems operate on around 1s audio
chunks as the target use cases do not have the O(10 ms) latency requirements of in-ear audio applications.
Prior work has also designed interaction tools for audio editing Rubin et al.| [2013]]; Pavel et al.| [2020]]. Our
work is complementary in that it is focused on in-ear audio applications and semantic hearing that has more

stringent latency requirements.

2.2 System Requirements

The goal of our design is to program the acoustic environment with imperceptible latency such that the
target sound of interest is present but all other interfering sounds are suppressed. Given the stringent latency
constraints, we cannot perform the necessary computation in the cloud but have to operate in real-time using
computationally constrained devices like smartphones. Further, the target sounds generated by the model
must originate from the same spatial directions as the real-world target sounds. Thus, our design must meet

two key requirements: 1) real-time low-latency operation, and 2) binaural real-world generalization.

Real-time low-latency operation. Fig. [2.3] shows the different components that contribute to end-to-end
latency in binaural acoustic processing systems. The first step is to feed the sound signals into two memory
buffers of the binaural microphones. The acoustic data from the two microphones in each block is then fed
into our neural network that outputs a block-length worth of binaural target sound data. This binaural output
is then played back through the two speakers on the headset.

To ensure that the audio played through the headset is synced with the user’s visual senses, we need

this end-to-end latency to be less than 20-50 ms [Stone and Moore| [[1999]; |Gupta et al.| [2020]; Wang et al.
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[2022a]]. To achieve this, we need to reduce the buffer duration, the look-ahead duration and the processing
time. This is challenging for multiple reasons. 1) A small buffer duration of say 10 ms means that the
algorithm has only an 10 ms block of current data to not only understand the semantics of the acoustic scene
but also separate the target sound from other interfering sounds. While we can use the acoustic signals
that arrived prior to the current block, many of our target sounds (e.g., door knocks) are not continuous.
Reducing the buffer size even further to say 2 ms can be challenging from an operating system perspective
since it can increase the number of system calls. 2) While a large lookahead can provide more context for
the neural network to extract the target sounds, meeting our end-to-end latency requirement reduces the
leeway we have in terms of the available lookahead to a few milliseconds. 3) Real-time operation requires
processing each acoustic block within the duration of the block itself. This means that it should take less than
10 ms to process a 10 ms buffer|Wang et al.|[2022a]]. This can be challenging since neural networks are not
known for their lightweight computation. Further, since we cannot send the data to the cloud, the processing
must be performed on-device on computationally-constrained devices like smartphones. In addition to all
the above constraints, the operating systems also has I/O delays which for audio on iOS is on the order of

4 ms, depending on the buffer size [ios|[2023]].

Binaural real-world generalization. In real life, the target sounds experience reverberations and multipath
propagation due to reflections from walls and other objects in the environment. Further, the human head
and torso reflect and obstruct sounds. As a result the target sound arrives with different amplitudes and
delays at the two ears. The differences in the received sounds across the two ears provide spatial awareness
to humans. Thus, it is critical in our design to preserve these differences and play the target sounds with
different amplitudes and delays through the two speakers of the headset. This is challenging since the target
and interfering sounds can be at different positions and experience different reverberations and reflections
from the head-related transfer function. Further, the multipath effects and reverberations are difficult to
predict in real-world environments, let alone the fact that the head-related transfer functions can change

acCross wearers.
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2.3 Real-time target sound extraction

Humans are exceptionally adept at attending their auditory focus to specific sounds even in a noisy envi-
ronment [Ochiai et al.|[2020]]. Recent works that aim to create a computational equivalent of this human
capability formulate this problem as target sound extraction (Ochiai et al.| [2020]]; |[Delcroix et al.| [2021],
2022al|. The goal is to extract sound signals of interest from a mixture of various overlapping sounds, given
clues which provide information about the target sound class such as embeddings of a one-hot label |Ochiai
et al.|[2020], audio clipsDelcroix et al.| [2022a]];|(Gfeller et al.|[2021]], and images |Gao and Grauman|[2019];
Xu et al.| [2019]. Streaming target sound extraction could enable real-time intelligent acoustic applications
for headphones, hearing aids and telephony by filtering out undesired sounds from the environment (e.g.,

traffic) and presenting only sounds of interest to the user (e.g., sirens).

Recent works on target sound extraction have shown promising performance even for mixtures contain-
ing a large number of sound classes [Ochiai et al.| [2020]. However, none of these prior works demonstrate
real-time streaming capabilities. In particular, the prior works for this task are based on non-streaming mod-
els and designed for offline processing, where the neural network has access to a large block (> 1 s) of audio
samples Ochiai et al.| [2020]. In contrast, real-time streaming applications impose significant algorithmic
and computational constraints, requiring networks to operate on small blocks (< 10 ms) with a limited num-
ber of lookahead samples for each block. All these factors can significantly degrade the performance Luo

and Mesgarani| [2019a].

In this paper, we present the first deep learning method to perform target sound extraction in a stream-
ing manner. Fig. 2.4]shows Waveformer, our encoder-decoder architecture where the encoder is a stack of
dilated causal convolution (DCC) layers and the decoder is a transformer decoder Vaswani et al. [2017][]
Our intuition is that much of the complexity in prior models comes with processing large receptive fields,
especially at high sampling rates. For example, recent transformer based architectures proposed for speech
separation Subakan et al.| [2022]; |Luo et al.|[2022] implement chunk-based processing, where each chunk
independently attends to all the chunks in the receptive field. Thus, to achieve a receptive field of length R,

for each chunk, these models have an O(R) computational complexity. Instead, since DCC layers have a

"We call our network, Waveformer, since it uses an hybrid architecture with the causal convolution layers, common in WaveNet
Oord et al.| [2016] based architectures, as the encoder and a transformer as the decoder.
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complexity of O(log R) for achieving the same amount of receptive field (, we use a stack of DCC
layers as the encoder that processes the receptive field. We then use the decoder layer of the transformer
architecture [Vaswani et al.|[2017]] as our model’s decoder. We leverage the memory—target paradigm of
the transformer decoder, where the query-conditioned encoder’s output is considered as the transformer
decoder’s ‘target’ and the unconditioned encoder’s output is considered as the transformer decoder’s ‘mem-
ory’. Using self-attention on the ‘target’ followed by cross-attention between the ‘target’ and ‘memory,” the
decoder generates the mask for extracting the specified target sound to produce the output signal.

To evaluate our network architecture, we implement a causal version of Conv-TasNet and a streaming
version of ReSepformer[Subakan et al.|[2022]] for the task of streaming target sound extraction. Evaluations
show that our hybrid network architecture achieves state-of-the-art performance for this task. Further, the
smallest and largest versions of our model have real-time factors (RTFs) of 0.66 and 0.94, respectively, on
a consumer-grade CPU, demonstrating the real-time target sound extraction capability. This is shown to
be faster than the two representative prior models while outperforming them in terms of the output signal

quality.

2.3.1 Related work

Universal sound separation. The task here is to decompose a mixture of arbitrary sound types into their
component sounds, regardless of the number of sounds in the mixture Kavalerov et al.|[2019]. This becomes
increasingly challenging as the number of possible sound types in the mixture increases. Several networks
have been proposed for this task including convolutional long short-term memory networks Kavalerov et al.
[2019]], time-dilated convolution networks|Kavalerov et al.[[2019]] based on Conv-TasNetLuo and Mesgarani
[2019a]], and transformer networks [Zadeh et al.| [2019]. Prior work also proposed the use of embeddings
learnt by a sound classifier trained on a large sound ontology (Gemmeke et al.| [2017b]] for conditioning a

separation network.

Target sound extraction. This aims at separating one or a limited number of sounds of interest from a
mixture by conditioning a source-separation model with query information or clues about the target sound.
This approach can circumvent the challenge of universal sound separation struggling to deal with a mix-

ture of a large number of sounds. The clues may be provided as an embedding of an audio clip Delcroix
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Figure 2.4: Waveformer architecture. Streaming inference demonstrated using an example input mixture
segment of length 4L samples, corresponding to a chunk length K = 4. The query is a one-hot or a multi-
hot label encoding. The Dilated Causal Convolution (DCC) encoder encodes the input chunk y using the
context computed from the receptive field. The transformer decoder computes the target mask by attending
to current and previous encoded chunks.

et al.| [2022a]; \Gfeller et al.|[2021]], an image |Gao and Grauman| [2019]]; Xu et al.|[2019], natural language
text[Kilgour et al.|[2022]; Liu et al.| [2022], onomatopoeic words (Okamoto et al.|[2022], or a one-hot sound
label vector|Ochiai et al.| [2020]. The prior works Kong et al.|[2020];|Chen et al.|[2022] have also evaluated
the use of a sound event detector to detect the time when the target sound occurs in a mixture. Although,
these works are often motivated for practical usage [Liu et al.| [2022]; |Ochiai et al.| [2020]], none of them
use streaming models. In contrast, we design the first streaming network for target sound extraction using

attention.

Speech-specific networks. Prior work has also focused on speech enhancement Wisdom et al. [2019]; Es-
kimez et al.|[2022]; Chatterjee et al.|[2022], speech separation|Luo and Mesgarani|[2019al; Luo et al.|[2020];
Huang et al.|[2014]]; Hershey et al.| [2016]]; Isik et al.| [2016]; [Yu et al.|[2017]];/Wang et al.| [2018]] and speech
selection using clues provided to the network Tzinis et al.[[2022]; Ephrat et al.| [2018]]; [Wang et al.|[2022a].
For speech enhancement, neural networks have been proposed |[Eskimez et al.| [2022] to realize real-time

operation. Recently, efficient transformer based architectures have been proposed for speech recognition
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and separation tasks [Subakan et al.|[2021]]; [Luo et al.| [2022]; |Gulati et al.| [2020]. These method either use
standard transformer blocks [Subakan et al.| [2022]] or convolution augmented transformer blocks |Luo et al.
[2022[]; \Gulati et al.|[2020]]. In contrast, we use DCC layers to process the receptive field and a transformer
decoder for generating the target mask for sound extraction. Recent work on ReSepformer Subakan et al.

[2022]] proposed a causal mode for their transformer method, which we use for our baseline comparisons.

2.3.2 Waveformer Architecture

We process individual audio chunks of duration 7 seconds. For streaming, we need to operate at chunk
level: an output chunk can depend on the current and past chunks. Thus, streaming models have an intrinsic
latency equal to the duration of a single chunk. In real-time practical systems, it is desirable that this
latency is on the order of 10 ms Sunohara et al.[[2017]. Fig. @] shows our proposed time-domain model
architecture, which employs an encoder-decoder based mask generation network to generate an element-
wise multiplicative mask in the latent space. Let z;, € R° denote the current input audio chunk, where
S = 7F; is the number of audio samples included in the current chunk with a sampling rate of F,. In
the first step, a 1D-convolution layer with stride L and kernel size 3L is applied to the input audio chunk

x), to obtain the latent space representation, y;, € RE*X

, where F is the latent space feature dimensions
and K = % is the feature sequence length in the latent space. Setting the kernel size to 3L and stride to
L requires an overlap of L samples with the previous and the future chunk, resulting in a lookahead of L
samples. In our experiments, we set L = 32 samples at 44.1 kHz. This results in a lookahead of around
0.73 ms, which is negligible. Given a one-hot or multi-hot query vector ¢ € {0, 1}"Ve, where N, is the total
number of classes, streaming target sound extraction is achieved by computing feature masks m;, € RF*K,

With the mask generation network and element-wise multiplication denoted as M and ®, respectively, the

target sound signal, Z;, € RS, is computed as:

yr =Convld(zy), mi = M(yk | Yk—1,--,¥2,91,9)

2, =ConvTransposeld(yr ® my).
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2.3.3 Dilated causal convolution encoder

Our encoder is a stack of dilated causal convolution (DCC) layers |Oord et al.| [2016], and the decoder is
a transformer network [Vaswani et al.| [2017]]. The motivation for such an architecture is that the encoder
computes a contextful representation of the input chunk, considering the previous chunks up to a certain
receptive field, and the decoder conditions the encoder output with the query vector to estimate the target
mask. While recent transformer models for speech separation|Subakan et al.|[2021}2022] have demonstrated
performance gains over convolution based methods [Luo and Mesgarani| [2019a]], the latter have generally

been more computationally efficient.

We attribute this efficiency gap to the difference in the way existing transformer models process the
receptive field compared to convolution based architectures. To achieve a receptive field of length R, given
the chunk based processing in existing transformer architectures, each chunk individually attends to all
previous chunks in the receptive field resulting in O(R) complexity. In contrast, convolution based models
Oord et al| [2016]]; |ILuo and Mesgarani [2019a] using a stack of M DCC layers with kernel size P and
exponentially scaling dilation factors {2°,2' 22 ... 2M~11 have a receptive field of (P — 1) - (2™ — 1).
Its complexity is O(PM). With a small kernel size P, the computational complexity of the stacked DCC

layers is O(P - log (1 + %)) ~ O(log R) for it to have a receptive field of length R.

We use 10 DCC layers with a kernel size of 3 and dilation factors {2°,2!,22 ..., 21911 in our encoder,
resulting in a receptive field of (3 — 1) - (2!° — 1) = 2046 samples in the latent space. With the initial
input convolution stride L set to 0.73 ms, our encoder’s receptive field is ~ 1.5s. Fig. [2.4] (b) shows an
encoding of an input chunk of length 4. For chunk based streaming inference, the encoder maintains a
context buffer for each DCC layer. This context is initially computed from the 1s receptive field, and then
updated dynamically after encoding each subsequent chunk. For encoding a chunk, each DCC layer is fed
with the output chunk of the previous layer, left padded with the context of length twice the layer’s dilation.
After encoding a chunk, the context is updated with the rightmost elements of the padded input for it to
be used in encoding the next chunk. For each input chunk gy, the DCC encoder computes an encoded

representation, e, € RE*K,
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Table 2.1: Performance for the single-target extraction task. In our model, £ and D correspond to encoder
and decoder dimensionalities, respectively. RTF is the real-time factor for a consumer CPU.

Model Model size RTF SI-SNRi
Conv-TasNet 4.57TM 1.34 6.14
ReSepformer 13.24M 1.60 7.26

Ours (B =256; D =128) 1.1IOM  0.66  9.02
Ours (E = 256; D =256) 1.6OM 075  9.40
Ours (B =512; D=128) 329M 088 9.6
Ours (E =512; D=256) 3.88M 094  9.43

2.3.4 Query-conditioned transformer decoder

To get the mask, the encoded representation computed above must be conditioned with the query, q. To
this end, we first compute an embedding, | € RF*!, corresponding to g. This is achieved by using an
embedding layer comprising three 512-dimensional feed-forward sub-layers with an Nc-dimensional input
and an F-dimensional output. Our transformer decoder conditions the encoded chunk e; with the query

embedding ! and derives the mask as follows.

Fig. [2.4] (c) shows our decoder architecture. First, we perform multiplicative query integration [Ochiai
et al| [2020]; Delcroix et al|[2022a] to compute the conditioned representation: e, = e @ . Since
transformers are more computationally expensive with higher dimensionality, we first project the encoded
representations, e’ and ey, to the decoder dimensions D < E with 1 x 1 convolution. This results in
projected encoded representations, pey, pe,’ € RP>*X. The decoded representations are then computed by
passing pey, pe,,’ to the transformer decoder layer’s self-attention and cross-attention blocks, respectively,
to obtain target mask pm,, € RP*¥ in the projected decoder space. It is then projected back to the encoder
dimensions with another 1 x 1 convolution layer to obtain m;,’ € RE*X_ Since the bottleneck caused by
the projection layers might affect the flow of gradients, as depicted in the diagram, we use a skip connection
immediately after the multiplicative query integration to the output of the projection layer to compute the
final mask: my, = my’ + e’.

Within the decoder, we use the chunk-based streaming attention scheme proposed in |Chen et al.| [2021]].
As shown in Fig. [2.4(c), for decoding the current chunk, ey, the transformer decoder only attends to the
samples in the current chunk, e, and one previous chunk, e;_;. This ensures that the input length to the

transformer decoder is fixed at 2K (current chunk + one previous chunk) and prevents the inference time
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from growing as the input audio length increases.

2.3.5 Experiments and results

Dataset. We use a synthetic sound mixture dataset created from the FSD Kaggle 2018 dataset|Fonseca et al.
[2018]. FSD Kaggle 2018 is a set of sound event and class label pairs, with 41 different sound classes,
which are a subset of the Audioset ontology (Gemmeke et al.| [2017b]. Our synthetic dataset consists of
50k training samples, 5k validation samples and 10k test samples. Sound mixtures are created using the
Scaper toolkit |[Salamon et al.| [2017]], each with 3-5 foreground sounds randomly sampled from the FSD
Kaggle 2018 dataset, and a background sound randomly sampled from the TAU Urban Acoustic Scenes
2019 dataset Mesaros et al. [2018b]]. Foreground sound classes are randomly sampled without replacement
so that each sample has 3-5 unique classes. We construct the sound mixtures by sampling 3-5s crops from
each foreground sound and then pasting them on a 6s background sound. The SNRs of the foreground
sounds are randomly chosen between 15 and 25 dB, relative to the background sound. Our training and
validation data are sampled from the development splits of FSD Kaggle 2018 and TAU Urban Acoustic
Scenes 2019, while our test samples are from the test splits. From each mixture sample, 3 foreground
sounds are randomly selected to be the target sounds. Only one of those 3 foreground sounds is used for
the single-target extraction task, while others are used for the multi-target extraction task. The choices of
the target foreground sounds are fixed after generating the validation and test sets, to ensure evaluations are
reproducible. During training, however, the choices of the target foreground sounds in the training set are
randomized. Since we mainly consider human listening applications for streaming target sound extraction,

we run our experiments at a 44.1 kHz sampling rate to cover the full audible range.

Evaluation setup. Prior works Ochiai et al.| [2020]]; [Delcroix et al.|[[2022a] show that Conv-TasNet, orig-
inally proposed for speech separation, can also be used for target sound extraction. Further, ReSepformer
proposes an efficient transformer architecture for speech separation that allows a streaming inference. Here,
we compare the performance of our architecture with the causal or streaming implementations of Conv-
TasNet and ReSepformer as described in the original papers [Luo and Mesgarani| [2019al]; Subakan et al.
[2022]] for the target sound extraction task.

For all the models, we set the stride of the initial convolution, L, to 32, which is about 0.73 ms at 44.1
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kHz. We train multiple configurations of our model with different encoder and decoder dimensions. We
fix the number of DCC layers to 10, number of transformer layers to 1 and chunk length, K, to 13. This
chunk length corresponds to 416 samples in the time domain, or a chunk duration of 9.43 ms. For Conv-
TasNet, we follow the configuration used in |Ochiai et al.| [2020]] except for the number of repeats, which we
set to 2. This ensures that the runtime of the Conv-TasNet baseline is not too large compared with that of
our model’s largest configuration. For the ReSepformer baseline, we set the model dimensionality to 512,
number of blocks to 2, number of transformer layers to 2 and chunk size to 13 (9.43 ms). We perform label
integration after the first transformer block, as we found that to be perform better than integrating it at the

beginning.

Loss function and training hyper-parameters. We use a linear combination of 90% signal-to-noise-ratio
(SNR) and 10% scale-invariant-signal-to-noise-ratio (SI-SNR) Roux et al.[[2018] as the loss function for
training. While a scale dependent loss, such as SNR loss, is essential for preserving the original amplitude
of the desired sounds in the mixture, we observed that adding a fraction of the SI-SNR helps stabilize
the training process especially for causal models. We set the initial learning rate to 5e-4 for our models
and Conv-TasNet, and to 1.5e-4 for the ReSepformer. We use the ReduceLROnPlateau learning rate
scheduler to scale the learning rate by 0.1, if there is no improvement in the validation SI-SNR for more than
5 epochs. We use SI-SNR improvement (SI-SNRi) as the validation and test metric. We train the models for

100 epochs. We pick the weights after the epoch that resulted in the best validation SI-SNRi.

Results. We separately train the models for single-target and multi-target extraction tasks, and evaluate
them on our testset. For multi-target evaluation, we train our model as well as baselines to make predictions
with multi-hot query vectors, as opposed to one-hot queries used in the single-target evaluation. Dur-
ing the multi-target training, 1-3 foreground sounds are randomly selected as target sounds. This training
method using arbitrary number of target sources helps the model learn multi-target embeddings. The same
model configurations are used for both the single-target and multi-target experiments. The Conv-TasNet and

ReSepfromer baselines are also trained in the same way for the multi-target extraction task.

We also evaluate the real-time factors (RTFs) of the models on an Intel Core i5 CPU using a single thread.
RTF is computed by measuring the runtime consumed by the models to process a 416 sample audio chunk

(9.43 ms at 44.1 kHz), and dividing that with the chunk duration, 9.43 ms. For the RTF measurement, we
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Figure 2.5: Visualization of time-domain waveforms of single-target and multi-target extraction (x-axis
represents time).
include the padding for dilated convolution layers in our model’s DCC encoder and Conv-TasNet’s Temporal
Convolution Network (TCN) blocks, accounting for the entire receptive field. In case of the ReSepformer,
using a single chunk for RTF measurement excludes the overhead caused by causal attention masking in its
inter-attention blocks. Consequently, the RTF value reported for ReSepformer is a lower bound of what is

practically achievable.

Table 2.1] compares our models with different configurations with the baselines in terms of both the
efficiency and the performance. We show that our approach results in 2.2-3.3 dB SI-SNRi improvement
compared with the baselines, while being 1.5-2x more computationally efficient with 1.2-4x fewer parame-

ters. Table[2.2] compares the performance of our models with the baselines for the multiple target extraction
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Table 2.2: SI-SNRi comparison in the multi-target extraction task.

# selected classes

Model 1 2 3 Mean
Conv-TasNet 720 363 0.19 3.67
ReSepformer 742 356 033 3.77

Ours (F = 256; D = 128) 9.06 4.78 151 5.11
Ours (E = 256; D = 256) 9.12 4.76 131 5.06
Ours (F =512; D =128) 939 492 139 5.23
Ours (E = 512; D =256) 929 492 135 5.19

task. It shows that our method outperforms the baselines by 1.2-1.4 dB for the 2-target case, and 1-1.2
dB for the 3-target case. As with prior work [Ochiai et al.| [2020], the SI-SNR improvements are lower in
the 3-target selection task since there is greater similarity between the input mixture and the target signal,
compared to the single-target case, resulting in a larger input SI-SNR.

In Fig.[2.5] we qualitatively show an example single-target extraction and multi-target extraction from a
4-class input mixture, using our multi-target extraction model. Fig. shows the input mixture waveform,
and Figs. [2.5b] and show the isolated ground-truth sounds. We provide the input mixture to our multi-
target model, with a single target query followed by a two target query. Figs.[2.5d|and are the output
waveforms obtained when the single target and the two targets are queried, respectively. The waveforms
show that the model successfully recognizes the queried events and extracts the relevant sounds. It can also
be observed that our model preserves the original amplitudes of the sounds in the input mixture well.

The use of higher dimensionality such as 512, in DCC layers is shown to perform better Luo and Mes-
garani|[[2019a]. Using the 512 dimensions in the transformer decoder, however, can make it computationally
intensive. So, it is better to run the DCC encoder at higher number of dimension than that of the transformer
decoder. Since we use projection layers to convert between the encoder and decoder dimensions, to mitigate
the effects the projection layers have on gradients, we include a skip connection in the decoder. Our ablation

study shows that the skip connection improves the SI-SNRi from 9.06 to 9.43.

2.3.6 Summary

We demonstrate the first deep learning method for real-time and streaming target sound extraction. Future
work includes the use of more constrained computing platforms, larger datasets with more classes, and

multiple microphones. Our Waveformer architecture may be applicable to other acoustic applications like
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source separation and directional hearing, which deserves further exploration.

2.4 Real-time binaural target sound extraction

This section first discusses the high-level framework for our binaural target sound extraction neural network,

followed by the causal and streaming adaptation of this network.

High-level framework

Consider s € R?*7T to be the input binaural signal provided to the target sound extraction network. Since
time-domain models also have been shown to be able to learn representations analogous to STFT fea-
tures [Luo and Mesgarani| [2019b]], our network operates on time-domain binaural signals. As shown in
Fig. , the signal is first mapped to a representation in a latent space, z € RP*(T/L) by using a 1D
convolution layer with a kernel size > L and a stride equal to L. D and L are tuneable hyperparameters
of the model. D is the dimensionality of the model, having a significant effect on the parameter count, and
consequently the computational and memory complexities. . determines the duration of the smallest audio
chunk that can be processed with the model. The latent space representation z, is then passed to a mask

generator, M, which estimates an element-wise mask m as:
m = M(z,q) | m e RP*T/L). g e {01}, (2.1)

where V. is the total number of sound classes the model is trained for. The representation corresponding to
the target sound is obtained by element-wise multiplication of the input representation, , and the mask, m,
as follows:

The output audio signal § € R?*T

is then obtained by applying a 1D transposed convolution on y, with a
stride of L.
Our design jointly processes the two channels for computational efficiency. In our experiments, we show

that our simpler framework performs competitively with the prior parallel processing frameworks in terms

of target sound extraction accuracy, even with a 50% lower runtime cost.
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Figure 2.6: Binaural target sound extraction network architecture. a) Our high-level binaural extraction
framework. Mask estimation network is an encoder-decoder architecture operating on latent space represen-
tation of binaural signals to extract mask for target sound based on the query vector ¢. b) and c) show the
encoder and decoder architectures used in the mask estimation network. The encoder processes the previous
input context and does not consider the label embedding. Decoder first conditions the encoded representa-
tion with the label embedding, [/, and then generates the mask corresponding to the target sound using the
conditioned representation.

Streaming inference and causality

For real-time on-device operation, the model must output the audio corresponding to the target sound as
soon as the input audio is received, i.e., with an end-to-end latency to be less than 20-50 ms Denk et al.
[2020]]. Since the audio is fed to the model from the device buffers, the buffer size determines the duration
of the audio chunk the model receives at each time step. Assuming the buffer size to be divisible by the
stride size L, the audio chunk size can be represented as the number of strides, K. That is, the buffer size
of an audio chunk of size K is equal to KL samples. Such a real-time setup means that the model only
has access to the current and previous chunks, but not future chunks. This requires the model to be causal
with the time resolution of the buffer size, i.e., K L audio samples. As a result, in the high-level framework
described above, the input convolution, the mask estimation block, the element-wise multiplication, and the

output transposed convolution must operate on one audio chunk at each time step.

The binaural target sound extraction framework described above can be adapted to chunk-wise streaming

40



inference as follows. Consider the input audio signal corresponding to the kth chunk to be s, € R2*KL,

The input 1D convolution maps this audio chunk to its latent space representation, z;, € R”*% . The mask
estimation block is then used to estimate the mask corresponding to the target sound, based on the current

chunk, as well as a finite number of the previous chunks:

my = M(xkaQa Tk—1,Tk—2, ) | mg € RDXK (23)

The previous chunks act as the audio context for the neural network, referred to as the receptive field of
the model. A receptive field of 1-1.5s is shown to result in good performance Luo and Mesgarani| [2019b]].

RP*K can then be

The output representation of the current chunk corresponding to the target sound, y;, €
obtained as:

Y = Tp O My, 2.4)

The resulting output representation is then converted to the output signal 5, € R?*%L by applying the 1D

transposed convolution.

Mask estimation network

Several architectures have been proposed in the literature for mask estimation such as Conv-TasNetLuo and
Mesgarani [2019b]], SepFormer Subakan et al.|[2021]], ReSepFormer |Libera et al.| [2024]], and Waveformer
Veluri et al.| [2023a]. Waveformer is an recently proposed efficient streaming architecture implementing
chunk-based processing, which makes it suitable for our task. In this work, we use a modified version of
Waveformer to further increase efficiency without any loss in performance. The mask estimation network
is an encoder-decoder neural network architecture, where the encoder is purely convolution-based and the

decoder is a transformer decoder.

Encoder. Mask estimation in Eq.[2.3] involves processing many previous chunks in addition to the current
chunk to obtain the mask corresponding to the current chunk. Repeated processing of the entire receptive
field for each iteration could become intractable for a real-time on-device application. To mitigate this
inefficiency, while achieving a large receptive field, our mask estimation network implements a Wavenet

van den Oord et al.|[2016] style dilated causal convolutions for processing the input and previous chunks. In
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this work, for efficient on-device inference, we implemented the dynamic programming algorithm proposed
in Fast Wavenet [Paine et al| [2016]. As shown in Fig. [2.6b, higher efficiency is achieved by reusing the
intermediate results computed in the previous iterations. The encoder function £ processes the input chunk

x) and an encoder context & to generate the encoded representation of the input chunk:
DxK
ek, Epy1 = E(wg, &) | ex € RT™ (2.5)

The size of the context &, depends on the hyperparameters of the encoder. In our implementation, the
encoder is comprised of a stack of 10 dilated causal convolution layers. The kernel size of all layers is equal
to 3, and the dilation factor is progressively doubled after each layer starting with 1, resulting in dilation
factors {2°,21,...,29}. Since the kernel size is equal to 3, the context needed for each dilated convolution
layer is twice the layer’s dilation factor. As long as this context is saved after each iteration, and padded
with the input chunk in the next iteration, the intermediate results corresponding to the previous chunks do

not have to be recomputed. Thus the size of the context & is equal to 2 x Z?:o 2! = 2046.

Decoder. The query vector ¢ is first embedded into the embedding space using a linear layer to generate a
label embedding [ € R”. The mask corresponding to the target sound 7, is estimated using a transformer
decoder layer [Vaswani et al.|[2023]], represented here as H. The encoded representation is first conditioned
with the label embedding [ by an element-wise multiplication. The encoded representation and the condi-
tioned encoded representation are first concatenated in the time dimension, with those from the previous
time step, before processing with the transformer decoder layer 7. The encoded representation from the

previous time step, ei_1, acts as the decoder context. The mask estimation can be written as:
my =H{l-ex—1,1-ex}, {er—1,ex},) (2.6)

where {} represents concatenation in the time dimension. As shown in Fig. , the transformer decoder
‘H first computes the self-attention result of the conditioned encoded representation {l - e;x_1,[ - e} using
the first multi-head attention block, followed by cross-attention between the self-attention result and the
unconditioned encoded representation {ej_1, e} using the second multi-head attention block. A feed-

forward block along with residual connection generates the final mask corresponding to the target sound.
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Figure 2.7: Real-world binaural input and output recordings obtained with our semantic hearing system.

2.4.1 Results

We first describe our setup for real-world evaluations and then present our binaural network benchmarks.

Hardware prototype. Our hardware setup includes a pair of SonicPresence SP15C binaural microphones
that are wired to capture high-quality recordings. We use an iPhone 12 to process the recorded data and
output the audio through noise-canceling headphones like JBL Live 650BTNC and the NUBWO gaming
headsets. We use a lightning-to-aux adapter to connect the headphones to the iPhone over a wire. We also

use a USB hub to connect both the microphones and the headphones to the smartphone.

Participants. We recruiting 9 individuals (3 female, 6 male) across our in-the-wild and spatial cues evalua-
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Figure 2.8: A participant in our in-the-wild evaluation where the target sound was birds chirping in the
presence of urban environment noises. The participants could move their head freely and the target sound
source could also be mobile.

tions. We also invited 22 participants (6 female, 16 male) for our online hearing study.

2.4.2 In-the-wild evaluation

To evaluate the proposed system in real-life scenarios, we conduct in-the-wild experiments to assess the
effectiveness of our system.

In-the-wild scenarios. 5 individuals (3 female and 2 male) wore our hardware and collect sounds in
the real world. These experiments were conducted in typical application settings: offices, living rooms,
streets, rooftops, parks, and restrooms. Since some of the sound classes were relatively less common, our
in-the-wild experiments had a subset of classes which most commonly appeared in our recordings: alarm
clock, car horn, door knock, speech, computer typing, hammer, birds chirping, and music. The position and
movement of the sound sources were uncontrolled and reflective of real-world scenarios, where the sound
sources could be mobile. Furthermore, in all experiments, participants had complete freedom to move their
heads, causing the sound source positions relative to the microphones to vary over time (Fig.[2.8)). Thus, our
in-the-wild evaluation captured both mobile wearers as well as mobile sound sources that naturally occured
in real-world scenarios (e.g., cars moving or birds that fly).

Evaluation procedure. Unlike with our simulated training data, we do not have clean, sample-aligned
ground truth signals to objectively compare the binaural outputs of our system with. Hence, we conduct
a listening study to compute a mean opinion score (MOS) regarding the sound extraction accuracy. This

metric is crucial to evaluate the perceptual quality of our algorithm for end-users, although it has often been
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omitted in prior non-speech sound extraction research. We invited 22 participants (6 female, 16 male, mean
age 34.6) to the online listening study. The study consists of 16 sections. In each section, the participants
evaluated the quality of 3 or 4 5.0-8.5 second audio samples. The audio samples played at each section
were in-the-wild recordings processed in the following three ways for the same target label: (1) the original
recording, (2) the output of our 128-dimensional binaural network, (3) the output of our 256-dimensional
binaural network. For the subset of the evaluations that involved speech as the target sound, we also included
an additional fourth audio sample that was obtained by extracting of the interfering class (e.g., door knocks)

and then subtracting it from the input recording to estimate the target speech.

We conducted a pre-screening process to ensure that the participants used suitable binaural headsets.
This involved playing two white noise samples, one exclusively from the left channel and one exclusively
from the right channel. The participants were instructed to confirm that they heard the sounds only from the

correct channels. 11 of our participants used headphones, and 11 used earbuds during our online user study.

We measured the sound extraction quality based on both interference suppression and overall mean

opinion score (MOS), as they are often included in speech enhancement quality assessment:

* Noise suppression: How INTRUSIVE/NOTICEABLE were the BACKGROUND sounds? 1 - Very intru-

sive, 2 - Somewhat intrusive, 3 - Noticeable, but not intrusive, 4 - Slightly noticeable, 5 - Not noticeable

* Overall MOS: If the goal is to focus on the <TARGET> sounds, how was your OVERALL experience? 1

- Bad, 2 - Poor, 3 - Fair, 4 - Good, 5 - Excellent

Results. In Fig. we present the results of the user evaluations for the interference sound suppression
and overall quality improvement of our system for different target sound labels. The results demonstrate
the system’s capability to significantly reduce unwanted background sounds, as indicated by an increase in
the overall noise suppression score from 2.01 (corresponding to 2 - Somewhat intrusive) to 3.61 (between
3 - Noticeable, but not intrusive and 4 - Slightly noticeable) with the 128-dimensional model, and to 3.84
(slightly worse than 4 - Slightly noticeable) with the 256-dimensional model. We also observed a similar
trend in the overall MOS improvement, with an improvement from 2.63 for the input signal to 3.54 and 3.80
after processing with the 128-dimensional and 256-dimensional models, respectively. Figs. and [2.10]
also show that our network preserves the timing of the target sounds and can silence out noise outside the

target sound duration.
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Figure 2.9: In-the-wild evaluation results for (a) mean opinion score (MOS) and (b) noise suppression
across various classes that occurred in real-world data collection.
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(b) Binaural output with door knock extracted.

Figure 2.10: Qualitative result with a real-world recording.

The results also offer interesting insights at a per-class level. In general, the 128-channel model performs
only slightly worse than the 256-channel model for almost all classes, except for the “Computer typing”
class, where the gap in the overall MOS between the two models is almost 0.84 MOS points. This is
likely due to a particularly noisy recording taken near a running generator, where the 128-channel model
created faint, unpleasant artifacts that were not observed with the 256-channel model. However, both models
performed poorly in the “Hammer” class, where the target hammer sound was recorded in the presence
of interfering music. Although the network correctly silenced the time segments that did not contain the
hammer sounds, there was a noticeable residue from the music when there was a hammer sound, which the
listeners found intrusive. Another important finding from the study is the significant improvement obtained
by removing interfering signals from the input recording when the target is speech. By removing short-

length sounds such as door knocks from the recorded signal instead of extracting the speech directly (see
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Figure 2.11: Extracting speech as a target here causes momentary periods of excessive signal attenuation
(highlighted in b) as the network tries to remove door knocks and background sounds. However, if we
extract and then subtract door knock sounds, the background noise is still faintly present, and the resulting
signal sounds less harsh.

Fig. 2.TT)), we were able to increase the overall MOS by 0.91 points. Finally, it’s worth noting that these
in-the-wild results were obtained from the models trained solely on synthesized data, without any training

on data collected from our hardware or for the participants.

2.4.3 Evaluating user-perceived spatial cues

We present experiments conducted in five ordinary, reverberant rooms to evaluate the ability of our design
to preserve or recover user-perceived spatial cues. As with the in-the-wild evaluation, our training data had
no samples either from our hardware or the tested real-world environments.

Data collection. We collected real-world audio recordings of our target sounds from known directions.
To achieve this, five participants (3 male, 2 female) were fitted with binaural microphones and seated on a

rotating chair positioned at the center of a large, printed semicircular protractor measuring 70 x 36 inches, as
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shown in Fig. The protractor was lined at regular 22.5° intervals (nine lines total) for precise rotational
measurement. A Sony SRS-XB10 loudspeaker was placed on a fixed tripod at the 90° line of the protractor
to emit different sound signals. To control the angle-of-arrival of the sound signal relative to the listener, the

participants were asked to rotate the chair and align themselves with one of the protractor’s lines.

The data was collected in 9 stages. In each stage, the user is rotated towards a different angle. The
first stage starts with the participant facing the 180° line. After completion of each stage, the participant
rotates 22.5° clockwise to the next marked angle. At each stage, the loudspeaker plays four 5-second audio
samples: (1) white noise, (2-3) two test samples belonging to the target sound classes, and (4) a test sample
belonging to the interfering other sound classes. Across all stages of data collection, the chosen audio
samples comprise exactly 9 test samples from 9 distinct interfering other sound classes and 6 test samples
from 6 distinct target sound classes. Notably, each test sample from the target classes is recorded for 3

different relative angles.

Evaluation procedure. Since our goal is to develop a system that accurately preserves the spatial cues
perceived by human listeners, we design a user study to compute the perceived angle-of-arrival for the target
binaural sounds output by our system. To this end, based on the collected audio recordings, we first create
sound mixtures by sampling two audio clips from the target classes, and 1-2 clips from the interfering other
classes. The mixtures are generated using Scaper. We choose the reference loudness of the background to be
-50 LUFS, and we set the SNR of the target class sounds to 15-25 dB and that of the interfering other class
sounds to 0-10 dB. We process each mixture by choosing a target class and running the mixture through our

network.

We play the recordings of the individual clean target sounds with no interference, as well as the network
output samples estimating these target sounds from the created mixtures, to the same set of participants
via a pair of binaural earphones. Since the perceived spatial cues rely heavily on anthropometric features,
all the sound signals played to a given participant originated from the binaural data obtained from that same
participant in the data collection step. Prior to listening to each sample, participants are informed of the
target class they should be localizing. After listening, they are asked to predict the direction of the sound
source. To prevent the participants from associating each output sample with its corresponding individually-

recorded target sound, the samples are played in a random order. To help the participants establish an
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Figure 2.12: Spatial cue evaluation. (left) the evaluation setup, and (right) the CDF of the error between
the ground truth source direction and the user-perceived source direction after listening to the isolated clean
target sounds as well as network output binaural target sounds. The dashed lines are interpolated CDFs used
to compute the interpolated median and 90th percentile error.

orientation reference, we play back the white noise samples for each angle in the increasing order at the start
of the evaluation. Additionally, in cases of uncertainty between two specific source angles, the participants
are allowed to re-listen to the white noise samples recorded for these angles. The study lasted around 20
minutes per user.

Results. We compare the errors between the ground truth source directions and the users’ perceived
arrival directions obtained for both the clean interference-free target sound recordings as well as the binaural
target sound signals generated by our system for the mixture signal input. Our findings, as illustrated in
Fig. show that the mean angle error slightly increases from 18° to 23.25°. Additionally, we observe
that the interpolated 50th and 90th percentile errors also increase marginally from 5° to 9° and from 38°
to 42°, respectively. This demonstrates that our model preserves the spatial cues of the target sounds in its
output and has a negligible impact on how users perceive the source directions.

So far, we have treated semantic hearing and active noise cancellation as two separate systems that func-
tion independently. In practice, however, the end-to-end system requires a few additional considerations.
Firstly, many active noise cancellation systems rely on a recorded signal inside the ear cup to adaptively
silence the noise signals and achieve adaptive noise cancelation. Hence, the audio we play back to perform
semantic hearing may influence the noise cancellation algorithm. Secondly, active noise cancellation sys-

tems are not perfect, and they may still let some sounds through. To address these concerns, we record data

49



+0dB

-10dB

-20 dB

-30 dB

-40 dB

-50 dB

Frequency (H

-60 dB

-70 dB

-80 dB

Time (s)

(a) Sound recorded outside the headphone cups.
Left Right

+0 dB
-10 dB

-20 dB

Hz

< 4000

-30dB

-40 dB

w
S
<3
S

-50 dB

Frequency

T
>
o
o
9]
3
o
o

w

-60 dB

-70 dB

-80 dB

15 3 4.5 [ 75 9 10
Time (s)

(b) Semantic hearing output played by headphones.
Left Right

+0 dB

o
3
S
S

-10 dB

3
=
3
S

-20dB

S o o
S S S
<3 S S
S S S

(
8
S

-30dB

-40 dB

w
=3
153
S
w
3
S
S

-50 dB

N
S
S
S

Frequency (Hz)

Frequency (Hz)

-60 dB

.4
o
S
S
1
3
3

-70 dB

S 6 75 -80 dB

4.5 6 7.5 o K
Time (s)

Time (s)'

Door knocks
preserved

QTIO
Vacuum cleaner Low-frequency
suppressed residual noise

(c) Sound recorded inside the headphone cups.

Figure 2.13: Spectrograms of binaural recordings showing results from our end-to-end experiment with
a wearable headset. Here, we extract door knock sounds in an environment with a nearby active vacuum
cleaner.

while a user is utilizing our end-to-end system in real time. The user wears a pair of Sony WH-1000XM4
headphones with active noise cancellation enabled. In addition to the outer microphones used to capture
external sounds to process, they also wear binaural microphones inside the earcups to record the sound
produced by the active noise cancellation and semantic hearing systems together, i.e. as heard by the user.

The user chooses to listen to the sound of door knocks as a vacuum cleaner is turned on nearby. For this
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experiment alone, we run our semantic hearing algorithm on the audio recorded from the outer microphones
on a laptop with an Intel Core i5 CPU. The processed audio is played back through the headphones.

Fig. [2.13(a)-(c) shows the spectrograms for three binaural signals: the signal recorded at the outer mi-
crophone, the signal played through the headphones, and the signal recorded inside the earcups. We demon-
strate that while the recordings from the inside earcups are slightly noisier, we clearly see that the system
can suppress the unwanted sounds (vacuum cleaner), while preserving the target sounds (door knocks). This
demonstrates the feasibility that such a system can coexist with active noise cancellation systems. We note
that to mitigate residual noises, the semantic hearing subsystem may have to integrate the residual audio
from noise cancelling headphones to adapt the playback signal to the residual noise as well. However, this

comes with stricter latency requirements and thus we leave it for future work.

2.4.4 Benchmarking the neural network

In-the-wild evaluation with human evaluators is closest to real-world use. It is however hard to objectively
compare different models due to the lack of ground-truth signals, as well as due to the challenges in ob-
taining a large amount of test data necessary for the statistical significance of smaller performance gaps.
To address these practical limitations, we also evaluate our model on an extensive reverberant binaural test-
set comprising 10000 mixture and ground-truth pairs. We synthesized the benchmarking dataset to mimic
real-world situations.

Table 2.3: Performance and efficiency comparison of different binaural target sound extraction frameworks
and mask estimation architectures on a large test dataset across 20 target classes.

Binaural framework Mask estimator Params (M) SI-SNRi (dB) AITD (us) AILD (dB) Runtime (ms)
Dual-ch Ours (D = 128) 0.52 7.17 87.77 0.88 6.56
Ours (D = 256) 1.74 7.41 85.16 0.87 12.54
Parallel Ours (D = 128) 0.86 7.24 81.72 1.08 13.35
Conv-TasNet 2.33 4.43 670.05 - 15.58
Single-ch Ours (D = 256) 1.68 7.43 79.70 1.32 22.19
Waveformer (D = 256) 1.69 7.37 85.33 1.27 25.85

To evaluate the performance of our binaural extraction model, as shown in Table [2.6] we compare the

following three binaural target sound extraction frameworks.

* Dual-ch. This is the dual-channel architecture we proposed in for efficient binaural target sound
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extraction. In this framework, the binaural signal is converted into a combined latent space representation
before the mask estimation. Since both left and right channels are combined into a common representation,
a single instance of the mask estimation network is used for estimating the mask corresponding to the target

sound. We consider our mask estimation architecture with both D = 128 and D = 256.

* Parallel. This is the binaural framework proposed in [Han et al.|[2020] that implements parallel process-
ing of the left and right channels, along with some cross-communication between channels. The binaural
framework in [Han et al.| [2020] is originally proposed for binaural speech separation. We implemented
this framework for both our mask estimation network with D = 128 and Conv-TasNet |Luo and Mesgarani
[2019a]. We include Conv-TasNet as it is one of the most widely used signal enhancement model architec-
tures. We choose a configuration of Conv-TasNet that resulted in similar runtime to that of our model and

trained both models with our training dataset.

* Single-ch. In addition to the above two binaural extraction frameworks, we also evaluate and compare the
performance with a single-channel extraction baseline. Since the target sound extraction models we consider
are sample-aligned, models trained with monaural inputs and outputs can be independently applied to the
left and right channels. Similar to the Parallel case, this also involves two instances of the mask estimation
network. However, by contrast, the model parameters applied to the left and right channels are the same and
there is no cross-communication between the channels. We implement the best configuration of our model

(D = 256) so that this serves as a strong baseline.

For each model, we compare the performance in terms of the signal quality, the accuracy in spatial cues,
and the on-device runtime requirement. We measure the signal quality using the scale-invariant signal-
to-noise-ratio Roux et al. [2018]] improvement (SI-SNRi) of the output compared to that of the mixture,
computed with respect to the ground-truth. The SI-SNRi results are averaged over the entire testset, across
the left and right channels. Following Han et al.| [2020]], the spatial cue accuracy is measured using the
difference in the interaural time differences (ITDs) and interaural level differences (ILDs) between the output
binaural signal and the ground-truth binaural signal, denoted as AITD and AILD. We compute ITD using
cross-correlation, limiting them to 1 ms, as was done in May et al.| [2011]. The model runtimes are
measured on iPhone 11, by converting them to ONNX format [Bai et al.|[2019]] and then executing them

using ONNX Runtime for iOS. The runtimes are measured for computing a 10 ms output chunk averaged
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over 100 runs. Therefore, the runtime must be less than 10 ms for deployment, which our dual-channel

model with D = 128 meets.

In our experiments, we observed that the causal Conv-TasNet converges to the local minima of gener-
ating a constant zero signal when trained only with the SNR loss. This phenomenon is also observed in
Veluri et al.|[2023b], which suggested training Conv-TasNet with 90% SNR + 10% SI-SNR loss. The likely
cause for this is, unlike the speech datasets that Conv-TasNet is originally designed for, sound datasets have
a significant amount of silence, causing the Conv-TasNet optimization process to converge to generating a
zero signal. On the other hand, using a loss of 90% SNR + 10% SI-SNR in the binaural case, caused one of
the channels to output a very low-amplitude signal relative to the other channel as SI-SNR is insensitive to
the signal gains. We confirmed that the signal is spectrally meaningful even though the magnitude is wrong.
As aresult, only SI-SNRi and AITD results are meaningful for the Conv-TasNet model. AILD computation

resulted in infinity, so we omit it in our table.

In Table. 2.6 we observe that the dual-channel framework is competitive with the parallel and single-
channel frameworks in terms of SI-SNRi, while outperforming in AILD. With regard to AITD, it resulted
in a very marginal increase. These results intuitively make sense because the dual-channel framework has a
sample-aligned common representation for both left and right channels. As a result, it can maintain the rela-
tive amplitudes of the left and right channels. On the other hand, the parallel and single-channel frameworks
have separate branches that independently process different channels, facilitating maintaining the sample
alignment with the respective channels. This phenomenon is more notable for the single-channel frame-
work, where the SI-SNRi and AITD are promising but the AILD is poor, as there is no cross-communication
between the left and right channel processings. We note that our dual-channel framework requires only a
little more than 50% of the runtime required by their parallel or single-channel counterparts, making it a
good practical choice for our semantic hearing system. Finally, we note that our dual-channel framework

uses 240 MFLOPS, while vanilla Waveformer uses 357 MFLOPS across the two microphones.

For our causal model, the receptive field is exclusively the past audio. Hence, it has no effect on the
algorithmic latency. The algorithmic latency of our model is the sum of chunk size, K L, and the lookahead
of the input convolution, L, where L is the stride of the input convolution. Table uses stride L = 32

samples and K = 13, resulting in a chunk size of K'L = 416 samples and lookahead L. = 32 samples. This
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is equivalent to 9.4 ms and 0.7 ms, respectively. Table shows the performance of our binaural model
with various chunk sizes to understand the effect of algorithmic latency on performance. The results show
that our model achieves reasonable performance with an algorithmic latency as low as 1.4 ms. Thus with
ASIC implementations, such as those in hearing aids, we could envision ultra-low-latency semantic hearing
systems.

During our in-the-wild evaluations, users freely moved their heads and encountered mobile sources (eg.
sirens). The model also performed robustly without glitches during evaluations by human testers. The model
adapted quickly to relative motion because it outputs small chunks (<10ms) while updating its internal state.
The model can also utilize spatial positions in the trajectory that have better level differences between L and
R channels. In addition to that qualitative evaluation, Table provides a quantitative comparison of the
performance for different amounts of relative angular motion between the listener and sound sources. For
this comparison, we use the dual-ch model with D = 256 dimensions. We simulate motion using Steam
Audio SDK[SDKI[2023]], which simulates binaural motion given an HRTF file in the SimpleFreeFieldHRIR
format|siml! [2023]]. We performed controlled experiments with different angular velocities in both anechoic
and reverberant environments, with sources moving from a random position on an arc with the given angular
velocity. We used the CIPIC Algazi et al.| [2001] HRTF dataset for anechoic simulations and RRBRIR
[oSR-Surrey| [2016] BRIR dataset for reverberant simulations as they provide impulse responses in the
SimpleFreeFieldHRIR format. We synthesize the binaural audio in frames of 1024 samples by convolving
with an interpolated impulse response using bilinear interpolation at every frame. Since the ILD and ITD
are now time-varying, we compute the AILD and AITD in chunks of 250 ms, discarding any chunks where
the clean signal is silent on both channels, and take the mean across the remaining chunks. We observed that
in the presence of motion, SI-SNRi and AILD are marginally better as the model is able to better leverage
the level differences between L and R at different relative angular positions while achieving lower AITD in

the anechoic case and slightly higher AITD in reverberant scenarios.

2.5 Target speech hearing with noisy examples

In this section, we discuss how we can extend a framework similar to target sound extraction, to target speech

hearing. The past decade has witnessed two key technological trends. First, there have been significant
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Table 2.4: Effect of algorithmic latency on the performance. *Proposed system with end-to-end latency
~20 ms.

Chunk size (samples) Algorithmic latency (ms) SI-SNRi (dB)

32 1.4 6.59
128 3.6 6.83
256 6.5 7.18
416%* 10.1 7.42

Table 2.5: Comparison of performance in the presence of relative angular motion between listener and
sound sources. Dual-ch model with D = 256 is used for this evaluation.

Angular Reverb. SI-SNRi (dB) AITD (us) AILD (dB)
velocity (°/s)

30 No 7.95 34.26 0.58
Yes 7.88 103.45 0.43
60 No 7.91 49.49 0.57
Yes 7.98 98.23 0.49
90 No 7.87 58.67 0.54
Yes 8.00 99.83 0.43

advances in noise-canceling headsets and earbuds capable of better suppressing all environmental sounds
air| [2023]]; [Headphonesty| [2022]; Review| [2023]]. Second, deep learning is enabling promising human-like
intelligence across various domains Bubeck et al.| [2023]]; Jiang et al.| [2023b]. These two trends present
opportunities for creating the future of intelligent hearables, with real-world capabilities that so far have
been in the realm of science fiction. In this paper, we explore a novel capability for hearables — rarget
speech hearing — that allows users to choose to hear target speakers based on user-selected target speaker

characteristics, such as speech traits.

Specifically, we explore the following question: can we look at a target speaker within a crowd just
once, extract their unique speech traits, and subsequently employ these traits to exclusively listen to that
speaker, while filtering out other voices and background noise? A positive answer could enable novel
hearable applications that are currently not possible. For example, imagine a scenario in which a user seeks
to hear only the tour guide’s narration during a guided tour amidst the surrounding chatter and ambient noise
while enjoying the tour sights. Alternatively, picture a leisurely stroll with a colleague along a cacophonous
street, wanting to hear only their conversation and block out other sounds. Or think about being on a

crowded bus, desiring to hear your friend talk while simultaneously gazing out of the window. While
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Figure 2.14: Target speech hearing with noisy enrollments. In (a) and (b), we propose two approaches
for performing noisy enrollment, assuming the target speaker’s azimuthal angle is approximately equal to
90°. (a) shows the beamformer-based approach, where a beamformer is trained to estimate the target speech
signal from the noisy enrollment. The estimated target speech signal is then used to estimate the target
speaker’s embedding. (b) shows the knowledge-distillation approach, where an enrollment model is trained
to estimate the reference d-vector embedding of the target speaker present at ~ 90° azimuth. Once the
speaker embedding estimated with one of the two approaches, we could perform target speech hearing in
real-time, similar to the approach detailed in Fig. @}

today’s noise-canceling headphones have seen significant improvements in canceling out all sounds, they
cannot selectively pick speakers based on their speech traits. These use cases, however, require not only
using noise-canceling headsets to remove all sounds but also playing only the target speech back into the

hearables.

The latter, which we call target speech hearing, is a new capability for general-purpose hearable devices.
Existing deep learning approaches for the problem of target speech extraction require prior clean audio
examples of the target speaker Zmolikova et al, [2023]. These clean examples are utilized by a neural
network to learn the characteristics of the target speaker, which are subsequently employed to separate their
speech from that of other concurrent speakers. The challenge lies in the fact that this problem formulation
does not align well with our target hearable application domain. Specifically, in all the previously described
use cases, obtaining a clean example signal of the target speaker (e.g., tour guide) is difficult since the target

speaker may always be in a noisy environment, with interference from other speakers.
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Providing clean target speaker examples for enrollment is essentially a user interface problem, and hence
requires the design of an intelligent hearable system that takes into account the constraints of a user-friendly
interface. In this paper, we introduce the concept of target speech hearing on hearable devices with noisy
examples. To achieve this, rather than expecting users to collect input examples of the target speaker in a
noise-free environment in the absence of any other speakers, we show for the first time how one can enable
target speech extraction using noisy binaural enrollments in the presence of other concurrent interfering
speakers.

The wearer looks at the target speaker for a few seconds and captures binaural audio, using two micro-
phones, one at each ear. Since during this short enrollment phase, the wearer is looking in the direction of
the target, the signal corresponding to the target speaker is aligned across the two binaural microphones,
while the other interfering speakers are likely to be in a different direction and are therefore not aligned. We
employ a neural network to learn the characteristics of the target speaker using this sample-aligned binaural
signal and separate it from the interfering speaker using direction information. Once we have learnt the
characteristics of the target speaker (i.e., target speaker embedding vector) using these noisy binaural en-
rollments, we subsequently input the embedding vector into a different neural network to extract the target
speech from a cacophony of speakers. The advantage of our approach is that the wearer only needs to look
at the target speaker for a few seconds during which we enroll the target speaker. Subsequently, the wearer
can look in any direction, move their head, or walk around while still hearing the target speaker

To make this idea practical, we make multiple contributions:

* Enrollment networks with noisy examples. We design and compare two different enrollment networks
— a beamformer network and a knowledge distillation network (see §2.5.2) — to effectively generate a

speaker embedding vector that captures the traits of the target speaker using the short binaural noisy example.

* Real-time embedded target speech hearing network. We use the generated embedding to subsequently
extract the target’s speech using an optimized network that runs in real-time on an embedded IoT CPU.
To do this, we start with the state-of-the-art speech separation network, TFGridNet Wang et al.| [2023d]],

which cannot run in real-time on our embedded device. We then introduce various model and system-level

’In contrast, directional hearing Wang et al|[2022al] focuses on speech from a specific direction. However, this approach is not
well-suited to our application scenarios, as users do not continuously look at the target speaker, the target speaker may have long
pauses in their speech making continuous direction tracking challenging, and the direction can change as they or the user move
their head to look elsewhere (e.g., tour sights).
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optimizations to achieve a light-weight target speech hearing network that runs in real-time on embedded

CPUs.

* Generalization to real-world multipath, HRTF and mobility. We present a training methodology that
uses only synthetic data and yet allows our system to generalize to real-world unseen target and interfering
speakers and their head-related transfer functions (HRTFs). Further, we explicitly train with multipath
to generalize to both indoor and outdoor environments. We also introduce a fine-tuning mechanism that
addresses moving sources and sudden changes in the listener’s head orientation (upto 90°/s angular velocity).

This also allows the system to handle up to 18° error in the listener’s head orientation during enrollment

(see §2.5.3).

We build an end-to-end hardware system that integrates a noise-canceling headset (Sony WH-1000XM4),
a pair of binaural microphones (Sonic Presence SP15C) with our real-time target speech hearing network
running on an embedded [oT CPU (Orange Pi 5B). The embedded device reads audio chunks from the mi-
crophones, which we process on-device and play back to the headset. Our average model inference time
was 6.2 ms to process 8 ms audio chunks, making it a real-time system with a total end-to-end latency of

18.24 ms. Our results are as follows.

» Compared to clean example enrollments, the beamformer network for noisy example enrollments resulted
in 2.9 dB performance drop. In contrast, the knowledge distillation network resulted in only a 0.4 dB drop

in performance compared to clean examples (see §2.4.4), while using only 1-4 second noisy enrollments.

* QOur system generalized to 9 real-world settings that span different motion scenarios, indoor and outdoor
environments as well as different wearer postures with 8 participants using our hardware. Our design does

not require any training data collection with our hearable hardware.

* In a user study with 21 participants who spent over 420 minutes rating the target-speaker output by our
hardware system from real-world indoor and outdoor environments, our system achieved a higher mean

opinion score and interference removal for the target speaker than the raw unprocessed input.

* Across nine participants who compared three interfaces for noisy enrollments — push button on head-
phone, touchpad on headphone, and virtual button on a smartphone — participants expressed preference for

the push button because of its good haptic feedback.
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Imbued with embedded intelligence, our work envisions hearables that allow wearers to manipulate their
acoustic surroundings in real-time to customize their auditory experience based on user-defined character-
istics like speech traits. By open sourcing the code and datasets, our work may help further future research
among HCI and machine learning researchers on designing algorithms and systems around target speech

hearing.

2.5.1 Look Once to Hear

Our key observation is that for hearable applications of deep learning-based target speech extraction Zmolikoya
et al.| [2019], it is often impractical to obtain a clean speech sample of the target speaker. In this work, we
propose a target speech hearing (TSH) system suitable for binaural hearables applications that provides an
interface for noisy in-the-wild speech samples, which we refer to as noisy enrollments. A noisy enrollment
of a speaker of interest would contain two kinds of noise: uncorrelated background noise, and interfering
speech. While the background noise can be suppressed with existing methods Hu et al.|[2020], it is challeng-
ing to disambiguate and suppress interfering speech without suppressing the target speech itself, especially
when the number of speakers in the scene could be arbitrary. More fundamentally, in a mixture of multiple
speakers, it is challenging to know which of them is the intended target speaker.

Our system achieves this disambiguation by leveraging the beamforming capability of binaural hear-
ables. Assuming that the listener would be looking at the target speaker at least for a few seconds, we
propose that the listener could use this phase to enroll the speaker they want to focus on by letting the
hearable know through on-device haptic control or a button click on the phone application. During this
phase, since the direct path of the target speaker is equidistant from both ears of the binaural hearable, the
application could disambiguate between target and inferring speakers to obtain a representation of the target
speaker.

Let e(t') € R? be the input binaural signal received by the binaural hearable during the enrollment
phase, and x(t) € R? be the input binaural signal received during TSH phase, where ¢’ and ¢ corresponds to
the time during the enrollment phase and TSH phase, respectively. Then these signals could be decomposed
into their component signals:

e(t') = so(t") + Ty ser (') + ve(t') 2.7)
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z(t) = so(t) + Xi_qsk(t) +v(t) (2.8)

Here, sqg € R? corresponds to the target speaker, sc1, ..., Sem € R2 correspond to interfering speakers
during the enrollment phase, and s1, ..., s, correspond to interfering speakers during the TSH phase. Note
that the interfering speakers can be the same or different during the two phases. v.(t') and v(t) represent
background noises in the respective phases. Additionally, let 6 represent the azimuthal angle of the target
speaker, relative to the listener. During the enrollment phase, to achieve disambiguation of the target speaker
in the noisy enrollment signal, since the user looks in the direction of the target speaker, we can assume that:
0o(t") ~ 5, where the x-axis is assumed to pass from the listener’s left to right ear with the midpoint as the

origin. We then formulate the TSH problem as a two-step process:

é = N(e(t)|fo(t') ~ 3) 2.9)

S0(t) = T (x(t), éo) (2.10)

Here, €y corresponds to the target speaker representation computed from the noisy enrollment signal
e(t’), N is the neural network estimating the target speaker’s representation and 7 is the real-time causal
target speech hearing network that can run on an embedded device. 7 is the combination of mask estimator,
convolution and transposed convolution modules (Fig. [2.6p), with the exception that we provide the speaker
embedding directly, instead of the one-hot vector ¢. In the following subsections, we explain in detail,

different architectures we explored for both the enrollment phase and TSH phase.

2.5.2 Enrollment interface network

The quality of the target speech extracted by the target speech hearing network, 7, has a critical dependence
on the discriminative quality of the speaker representation, €y, provided to it. In order to robustly handle
various speech characteristics, we leverage the speaker representations computed by large-scale pre-trained
models such as|Wan et al.| [2020]; Koluguri et al.| [2021]. In this work, we use the open-source implemen-
tation of [Wan et al.| [2020] in the Resemblyzer project Resemble-Ai|[2019]]. Given a clean speech utterance
of a speaker s;(t’), Resemble-Ai| [2019] uses a long short-term memory (LSTM) network, D, to map the

utterance to a unit length 256-dimensional vector D(s;(t')) = ¢;, where ¢; € R?°® and ||¢;||2 = 1, referred
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to as a d-vector embedding. During the training phase, the LSTM model computes d-vectors optimized such
that embedding corresponding to an utterance of a speaker is closest to the centroid of embeddings of all
other utterances of the same speaker. This is done while simultaneously maximizing the distance from the
centroids of all other speakers in the large-scale speech database used as the training set. In this work, we
use d-vector embeddings as reference speaker representations that the noisy enrollment network A/ should

predict using two approaches.

Noisy enrollment with beamforming. We note that the d-vector embedding of the target speaker can be
obtained with its clean speech example as eg = D(so(t’)). If we could estimate the clean speech of the target
speaker, provided that the target speaker is present at the azimuthal angle 6y ~ 7, we could estimate the
d-vector embedding corresponding to the target speaker. Essentially, this is equivalent to beamforming with
direction input steered towards the azimuthal angle equal to 5. In this work, we follow the delay and process
approach proposed in several beamforming works [Jenrungrot et al.|[2020]; (Chatterjee et al.| [2022]; Wang
et al.| [2022a], where given a target direction and a reference microphone, inputs from other microphones are
delayed according to the time it takes for the direct path from the given direction to reach them relative to the
reference microphone. In this case, since we assume the direct path is equidistant from both left and right
microphones, processing the raw inputs is sufficient to obtain the target speaker. Assuming the beamforming
network is represented as B, the process of noisy enrollment with beamforming could be written as:

™

So(t') = Ble(t) 6o ~ 3

)

€0 = D(30(t"))

In this work we use the state-of-the-art speech separation architecture TFGridNet Wang et al.| [2023d]
as our beamforming architecture 3. Since enrollment is a one-time operation that does not need to be
performed on-device, we could use the original non-causal implementation of the TFGridNet Wang et al.
[2023d] available in the ESPNetLu et al.|[2022] framework. Following the notation in Wang et al.|[2023d]],
we used the configuration: D =64, B =3, H =64, =4,J =1, L = 4 and F = 8 with short-time

fourier transform (STFT) window size set to 128 and hop size set to 64.
Noisy enrollment with knowledge distillation. Conversely, we could consider this problem as the
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noisy enrollment network, A/, directly computing the estimated d-vector embedding of the target speaker,
€0, given the noisy speech. This would however require us to use a resource-intensive training process like
the one proposed in [Wan et al| [2020]. To do this efficiently, we train the enrollment network A/, using
knowledge distillation Hinton et al.| [2015]]; [Asami et al| [2017], where the original d-vector model, D,
provides d-vector embeddings computed on clean target speech as ground-truth references. We note that
during the training phase, we have access to clean target enrollment speech sq ('), but we do not assume this

during inference. Here, we train the noisy enrollment network A/ to minimize the loss function £(éy, €p):

é = N(e(t)lbo ~ 3)

eo = D(s0(t))
L(é0, €0) = cos(£L(é, €0)) = €o - €0

To make both our noisy enrollment approaches comparable, we use TFGridNet|Wang et al.| [2023d] with
the same configuration as above, as the noisy enrollment network A/, in this approach as well. We modify
the architecture to output 256-dimensional embedding instead of an audio waveform, as shown in Fig.[2.14b]
The bulk of the TFGridNet architecture computes a 64x65-dimensional representation for each audio chunk,
which is then processed by a final convolutional layer followed by inverse-STFT (ISTFT) to compute the
output waveform. For the purpose of noisy enrollment, we directly use 64x65-dimensional representation
and reduce it using a linear layer to output the 256-dimensional representation for each enrollment audio
chunk. We then average the 256-dimensional representations over all enrollment audio chunks to obtain the

final 256-dimensional target speaker embedding.

2.5.3 Training for real-world generalization

This section describes the training approach for the TSH system, which is a generalization of the training
approach for target sound extraction. In TSH system, we train both the enrollment network and target speech
extraction network conditioned on speaker embeddings. But in the case of target sound extraction, we only
need to train the target sound extraction network conditioned on one-hot labels.

We first train the enrollment networks to estimate d-vector embeddings. We then separately train the tar-
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get speech hearing model while conditioning it with reference d-vector vector embeddings. This approach
allows us to use the same target speech hearing model with any enrollment model that can estimate d-vector
embeddings. We train these models with a training dataset that considers an accurate representation of
real-world use cases of a target speech hearing system. Specifically, we consider variations in speech char-
acteristics, acoustic transformations caused by physical multipath environments, acoustic transformations
caused by the human head related transfer function (HRTF) and diverse background noise. We also consider
the effects caused by motion of the speaker and noise with respect to the listener as an additional finetuning
step. Below we explain the dataset details followed by the training process of the enrollment and target
speech hearing networks.

Synthetic dataset. Each training sample in our dataset corresponds to an acoustic scene comprised of 2-
3 speech samples and background noise. To create an acoustic scene, we first sample a 5 second background
noise sample and then overlay the target speech and inferring speech at random start positions. For obtaining
target and interfering speech, we randomly select 2-3 speakers from the LibriSpeech dataset|Panayotov et al.
[20135]], and select a speech sample of length 2-5s for each speaker. The enrollment signals are generated
using the same approach as well. We used the t rain—-clean—-360 component of LibriSpeech dataset that
comprises 360 hours of clean speech with 439 and 482 different female and male speakers, respectively. We
further select random noise samples from WHAMR! dataset Wichern et al.| [2019] comprising a database
of audio samples of real-world noisy environments. These audio samples, however, do not contain the
effects of real-world indoor environments and human heads, which we found is important for extracting
natural-sounding audio.

Accounting for multipath and HRTF. To account for these effects, we convolve each of the speech
samples and background noise with a binaural room-impulse-response (BRIR) that captures the acoustic
transformations caused by a room as well as a user’s head and torso. Let h,. ¢ 4 be a BRIR corresponding
to the room and subject combination 7, at azimuthal angle 8 and polar angle ¢ with respect to the subject’s
head. Let Sy(t) € R and Si(t) € R be two mono clean speech mixtures sampled from the LibriSpeech
dataset, and V/ (¢) be noise sampled from the WHAMR! dataset. Then the binaural acoustic scene z(t) € R?

for this source mixture could be computed as:

l’(t) =5y (t) * hr7907¢0 + 51 (t) * h?“7917¢1 + V(t) * hr79v7¢’u (2.11)
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It is to be noted that in each acoustic scene, room and subject configuration r, remains the same for all
sources, but the angles with respect to the listener are arbitrary. To improve robustness to variations in rooms
and subject, we aggregate BRIRs from 4 different datasets: CIPIC |Algazi et al.| [2001], RRBRIR [[oSR-
Surrey| [2016], ASH-Listening-Set |[ShanonPearce| [2022] and CATTRIR [[oSR-Surrey| [2023]. Of these,
CIPIC dataset only comprises of impulse responses measured in an anechoic chamber and as a result, is
devoid of any room characteristics. Combined, these datasets provided us with a total of 92 different room
and subject configurations.

Training. To train the enrollment networks, we first generate the component speech utterances, as
described above, with the constraint that target speaker’s azimuthal angle 6y ~ 7. We train the beamformer-
based enrollment network to predict target speech (Fig. with SNR loss. We train knowledge-
distillation-based enrollment network to predict the d-vector embedding of the target speech (Fig. [2.14b))
with cosine-similarity loss.

To train the target speech hearing (TSH) network, we also sample a random speech corresponding to the
target speaker and convolve it with a BRIR corresponding to the same room and subject configuration. We
input the TSH model with the acoustic scene and the d-vector embedding computing on the sample speech.
We then optimize the TSH network, 7, to minimize the signal-to-noise ratio[Roux et al.| [2018]] (SNR) loss
between the estimated target speech and the ground-truth: -SNR(8¢ (%), so(%)).

Finetuning for motion, error in the enrollment angle and real-world noise characteristics. In the
dataset setup described above, we assumed a constant azimuthal angle for each source as time progressed.
This means that sources are stationary with respect to the listener’s orientation, and the enrollment angle
is close to % and does not change with time. These assumptions, however, are not true in the real world
as sources could be moving, or there might be a rotation in the listener’s head resulting in significant rela-
tive angular velocities. We handle relative motion and time-varying error in the enrollment angle with an

additional finetuning step. During finetuning, we make the azimuthal and polar angle time-varying in[2.T1]

2.5.4 In-the-wild Evaluation

We evaluate our system in previously unseen indoor and outdoor environments, with participants who are

not in the training data. We recruited 8 individuals (5 male, 3 female) to collect data in different in-the-wild
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scenarios using our hardware. We ask 3 participants at a time to collect noisy enrollment signals, as well as
noisy real-world mixture audio, in different acoustic environments while they read random text. Among the
three participants, one of them is designated as the wearer, while the other two are the speakers. To collect
a noisy enrollment for a given target, the wearer looks at the target speaker as they read a text. This mimics
the "Look Once" phase in the real-world use, where the listener would look at the target speaker. As the
target speaker reads the text, background sounds and, in all but one case which had significant noise, speech

from the other speaker make this enrollment signal noisy.

We record multiple noisy binaural audio clips while the target speaker reads a different text in the
presence of other environmental sounds and speakers. Unlike the noisy enrollment signal, there is little
control over these recordings, as the wearer and target speaker are free to move around and/or rotate their
head. These recordings were also collected in different acoustic environments, including living spaces, busy
streets, and in nature. They also contained settings where the listeners were in different postures, such as

standing, sitting and laying down.

Evaluation procedure. Since the target speaker is speaking in the presence of interfering speakers and
unknown noise, it is difficult to obtain the ground truth audio signal for our target speakers in the real world.
So, we cannot rely on objective metrics to evaluate the system performance. Instead, we design a listening
survey to allow human participants to rate the performance of our two enrollment methods on 15 different
target speaker scenarios from the in-the-wild dataset we collected. To do this, we recruited 21 participants
(13 male and 8 female with an average age of 30.4 years) to take our survey and give their opinion on our
target speaker hearing system to obtain a mean opinion score (MOS). To do this, for each scenario, we first
ask the users to try listening to a 5-second clean signal of the target speaker reading text collected in a quiet
room. We then ask the participants to listen to the target speaker in 3 distinct audio clips: 1) the original,
noisy recording of the target speech with interferers, 2) the output of our target speaker hearing network
using the noisy knowledge distillation embeddings, and 3) the output of our target speaker hearing network

using the noisy beamformer embeddings. The 3 clips are presented in random order.

After listening to the mixture and model output clips in a random order, we ask the participants to rate

the target speech extraction quality by asking them the following questions:
* Noise suppression: How INTRUSIVE/NOTICEABLE were the INTERFERING SPEAKERS and BACK-
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Figure 2.15: Subjective in-the-wild evaluations. (a) Mean opinion score for the noise suppression quality
reported for the raw audio signal and the output using our two enrollment networks, and (b) overall reported
mean opinion score. Paired t-tests between knowledge distillation and beamforming approaches resulted in
p-values < 0.001.

GROUND NOISES? 1 - Very intrusive, 2 - Somewhat intrusive, 3 - Noticeable, but not intrusive, 4 - Slightly

noticeable, 5 - Not noticeable

* Overall MOS: If the goal is to focus on this target speaker, how was your OVERALL experience? 1 -

Bad, 2 - Poor, 3 - Fair, 4 - Good, 5 - Excellent

Results. Fig. 2.15] shows that our system can greatly suppress the background sounds and interfering
speakers, as evidenced by the fact that that our beamforming and knowledge distillation enrollment networks
increased the mean opinion score for the noise suppression task from 1.71 to 3.05 for the beamformer
enrollment method and 3.28 for the knowledge distillation method (Fig. [2.15]a)). Our target speaker hearing

framework was also able to improve the overall mean opinion score from 2.09 to 3.18 and 3.4, respectively

(Fig. 2.T5{b)).

2.5.5 Enrollment interface user study

We investigate two main questions: 1) What interface should the user interact with when they want to
enroll the target speaker?, and 2) what enrollment duration do users find acceptable for such a system? As
shown in Fig. [2.16] we integrate into our prototype with three different interfaces through which users can
communicate their intention of enrolling a target speaker: 1) a virtual button on a smartphone application, 2)
a push button on the headphone, and 3) a touch pad on the headphone. We evaluate four different possible

enrollment durations: 2.5s,5s, 7.5 sand 10 s.
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Figure 2.16: Proposed interfaces. (a) A smartphone app, (b) a push button, and (c) a touch pad. In (d), we
see a participant wearing our prototype while conducting the user study.

Comparing user interfaces. We conducted a user study with 9 participants, where each participant first
wore our device and sat on a chair as shown in Fig. [2.16(d). We placed a loudspeaker to the side of the
wearer, which played a mixture of human speech from the LibriSpeech dataset and generic vacuum noise.
A person sitting in front of the participant would then read a random text. We then asked the participants
to use each of the three interfaces to signal to the system their intention to enroll the target speaker in front
of them, while suppressing the interfering sounds emitted by the loudspeaker. When the users correctly
interacted with the device to start enrollment, the headset would play a voice saying "Enrollment start".
While enrolling the target speaker, the participants are asked to keep their head facing the target speaker,
until the enrollment duration has passed and the enrollment is completely recorded, at which point a voice
is played over the headphones, saying "Finished". The enrollment duration for all three interfaces was set to
5 seconds. After interacting with the three interfaces, we asked each participant to rate the three interfaces
from 1-5 based on how likely they are to use that interface for this interaction. The results are shown in
Fig. 2.17(a). Most participants showed a strong preference for the push button because of its good haptic

feedback. All the participants showed the least preference for the smartphone since it required the extra
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Figure 2.17: Results of our user study. (a) shows tha? the push button was the most preferred interaction
method, while the smartphone app was the least preferred option. (b) shows the participant preferences with
different enrollment duration. (c) shows the results of the SUS questionnaire, where we reverse the scale of
negatively worded statements (Q2, Q4, Q6, Q8 and Q10) for easier visualization.

complexity of looking at the smartphone screen while simultaneously trying to face the target speaker.

Evaluating the enrollment duration. We then asked the participants to use their favorite interface
from the previous study to explore their perspectives on a reasonable enrollment duration. Specifically,
each participant performed enrollments with 4 different durations: 2.5s, 5s, 7.5s and 10s. The results in

Fig. 2.17(b) show that 89% of the participants thought that 5 seconds was an acceptable duration for the
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Table 2.6: Benchmarking results on the generated test set. Proposed noisy enrollment methods are evaluated
with 3 different audio/speech processing architectures. Performance with clean enrollments is also provided
for reference.

Enrollment d-vector Real-time SI-SNRi (dB) Params (M) MACs (GMAC)
network similarity TSH backbone
Clean 1.0 Streaming TFGridNet 7.40 2.04 4.63
Waveformer 4.94 1.6 2.43
DCCRN 6.71 5.54 6.6
Beamformer 0.74 Streaming TFGridNet 4.53
Waveformer 2.34 " "
DCCRN 4.34
Knowledge distillation 0.85 Streaming TFGridNet 7.01
Waveformer 4.63 " "
DCCRN 6.16

enrollment period.

Qualitative Results. Next, we asked each of the participants to fill out a System Usability Scale (SUS)
questionnaire, which was developed in [Brooke| [1995]. The overall score was 80.8 + 16.7, which suggests
generally positive feedback on usability. The SUS results for each question are shown in Fig. 2.17|c),
which correlates with being highly usable and acceptable by users, according to Bangor’s [Bangor et al.
[2008|] empirical evaluation. Finally, in addition to the previous studies, we also ask the subjective question:
"Where do you see yourself using such a system?". Five of the participants mentioned using them in crowded
scenarios and expressed similar applications to the response of one of the participants: "I’d like to use it in
large social gatherings like conferences and lectures. I want to just talk with a specific people without
being distracted by others or loud background noise". Five of the participants also mentioned that they were
willing to use it in common public locations such as cafes, restaurants, on the street, karaoke and in large
parties. Furthermore, one participant proposed that this technology might be useful for hearing aids. While
all participants gave positive feedback and proposed useful potential applications, two of them also raised
some limitations. One participant said, "In the real-world, I would also want to focus on a group of people
instead of only one person". Another participant said "I think the headphone form factor is a bit obtrusive.

A wireless earbud form-factor would be more socially acceptable."
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2.6 Conclusion

The above works take an important first step towards realizing real-time programming of acoustic scenes on
binaural hearable devices using the semantic description of sounds. In our work related to binaural target
sound extraction, at its core are two key technical contributions: 1) the first binaural target sound extraction
neural network. Our network can run in real-time, using 10 ms or less of audio blocks, while preserving the
spatial information, and 2) a training methodology that allows our system to generalize to unseen real-world
environments. In-the-wild experiments with participants show that our proof-of-concept hardware-software
system can preserve the directions of the target sounds and separate these sounds in real-time from both the
background noise and other sounds in the environment.

In the later work, we introduce the concept of target speech hearing using noisy examples on hear-
ables that allows a user to focus on a specific speaker, given their speech characteristics, while reducing
interference from other speakers and noise. We make three key technical contributions to achieve this new
capability for hearables: 1) an enrollment interface that uses a noisy, binaural recording of the target speaker
to generate a speaker embedding that captures that traits of the target speaker, 2) a real-time neural net-
work that runs on embedded IoT CPU to extract the target speaker given the speaker embedding, and 3) a
training methodology that uses synthetic data and yet allows our system to generalize to real-world unseen
speakers, indoor and outdoor environments as well as support mobility. Our in-the-wild evaluations show

generalization to real-world unseen indoor and outdoor environments.
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Chapter 3

Spoken Language Modeling

Consider an interpreter in the United Nations, a mental health counselor, a TA in a course office hour or
something much better than a karaoke machine, a personal band. A common task all of them do is to
understand human voice, including all the emotion associated with it, and generate a continuous vocal or
acoustic response. While this might be an oversimplification of the diverse roles humans are playing in
different capacities, we hypothesize that any model that is intelligent enough to generate arbitrary multi-
stream audio (conversations, songs with background tracks, movies etc.) would be to fill-in to the roles we
described above and consequently can serve as real-time personal assistants. The same has been true with
the chat-bot revolution we are in today, where a seemingly simple task of question-answering is unlocking
capabilities as profound as code generation |Ouyang et al.| [2022]]; Thoppilan et al.| [2022]]. Fundamental
to all these tasks are causal audio transformations too, with looser latency constraints relative to semantic
hearing, but requiring much higher-level understanding of audio signals. This chapter describes our work
taking a step in that direction, tackling the problem of full-duplex voice interaction.

’

Despite broad interest in modeling spoken dialogue agents, most approaches are inherently “half-duplex’
— restricted to turn-based interaction with responses requiring explicit prompting by the user or implicit
tracking of interruption or silence events. Human dialogue, by contrast, is “full-duplex” allowing for rich
synchronicity in the form of quick and dynamic turn-taking, overlapping speech, and backchanneling. Tech-
nically, the challenge of achieving full-duplex dialogue with LLMs lies in modeling synchrony as pre-trained

LLMs do not have a sense of “time”. To bridge this gap, we propose Synchronous LLMs for full-duplex spo-
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ken dialogue modeling. We design a novel mechanism to integrate time information into Llama3-8b so that
they run synchronously with the real-world clock. We also introduce a training recipe that uses 212k hours
of synthetic spoken dialogue data generated from text dialogue data to create a model that generates mean-
ingful and natural spoken dialogue, with just 2k hours of real-world spoken dialogue data. Synchronous
LLMs outperform state-of-the-art in dialogue meaningfulness while maintaining naturalness. Finally, we
demonstrate the model’s ability to participate in full-duplex dialogue by simulating interaction between two

agents trained on different datasets, while considering Internet-scale latencies of up to 240ms.

3.1 Synchronous LLMs as Full-Duplex Dialogue Agents

Existing spoken dialogue models are predominantly turn-based interfaces that are half-duplex in nature|Lakho-
tia et al.|[2021]; Zhang et al.|[2023a]; Hassid et al.|[2024]; Borsos et al.|[2023]]. To achieve a change of turn,
these systems rely on either explicit user inputs or pauses at the end of a user’s utterance|Zhang et al.|[2023a].
Human spoken dialogue, by contrast, does not rely on silence as its primary turn-taking cue [Levinson and
Torreira [2015a]]; Nguyen et al.| [2022]. Research indicates that in human conversations intra-turn pauses
(pauses within a speaker’s turn) are usually longer than the intervals between turns across speakers |Heldner:
and Edlund [2010]; Brady| [1968]]; [ten Bosch et al.|[2005]]. English speakers often begin their turns without
waiting for pauses, using grammatical, prosodic, and pragmatic cues to seamlessly initiate their next turn
while minimizing overlaps and gaps Stivers et al.| [2009].

Human spoken dialogue is inherently full-duplex, allowing for seamless, bi-directional communica-
tion where both parties can simultaneously speak and listen. This mode of interaction enables immediate
feedback, interruptions for clarification, and real-time adjustments in information flow Reece et al.| [2023];
Levinson and Torreiral [2015b]]. Unlike half-duplex systems that process text or speech based on full utter-
ances in each turn, human dialogue frequently contains verbal backchannels — short, overlapping phrases
such as "yeah" or "uh-huh" — signals from the listener to the speaker that they understand and that the
speaker may continue. Such synchronous dynamics allow the interaction to flow smoothly and create a
rhythm absent in written text |Heldner and Edlund| [2010]. While humans learn turn-taking cues from in-
fancy to minimize speech overlaps and silence duration Nguyen et al.| [2021]], overlapping speech as well

as long silences are common in human spoken dialogue as they enrich conversations providing additional
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Figure 3.1: SyncLLM as a full-duplex dialogue agent. At current time step (chunk N in the figure),
SyncLLLM’s context contains interleaved chunks of the LLLM’s speech until the current chunk, and the user’s
speech corresponding to all but the current chunk. To be in synchrony with the user, the LLM must generate
its next chunk (chunk N+1) before the end of the current chunk. As a result, SyncLLM first generates an
estimated user’s chunk, which is in-turn appended to the context and used to predict its next chunk.

pragmatic cues. For example, overlapping speech and frequent backchanneling often signifies engaged lis-
tening. Similarly the length of silences can vary across cultures and is influenced by the promptness of
responses |Stivers et al.| [2009]; Nguyen et al.| [2022]. In both cases, these dynamics make conversation
sound more “human.”

Developing a full-duplex spoken dialog agent is challenging for four reasons: 1) Understanding and
generating turn-taking cues in spoken dialogue requires the model to have a common reference clock with
the real-world. However, current LLMs do not have such a sense of “time”. 2) Compared to text-based
chat datasets, spoken dialogue data is limited. A combination of all significant spoken dialogue datasets
Cieri et al.| [2004]; |(Godfrey et al.|[[1992]]; Reece et al.| [2023]] would still result in only ~3k hours of spoken
dialogue data. 3) Full-duplex dialogue entails model to be always listening and should always be ready to
speak, because back-channels or overlaps could occur at arbitrary points in time. This requires the model
to be streaming for the duration of the dialogue. 4) Since the spoken dialogue agent might run on cloud
infrastructure, it must address the fundamental latency inherent in Internet transmissions. Thus, the model

may not have immediate access to the current tokens or speech generated by the user and must operate with
delayed input (Fig. [3.1).
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He, we make multiple contributions for developing a full-duplex dialogue agents:

* We introduce Synchronous LLMs, in short SyncL.LM, for full-duplex spoken dialogue. SyncL.LM achieves
synchrony modeling by integrating time information into LL.Ms so that they can run synchronously with
the real-world clock. We generate a periodic synchronization token to provide a common time frame for
both sides of the dialogue. This however requires us to address duplicate tokens, caused by silence within
and across utterances. Duplicate tokens can adversely affect the semantic capability of spoken dialogue
model [Nguyen et al.| [2022]. Instead, we train our model to predict deduplicated token sequences, with

timing information maintained by our periodic synchronization tokens.

* Human voice interactions rely on the ability to model the other person’s response on the short-term. We
can take turns with gaps as small as 200ms, while language generation latency is around 600ms |Levinson
and Torreira| [2015b]]. This implies we anticipate the next few words of what the other person would say and
respond appropriately. We use this insight to predict speech units for both speakers, into the future, in chunk

sizes of 160-240 ms. This ensures resiliency to Internet latencies of up to 240 ms.

* We propose a three-stage training recipe that leverages synthetic spoken dialogue generated from text di-
alogue data to mitigate the limited availability of real-world spoken dialogue data. Specifically, we use 212k
hours of synthetic spoken dialogue data and just 2k hours of real-world spoken dialogue data to develop a

model that generates meaningful spoken dialogue with naturalistic turn-taking, overlaps, and backchannels.

* With an experimental setup based on Llama3-8b jat Meta|[[2024]] and extensive user-study (n=32), we show
that our method achieves +2.2-point Mean Opinion Score (MOS) improvement in dialogue content Mean-
ingfulness over state-of-the-art full-duplex voice model dGSLM [Nguyen et al| [2022], while maintaining
turn-taking Naturalness. Further, our results show that our model fine-tuned on the Fisher training set|Cieri
et al.[[2004] can generalize to the out-of-distribution Candor testset Reece et al.| [2023|], while preserving

both dialog content meaningfulness and naturalness.

* Finally, by simulating full-duplex dialogue between two finetuned Llama3-8b models, we show how this
approach can enable latency-tolerant and streaming full-duplex voice interfaces. Further, SyncLLM can
perform a coherent conversation even when the user’s side of the conversation is generated by a model

trained with a different dataset.

74



3.2 Related work

Multimodal language models. The success of text language models like GPT-4 OpenAl| [2023]], LLAMA
Touvron et al.| [2023]], and Mistral Jiang et al.| [2023a] has inspired explorations into multimodal models.
Here, we focus our discussion on speech and text modalities. Initialization from a pretrained text LLM has
been shown to benefit multimodal training Hassid et al.| [2023]]. Recent works have proposed extending
the vocabulary of text LLMs with discrete speech tokens to enable the model to handle speech inputs and
outputs Rubenstein et al.|[2023]]. Models are trained with cross-modal knowledge from aligned speech-text
data, including tasks like automatic speech recognition (ASR), text-to-speech synthesis (TTS), speech-to-
text (S2T), and speech-to-speech translation (S2ST). Multitask learning with these tasks has been adopted
by VioLA Wang et al.| [2023b]], AudioPalLM Rubenstein et al.| [2023]], VoxtLM Maiti et al.| [2023]], and
SUTLM |Chou et al.| [2023]]. SpiRit-LM Nguyen et al.[[2024]] interleaves speech and text tokens and trains

the model with next token prediction, demonstrating both speech understanding and generation.

Spoken dialogue models. Prior work on spoken dialogue research covers various topics such as dialogue
state tracking |[Zhang et al.|[2023b]], turn-taking prediction Skantze| [2021]]; Lin et al|[2022], and response
generation [Zhang et al.| [2020]]. Recent works leverage LLMs in dialogue systems [Zhao et al.| [2020]. Ini-
tialized from LLAMA, SpeechGPT Zhang et al.| [2023a] is finetuned sequentially on speech-only data and
multimodal instruction sets to perform spoken question answering (QA) tasks. USDM [Kim et al.| [2024a]
continues pretraining Mistral with interleaved speech-text data to capture multimodal semantics. For dia-
logue finetuning, it constructs templates using both speech and transcripts of user input as instruction data.
Unlike models that use speech tokens, Spectron |[Nachmani et al.|[2023]] directly manipulates spectrograms
for tasks such as spoken QA and speech continuation. However, these prior works are limited to the turn-
taking setting, where the dialogue model is explicitly prompted to speak in its own turn. Human spoken
dialogue is more complex, involving implicit turn-taking cues and overlapping speech, such as interruptions
and backchanneling |Schegloff] [2000].

The closest work to ours is dGSLM |Lakhotia et al.| [2021]], which models simultaneous dialogue using
a dual-tower Transformer that attends to two channels. It demonstrates superior performance than cascaded
architecture which consists of automatic speech recognition (ASR), text LLM and text-to-speech (TTS). One

weakness of dGSLM is its reliance on speech-only training, which does not fully utilize textual knowledge.
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In contrast, our work leverages the generative intelligence of language models, equipping them with multi-
modal and synchronous capabilities. Moreover, in its empirical study, dGSLM does not consider delays in
real-life scenarios and assumes that the hidden states of one interlocutor are immediately accessible to the

other. In contrast, we explicitly discuss how our model handles delayed responses in spoken dialogue.

3.3 SyncLLM

SyncLLM is an auto-regressive transformer decoder architecture, that natively models discrete speech units
in a wall-clock synchronous fashion. SyncLLM is trained to predict interleaving chunks of speech units
corresponding to both sides of the dialogue as shown in Fig. [3.1] In each time step, the model predicts
speech units corresponding to a fixed duration, referred to as the model’s chunk size, for its side of the
dialogue followed by speech units corresponding to user’s side of the dialogue. With this approach, the
model is capable of generating two streams of speech synchronized with a real-world clock. This allows
our method to model all conversational cues such as backchannels, overlaps, interruptions etc. Furthermore,
since we use the same architecture as existing LLMs, our approach can leverage large scale pre-training of
LLMs.

The model trained to predict interleaved chunks of token sequences can be used for full-duplex voice
interaction if we could replace one of the two token streams, with that corresponding to the real-world user.
In Fig. [3.1] purple boxes correspond to token sequences of the LLM’s side of the conversation in each time
chunk and the green boxes correspond to the user’s side of the dialogue. We achieve full-duplex LLM-
user voice interaction by discarding the LLM’s predictions of user’s response and replace it with the user’s

speech.

3.3.1 Latency tolerant interaction

In Fig. consider the Nth time chunk to be current time step. We could interleave the LLM’s output
speech chunks until the Nth chunk, with the user’s input chunks corresponding to only N-1 chunks. The
reasoning here is that the user’s input for the Nth chunk is not available until the end of Nth time step. To
handle this intrinsic latency, similar to the way humans anticipate the next few words of what the other

person taking part in the dialogue would say [Levinson and Torreiral [[2015bf], the LLM’s output for the next
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Figure 3.2: SyncLLM'’s token sequence format visualized with a chunk size of 160 ms. (Top row) We
represent spoken dialogue as interleaved chunks of HuBERT tokens, where the chunk size determines the
frequency of the synchronization token [SO]. (Middle row) We train SyncLLM to generate interleaved
chunks of deduplicated HuBERT tokens along with periodic synchronization tokens. (Bottom row) We
interpolate deduplicated tokens in each chunk to obtain spoken dialogue sequence in the original format.

chunk (N+1) is computed by first estimating the user’s response for the Nth time chunk (depicted in the
figure with green boxes with dotted border). We then append this estimated chunk to the LLM’s context to
generate the LLM’s next chunk (N+1). For generating subsequent chunks (N+2, N+3, ...), we discard the
estimated user’s chunk for Nth time step and replace that with the user’s real-world input, thus grounding

the subsequent interaction with actual input from the user.

3.3.2 Token sequence format

Following prior works in spoken language modeling Nguyen et al.|[20222024]], we use HuBERT Hsu et al.
[2021]] to represent speech. We use the tokenization parameters from Nguyen et al.[[2024], with a token
sampling rate of 25 Hz — resulting in one token for every 40 ms of audio — and a vocabulary size of 501.
To model dialog between two speakers 0 & 1, we define two special tokens [S0] and [S1], referred to as
speaker tags, specifying the start of each speaker’s token sequence, respectively. We represent dialogue as
two parallel speech streams, one for each speaker, interleaved, as shown in the top row of Fig. [3.2] For each
stream, we embed a periodic speaker tag, with the time period equal to chunk size of the model.
Deduplication. The fixed time period of HuBERT tokens is useful for modeling time in the full-duplex
dialogue. However, raw HuBERT sequences consist of significant repeated tokens, mainly caused by si-
lence within and across utterances. The number of repetitions of each unique token denote the duration of
the acoustic unit represented by the token. The semantic content, however, can be modeled by only consid-

ering unique tokens while deduplicating the token sequence Kharitonov et al.[[2022]]; Nguyen et al |[2022].
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Figure 3.3: Tokens required for representing a second of speech with/without deduplication. Histogram
computed over 15 hr of dialog data in the Fisher dataset|Cieri et al.| [[2004]].

Duplicate token sequences can adversely affect the semantic capability of the final spoken dialogue model
Nguyen et al.[[2022]], because as shown in Fig. they contain ~ 50% lower semantic content per token

compared to deduplicated sequences.

So, instead, SyncLLM is trained to predict deduplicated HuBERT sequences, with coarse timing in-
formation maintained by periodically interleaved special tokens, [SO] and [S1], as in the second row of
Fig.[3.2] In the first chunk of the example in Fig. [3.2] the two speaker streams contained 4 repetitions of
[75] and [89], respectively. After deduplication, the interleaved token sequence corresponding to the
first chunk would be [S0] [75]1[S1]1[89]. In the second chunk, speaker O has 2 new tokens ([17] &

[3381]), but speaker 1 tokens are just a repetition of the last token in the previous chunk, [89]. So, the
second chunk’s token sequence would just be [SO] [17] [338]. Note that when a chunk contains no
novel tokens corresponding to speaker 1, we exclude speaker 1’s special token [S1] as well. However, this
is not the case for speaker 0, as we need one of the speaker’s special token to be present in all chunks to

unambiguously distinguish chunks. This is shown in the third chunk of Fig.[3.2]

Interpolation. While deduplicated token sequences are beneficial for auto-regressive modeling, to gen-
erate token sequences suitable for speech synthesis, we need periodic HuBERT tokens in the original format.
Since the speaker tag [ S0] maintains the timing information, we know the number of tokens removed after
deduplication within each chunk. We use this to interpolate the deduplicated token to match the expected

number of token in each chunk. For example, in the first chunk of Fig.[3.2] speaker 0’s stream only has one
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Table 3.1: Data used for training in different stages. We convert text based data to speech using TTS.

Stage  Source Speech
modality  (hrs)

Supervised 1 Text 193k
finetuning (SFT)
Dialogue 2 Text 20k

Spoken dialogue 3 Speech 1927

token after deduplication. But since chunk size in that case is 160ms, each chunk would contain 160/40 =
4 tokens. So as shown in the third row of Fig. [3.2] we repeat the deduplicated token thrice to reconstruct
the chunk. If a chunk has multiple deduplicated tokens, like the second in Fig. [3.2] we repeat each token by
an equal amount. We note this approach could result in an error because the original chunk may not follow
this heuristic. We observed that the effect of this is imperceptible even with a chunk size of 240 ms, likely
because the error in the predicted duration of each token is upper bounded by the chunk size. Further, in

chunks with more novel tokens, the error would be even smaller.

3.4 Training

We use Llama3-8b |at Meta| [2024] as our base model and employ a three stage training procedure that uses
synthetic spoken dialogue data predominantly and relatively small amount of real-world spoken dialogue
data to develop a full-duplex voice agent.

Stage 1: Turn-based spoken dialogue model with synthetic speech data. Given the limited spoken
dialogue data, we generate synthetic speech data from large-scale text dialogue datasets. We use supervised
finetuning (SFT) datasets, as our source text-dialogue datasets. We used Bark TTS |All [2023]] model to
generate spoken versions of text-dialogue datasets, with its 10 speaker presets.

Since Llama3-8b is a text-only LLM, in the first stage, we aim to achieve text-speech alignment in the
context of dialogues. Given a spoken question, we train the model to generate a spoken response. We expand
the vocabulary of Llama3 to include 501 HuBERT tokens, in addition to the speaker tags, [S0] and [S1].
A turn-based dialog could be defined as made of turns, which in turn are made of sentences. We finetuned

Llama3 with dialog sequences in the following format:

[S1]<sent0>[S0]<sent0><sentl>[S1]..
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Figure 3.4: We sample speech percentages from truncated normal distribution, so we obtain samples with
all possible combinations of text-speech interleaving throughout the training process, with a bias for higher
speech percentages as the training progresses. This resulted in stable training when starting out with a text-
only LLM.

Each sentence is randomly chosen to either be text or deduplicated speech token sequences during
training. For each training sample, we sample the percentage of speech sentences in the training sequence
from the truncated normal distribution (Fig. [3.4). Training only with fully speech sequences or step-wise
increment of speech percentage resulted in unstable training. Sentence level text-speech interleaving not
only trains the model to be capable of performing dialog, but also achieves text/speech alignment in the
context of dialog.

Stage 2: Full-duplex dialogue assuming no overlaps. Turn-based spoken dialogue is special case of full-
duplex dialogue with no overlaps. Based on this observation, we could treat synthetic spoken dialogue data
as full-duplex spoken dialogue data where during one speaker’s turn, other speaker is completely silent. In
this stage, we create synthetic spoken dialogue data from text-dialogue data similarly to the previous stage
with one main difference: From each turn in the dialogue, we generate a speech utterance corresponding to
one speaker and silence of equal duration corresponding to the other speaker. We then tokenize the parallel
speech dialog data in the format shown in the second row of Fig. [3.2] This way, we can further leverage
text-dialogue data for help our model learn the token sequence format in Fig.[3.2] This stage of finetuning
models timing within an utterance. The model cannot learn turn-taking cues such as back-channeling or

overlaps between two speakers yet.
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Table 3.2: Comparison of Pearson correlation of turn-taking event durations between generations and
ground-truth continuations, given same set of prompts. SyncLLM’s chunk sizes are shown in parenthe-
sis.

Model Fisher (in-distribution) Candor (out-of-distribution)
ipu pause fto Average ipu pause fto Average
dGSLM 048 041 0.10 0.33 0.30 0.02 0.09 0.14
SyncLLM-F (160 ms) 0.60 0.50 0.20 0.43 045 0.09 0.14 0.23
SyncLLM-F 200 ms) 0.60 049 0.19 0.43 044 028 0.14 0.29
SyncLLM-F (240 ms) 0.58 040 0.25 0.41 045 027 021 0.31
Prompt 0.72 053 031 0.52 0.54 030 0.12 0.32
Resynth-GT 092 092 0.53 0.79 090 0.86 0.37 0.71

For the the previous stage, most samples in SFT datasetswould contain one speaker (user of the LLM)
taking a short turn and the other speaker (the LLM) giving a long response. Spoken dialogues however
contain more frequent turn-taking taking with short utterances. Therefore for this stage, we use text-dialogue
datasets comprising of shorter turns, equivalent to around 20k hrs of synthetic spoken dialogue.

Stage 3: Modeling with real-world spoken dialogue data. Finally, we finetune the model to learn turn-
taking cues from real-world spoken dialogue data. We use the Fisher [Cieri et al.| [2004]] dataset with 2000
hours of spoken dialogues, where each speaker’s speech in a dialogue is separated into independent audio
channels. We split the dataset into train, val and test split with 98:1:1 ratio, respectively. Each audio channel
in the dialogue is separately tokenized and interleaved in the full-duplex dialogue format used in the previous
stage. In this stage in addition to learning timing within utterances, the model learns effective turn-taking,

conversational cues like accurate distribution of pauses between turn and backchanneling.

3.5 Evaluation

We evaluate SyncLLM in both continuation and interaction settings. In the continuation setting, given a
spoken dialogue prompt, the model generates both sides of the dialogue. For interaction setting, we simulate
interaction between two instances of SyncLLM as described in We denote SyncLLM trained on
Fisher in continuation setting as SyncLLM-F and use dGSLM as the continuation setting baseline. Both
dGSLM and SyncLLM-F use Fisher as the only real-world spoken dialogue dataset for training. We denote
SyncLLM trained on Fisher interacting with an instance trained on Fisher as SyncLLM-F-F, and SyncL.LM

trained on Fisher interacting with an instance trained on CANDOR |[Reece et al.|[2023]] as SyncLLM-F-C.
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Figure 3.5: Perplexity of transcriptions of spoken dialogues generated by different models. Perplexity is
measured with respect to a text dialogue model’s predictions.

3.5.1 Semantic evaluation

We evaluate the semantics of SyncLLM in the text domain by converting spoken generations to text using
ASR. We transcribe the generated spoken dialogues into turn-based text dialogues ignoring any overlapping
speech. We then compute perplexity of transcribed dialogues generated with 10 second spoken dialogue
prompts, with respect a text-only dialogue model. To account for outliers (samples with abnormally high
perplexities), we consider median perplexity over the testset.

Fig.[3.5]compares the semantic quality of spoken dialogues generated by SyncLLM with different chunk
sizes to the prior state-of-the-art full-duplex dGSLM model Nguyen et al.|[2022]] and ground-truth contin-
uations. We find that dGSLM has a perplexity drop of ~70 relative to the ground-truth, while SyncLLM
only has a drop of ~15. Fig.[3.6|also compares median perplexities measured with prompts sampled from
Fisher and Candor test splits separately, with all models trained only on Fisher training split. Here, Candor
test split is an out-of-distribution testset.

These evaluations show that our approach of using the standard auto-regressive architecture, thus lever-
aging vast text pre-training, results in much more semantically coherent spoken dialogue model, compared
to a custom architecture proposed for speech-only training. Furthermore, our three-stage training approach
leveraging large amount of synthetic spoken dialogue data generated from text dialogues, allows us to con-

verge much faster on limited real-world dual-channel spoken dialogue data. This results in a general model
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Figure 3.6: In-distribution and out-of-distribution testing.

that has superior out-of-distribution (ood) performance.

3.5.2 Naturalness evaluation

Appropriate timing of pauses, speaker transitions and overlaps are integral part of spoken-dialogue which
convey essential information required for natural spoken conversation. To evaluate these aspect of our gen-
erated spoken dialogues, we consider the turn-taking events proposed in Nguyen et al.| [2022] that evaluate
overall naturalness of generated spoken dialogues: inter-pausal units (IPUs), pauses, and floor-transfer off-
set (FTO). FTO is the duration of between turn-transitions, which is a combination of overlaps and gaps —
negative FTOs represent overlaps and positive FTOs represent gaps.

Similar to dGSLM’s setup, we use 30s prompts sampled from the test splits and generate 90s dia-
logues with different model configurations. We then compute pair-wise correlation of turn-taking event
durations between the dialogue generations and ground-truth continuations, given the same prompt. We
first compute voice activities of each side of dialogue (generated in separate audio channels) using the
pyannote.audio library |Bredin et al.|[2020]. We then measure the start and end timestamps for each
turn-taking event. We measure the average duration of the turn-taking events in generated dialogues and
then compute the Pearson correlation between the average durations observed in generations of different
models and those in the ground-truth.

Table. [3.2] compares this correlation with in-distribution Fisher [Cieri et al| [2004] test-split and out-
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Table 3.3: Meaningfulness (Meaning.) and Naturalness (Nat.) (scores 1-5) mean estimates and standard
errors (in parentheses), aggregated overall and for Fisher and CANDOR subsets. We use a 160ms chunk
size for this study.

Overall Fisher CANDOR
Model Meaning. 1 Nat. T Meaning. 1 Nat. T Meaning. 1 Nat. 1
dGSLM 1.55(0.06) 3.95(0.08) 1.67(0.09) 4.21(0.08) 1.43(0.08) 3.70(0.12)
SyncLLM-C  3.40 (0.07) 3.96(0.06) 3.14(0.10) 3.97 (0.08) 3.66(0.08) 3.94 (0.08)
SyncLLM-F  3.74 (0.06) 3.90(0.06) 3.82(0.08) 3.98 (0.08) 3.67(0.09) 3.82(0.10)
Re-synth 3.87(0.06) 4.03(0.05) 4.04(0.08) 4.14(0.08) 3.69(0.07) 3.91(0.06)
GT 4,96 (0.02) 4.96(0.02) 4.96(0.03) 4.94(0.04) 4.97(0.02) 4.98(0.02)

of-distribution Candor test-split. We observe that, generations with our models achieve better turn-taking
event correlation with ground-truth continuations compared to dGSLM for both in-distribution and out-
of-distribution testsets. In addition to this, we provide turn-taking event correlation with prompts and
re-synthesized ground-truth continuations (Resynth-GT). Resynth-GT is obtained by re-synthesizing the
tokenized ground-truth continuation. Resynth-GT does not perfectly correlate with ground-truth owing to

variance in timing introduced by the tokenization process, and serves as a topline for our method.

3.5.3 Human Evaluation

We conduct an evaluation study with 32 annotators recruited via a third party vendor with the requirement
that they had native-level English proficiency.

We adapt the Mean Opinion Score (MOS) protocol (a 5-pt Likert scale) ITU-T Recommendation P.808
[2018]] to evaluate Naturalness (N-MOS) of turn-taking and Meaningfulness (M-MOS) of dialogue content.
For both N-MOS and M-MOS, annotators are presented with the prompt- and continuation-audio. Anno-
tators are instructed to first read the descriptions of N-MOS and M-MOS, listen to the prompt audio, then
listen to the continuation audio. Finally, they are asked to provide a rating considering the quality of the
continuation audio relative to the information contained in the prompt. Each annotator assigned to a given
prompt / continuation pair provides a rating for both N-MOS and M-MOS.

In total, ngnnee = 32 annotators provided ratings for nems = 180 items divided evenly between the
CANDOR and Fisher datasets. Each sample received a rating from 1 — Bad, ...,5 — Excellent by three
unique raters. We compute item-level scores by taking the median score per item. To compute system-

level scores we take the mean of item scores for a given system. We compute 95% confidence intervals via
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Figure 3.7: Comparison of ASR perplexity between continuation mode and interaction-mode.

bootstrapping, resampling at the item level for n; = 1000 iterations.

Overall results. The two left-most columns of Table. [3.3]indicate that nearly all models are at parity in per-
ceived Naturalness (N-MOS) of turn-taking, while close to re-synthesized ground-truth values. On the per-
ceived Meaningfulness (M-MOS) of the dialogue content, SyncLLLM-based models significantly outperform
dGSLM, approaching re-synthesized ground-truth values. Resynth-GT here accounts for the tokenization

process and is the topline number for the implementation of our method using the HuBERT tokenizer.

In-distribution and OOD. Table. [3.3] also highlights the difference between in-distribution (Fisher) and
OOD (CANDOR) between dGSLM and Fisher-trained SyncLLM-F. While dGSLM suffers from signifi-
cant degradation OOD (dropping -0.24 and -0.51 in M-MOS and N-MOS ratings), these declines are re-
duced in SyncLLM-F only dropping -0.15 and -0.16 moving OOD. SyncLLM trained on CANDOR dataset
(SyncLLM-C) shows a decline OOD on M-MOS (-0.52), but not N-MOS (+0.03). We note that dGSLM
Nguyen et al.| [[2022] uses speech representations fine-tuned on the Fisher dataset, while our method uses
general-purpose speech representations for all domains of speech. This results in our method outperform-

ing the baseline on the out-of-distribution Candor testset in naturalness, as judged by human evaluators in

Table. 3.3
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Table 3.4: Human evaluation results for Meaningfulness (Meaning.) and Naturalness (Nat.) mean estimates
and standard errors (in parentheses) across all data.

Model Meaning. 1 Nat. 1

dGSLM 1.55(0.06) 3.95(0.08)
SyncLLM-F 3.74 (0.06) 3.90 (0.06)
SyncLLM-F-C  3.39 (0.06) 3.78 (0.06)
SyncLLM-F-F  3.47 (0.06) 3.72 (0.06)

3.5.4 Full-duplex interaction

We simulate LLM-user interaction using LLM-LLM interaction with one-chunk latency. We evaluate our
model trained with different chunk sizes, thus simulating different latencies. We also train a version of
SyncLLM with Candor training split in the third training stage, and simulate its interaction with the original
model trained with only Fisher.

In Fig. we compare median perplexities obtained with prompts sampled from Fisher and Candor
test splits. We also show the perplexity of ground-truth and samples generated in the dialog continuation
setting for reference. We find that SyncLLM in the LLM-LLM interaction setting is able to closely match
the performance of the continuation setting, and perform significantly better than dGSLM in continuation
setting. Furthermore, we find that interaction between instances of SyncLLM trained with Fisher and Candor
datasets, respectively is are almost the same signifying that SyncLLM can perform a coherent conversation
even when user’s side of the conversation is generated by a model trained with a different dataset.

Human evaluation. Table. shows ratings for dGSLM, the Fisher-trained continuation model, and LLM-
LLM interactions. Results corroborate findings in §3.5.4/- LLM-LLM interactions outperform dGSLM on

M-MOS, but are slightly worse compared to the single model continuation setting.

3.6 Robustness to interfering speech

While the previous method demonstrated full-duplex interaction, there are few missing components in mak-
ing it deployable. First, the model still has to learn with a few thousand hours of real-world spoken dialogue
data, because the dialogues have to separated into different channels. But there is so much conversation
data available in the world, a more scalable approach that could leverage all of that data. The current model

trained on speaker invariant speech representations fail with interfering speech, more general sound repre-
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Figure 3.8: Spoken dialogue model trained to understand acoustic tokens (shown as multiple streams of
purple circles corresponding to multiple codebooks) and generate text/speech representations. When gen-
erating speech response, it is beneficial to concurrently generate corresponding text tokens. Training the
model to generate speech and text streams concurrently results in stronger alignment between speech and
text modalities.

sentations might make it more robust to noise.

Humans understand all sounds and generate speech. If a model can understand the audio as it is, not just
its speech component, then may be it’ll allow us to train with all publicly available audio data on the internet.
And more importantly, a model that understand all sounds is inherently more robust to noise because, it know
what to focus on and what to ignore. At each timestep speaker invariant speech representations take about
500 states. In contrast, best audio tokenizers Défossez et al.| [2022]]; Kumar et al.|[2023]] can represent audio
with 16 streams of token, where token in each stream can take 1024 states. This implies that each timestep
can take a total of 210 states. Clearly, flattening all states to a single stream is not tractable, so this forces
us to model each stream separately. In this section, we investigate dialogue modeling with raw acoustic
representations.

In real-world scenarios where spoken language model are deployed, we would often have background
noises when the user is speaking. Prevalent speech representations such as HuBERTHsu et al.| [2021]] are
robust to background noises if the noise is uncorrelated to speech. However, due to their speaker invariance,

they amplify spurious speech noise in the background. Here we propose that a model that can understand
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general audio representations [Défossez et al.| [2022]]; |Kumar et al.| [2023]] would be inherently capable of
who the user is based on their voice characteristic and a result, would be more robust to in-domain (speech)

noise, greatly enhancing the usability of spoken language models.

3.6.1 Spoken dialogue models with acoustic representations

Towards making spoken dialogue models robust to correlated background noise, we could modify the stage
1 of SyncLLM’s training by providing acoustic representations in the prompt, while keeping the response is
text or semantic speech representations [Liu et al.[[2023]]. The would allow the model to understand speech
input from the user, without the usual loss of intonation and voice characteristics resulting from speaker-
invariant speech representations. To achieve this, similar to SyncLLM’s approach, we expand the LLM’s
vocabulary to incorporate acoustic tokens, in addition to speech tokens.

We employ synthetic spoken dialogue data described in §3.4] to train a noise robust turn-based dialog
model. As shown in Fig. [3.8] spoken prompt for the model is provided as multiple streams of acoustic
tokens. At each timestep, embeddings corresponding to each of the acoustic streams are summed up before
providing them to the transformer blocks. The model is then trained to predict aligned text and speech token
streams, with multiple projections heads. Concurrently generating text and speech streams has been to be
beneficial for strong text & speech modality alignment Défossez et al.| [2024]]. In order for the LLM to
learn to focus on the target while ignoring noise, we mix the clean spoken prompt with —10dB to —5dB
of correlated (speech) noise as well as uncorrelated noise. We used prompts from different speakers in the
same dataset as the source of correlated noise to make sure there is no acoustic property difference between
noise and spoken prompts. We use 10s clips from |Gemmeke et al.| [2017al], as the source for uncorrelated

background noises.

3.6.2 Dialogue evaluation using an LLM-as-a-judge

For evaluating the effectiveness of provided spoken prompt as acoustic representations, we train the follow-

ing spoken dialogue models with different input and output modality combinations:

* speech2speech: Given a spoken dialogue prompt as DinoSR units [Liu et al.| [2023] (semantic

speech representations), the dialogue model is trained to generate a spoken response as DinoSR units.

88



Mean Score

audio2text audio2speech speech2speech
Model

Figure 3.9: Performance of dialogue models with semantic speech unit prompts (DinoSR) vs acoustic unit
prompts. Contrary to the prevalent opinion that semantic speech units are necessary for good performance,
we observe that in realistic noisy situations models that are able to understand raw acoustic representations
are able to perform better.

Concurrently, the model is also trained to predict aligned text stream corresponding to the spoken

response.

* audio2speech: This model is trained to generate a spoke response in the same format as above,
but the spken prompt is provided as acoustic representations. Here, we use DAC units
[2023]] as the acoustic representations.

* audio2text: For a given audio prompt, this model is trained to provide a text response. This model

serves as a top line for the dialogue performance with acoustic unit prompts.

In addition to these, we train a text-only dialogue model, audio2text, using the same set of su-

pervised fine-tuning [Touvron et al.| [2023]] datasets that were originally used for generating out synthetic

datasets. We use Prometheus [Kim et al.| [2024b], LLM-as-a-judge framework to evaluate the quality of re-

sponses of different models. We use a common set of noise augmented prompts represented in text, DinoSR

units and DAC units as our test set. The responses are then evaluated with Prometheus judge models to ob-
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tain an score between 1-5 for each response. We used audio2text as the reference responses. The speech
and acoustic responses are transcribed using WhisperX [Bain et al.| [2023]] library to obtain text equivalent
of the responses for LLM-based evaluation. We compare the performance of different model in Fig. [3.9]
We observe that in correlated noisy settings, audio2speech outperforms the speech2speech model

while also opening the door for new capabilities such as general audio and music understanding.
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Chapter 4

Conclusion and Future Work

This thesis first presented methods for several capabilities we collectively refer to as semantic hearing, that
allow us to essentially program acoustic scenes around us. Such methods provide users with enhanced and
even super human hearing capabilities. This shows a glimpse into the bigger vision of the augmenting
human auditory perception with Al. And in fact, we believe that in the next decade, Al will become more

and more ubiquitous on hearables to enhance and augment human perception.

We then approached the problem of full-duplex voice interaction between an agent and user as yet an-
other streaming waveform to waveform transformation. We show that the existing auto-regressive language
models are compatible with this framing. So, we leveraged a pretrained language model to develop a more
meaningful full-duplex voice model, compared to the state-of-the-art. Unlike previous problems where the
input latency is virtually negligible, there could be internet-scale latency in receiving the input stream. In
this work, we also propose techniques that are robust to input latency. Finally, we discuss the practical issues
due to interfering speech during the deployment of spoke dialogue models, and show that spoken dialogue

models trained with acoustic representations are more robust.

The recent emergence of sophisticated reasoning models Huang and Chang| [2023]] suggests that seman-
tic consistency and naturalness may become insufficient for full-duplex agents. Users will likely expect these
agents to possess comparable reasoning capabilities to state-of-the-art models. A significant performance
gap would force users to choose between human-like conversational agents and high-performing models

with potentially inconvenient interfaces. Bridging this gap will be crucial for the widespread adoption
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of full-duplex agents. Drawing inspiration from human customer care operators who consult experienced
managers, a robust full-duplex agent could be designed to query a more intelligent model when faced with
complex user requests. Such an architecture would enable the agent to not only engage users in human-like
conversations but also leverage the power of a reasoning model to address intricate queries effectively.

The power of large-scale self-supervised learning, well-established in text modeling, remains largely
untapped for audio, despite the vast amounts of available digitized audio data. Recent work such as Moshi
Défossez et al.| [2024] represents progress, scaling audio pre-training to 2 million hours. However, at a
token frequency of 12.5 Hz, this yields less than 0.1 trillion tokens, dwarfed by the ~15 trillion tokens
used in contemporary text pre-training (a 150x difference). This significant gap presents a compelling
opportunity: by matching the scale of text pre-training in the audio domain, future large models could
unlock seamless transfer learning between textual and auditory modalities, leading to more versatile and

powerful Al systems.
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Chapter A

SyncLLM training details

A.1 Hyperparameters

We trained SyncLLM with the Llama3-8b’s original sequence length 8192. In the first stage, we train with
a per-gpu batch size of 1 on 128 A100 GPUs, equivalent to a total batch of 8192 x 128 = 1M tokens. We
use a learning rate of 3 x 1075, with 500 step warmup and train for 40k iterations. In the second stage, we
reduce the batch size to 512k tokens, learning rate to 2.2 x 10~° and warmup steps to 200, and train for 6000
iterations. In the last stage, we train with a batch size of 256k tokens, with a learning rate of 1.5 x 10~ and

100 warmup steps, for 2000 iterations.

A.2 Benchmarking interleaving strategies

We explore two text-speech interleaving strategies in stage 1 of our training: i) Sentence-level interleaving:
each sentence is chosen randomly to be either text modality or speech modality. ii) Turn-level interleaving:
each turn is chosen randomly to be either text modality or speech modality, resulting in consistent modality
for all the sentences within the turn. We compare them by evaluating on a set of spoken language under-
standing benchmarks proposed in[Nguyen et al.|[2020]. We report these results in Table[A.T] On these tasks,

we observe that sentence-level interleaving outperforms turn-level interleaving across all benchmarks.
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Table A.1: Ablation evaluations over interleaving level. WUGGY, BLIMP, Topic-StoryCloze, and Sto-
ryCloze assess the knowledge and capacity of the model in lexical, syntactical, and semantic levels respec-
tively. We report the accuracy based on negative-log-likelihood — normalized by the number of tokens —
minimization prediction. The tasks are evaluated in the zero-shot setting.

Interleaving WUGGYT BLIMP{ Topic-StoryClozef StoryClozef

Turn-level 63.0 56.0 76.5 55.1
Sentence-level 70.3 56.3 83.0 61.8

Table A.2: Comparison of average Pearson correlation of turn-taking event durations between generation
and ground-truth continuation with SyncLLM in the two-model interaction setting. Measured on testsets
comprising both Fisher and Candor testsets.

Latency SyncLLM-F-F SyncLLM-F-C

160 ms 0.32 0.36
200 ms 0.31 0.35
240 ms 0.28 0.32
Table A.3: Comparison of Pearson correlation of turn-taking event durations between prompt and genera-
tion.
Model Fisher (in-distribution) Candor (out-of-distribution)
ipu pause fto Average ipu pause fto Average
dGSLM 0.60 034 0.23 0.39 043 020 0.09 0.24
SyncLLM-F (160 ms) 0.69 0.34  0.35 0.46 0.64 0.12 0.24 0.33
SyncLLM-F (200 ms) 0.57 049 0.29 0.45 0.61 034 0.13 0.36
SyncLLM-F (240 ms) 0.63 049 0.33 0.48 059 0.23 0.19 0.34
GT 0.72 0.53 031 0.52 0.54 030 0.12 0.32

A.3 Naturalness-MOS Instructions

Naturalistic turn-taking between two people is characterized by smooth transitions where each participant
listens to the other, responds appropriately, and allows for pauses or silences, creating a balanced and dy-
namic interaction. Typically, the participants try to avoid overlapping speech, although this may occur espe-
cially when one participant provides information that they understood the other by using words like “yeah”
or “uh-huh.” Hesitations, pausing, silence, and repairs are also natural events that occur in a conversation
between two people.

Here, you will listen to a dialogue between two people and provide a rating for how natural the turn-
taking sounds regardless of its content (the meaning of the words used) and the clarity of voices.

Some of the samples are generated by an Al model, some are actual recordings of humans in conversa-

tion, and some are actual recordings of people, but with Al generated voices overlayed. Please try to assess
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the naturalness of the turn-taking without taking into consideration the sound of the voices.

To begin, first listen to the “prompt” audio in its entirety. This is the first part of the conversation. Then
listen to the “continuation” audio in its entirety. This is the second part of the conversation. Note that in
many cases the voices in the prompt may differ from the voices in the continuation (including the perceived
gender of the speakers). Your rating should reflect how natural the “continuation” audio sounds given the

turn-taking characteristics you observe in the “prompt.”

A3.1 N-MOS & M-MOS

We provide the complete protocol used for human evaluation of turn-taking Naturalness and dialogue con-
tent Meaningfulness.

Audios presented

Please base your rating on the impression you have that two people are talking and listening naturally

with one-another in the “continuation” audio.

* Excellent - basically indistinguishable from human-like turn-taking
* Good - minor differences from human-like turn-taking

* Fair - substantial differences from human-like turn-taking

* Poor - very little in common with human-like turn-taking

* Bad - essentially nothing in common with human-like turn-taking

Meaningfulness-MOS

In this task you will listen to a dialogue between two people and provide a rating for how meaningful their
conversation is. By meaningful we mean the degree to which the content of the conversation is coherent and
plausible (can you understand the intent of the speakers and does it sound like something people would rea-
sonably talk about). Just as in everyday conversations, the content may or may not be perfectly grammatical,
but must be understandable in the context of the conversation.

To begin, first listen to the “prompt” audio in its entirety. This is the first part of the conversation. Then
listen to the “continuation” audio in its entirety. This is the second part of the conversation. Note that in

many cases the voices in the prompt may differ from the voices in the continuation (including the perceived

113



@
536 [ t—0u /
b ®
X
L34
o —e— Latency = 160 ms
332 Latency = 200 ms
c —eo— Latency = 240 ms
o ¢
8 30
=
@ ®
10 15 20 25 30

Duration of the generated dialogue (s)

Figure A.1: Effect of latency on two-model interaction.

gender of the speakers). Your rating should reflect how meaningful the “continuation” audio is, given the
“prompt.”

Audios presented

Please base your rating on the impression you have that the continuation is a meaningful “continuation”
of the prompt audio - that it represents a plausible direction the conversation would go and is coherent.
* Excellent - all of the conversation content is plausible and coherent
* Good - most of the conversation content is plausible and coherent
* Fair - some of the conversation content is plausible and coherent

* Poor - little of the conversation content is plausible and coherent

* Bad - basically none of the conversation content is plausible and coherent

A.3.2 List of all keywords

all_keywords = ’dancing’, 'nutrition’, 'motorcycles’, 'minimalism’, ’crafts’, 'makeup’, ’cars’, ’singing’,

’wine’, candy’, *backpacking’, *nature’, ’television’, ’fitness’, 'museums’, ’yoga’, ’skincare’, 'travel’, ’gui-

tar’, "beer’, ’film’, ’skiing’, ’coffee’, ’theater’, theme_parks’, ’piano’, 'restaurants’, ’trains’, ’gardening’,

"books’, ’violin’, *football’, ’programming’, *water’, ’developer’, ’concerts’, "health’, *baking’, *'mindful-
)

ness’, ’knitting’, ’climate’, “hiking’, ’cooking’, ’podcasts’, ’tea’, ’student’, ’art’, ’sunshine’, ’camping’,
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“photography’, 'reading’, ’snacks’, ’history’, ’bowling’, "VR’, ’exercise’, ’gaming’, woodworking’, *'mu-
sic’, ’food’, ’festivals’, ’surfing’, ’bridges’, ’shopping’, 'movies’, ’graffiti’, ’ice skating’, ’sports’, ’an-
imals’, ’drawing’, ’fashion’, ’ocean’, ’soccer’, ’skating’, ’basketball’, 'running’, ’climbing’, ’welding’,
’sleep’, ’anime’, ’tennis’, ’religion’, ’office’, ’drums’, *philosophy’, ’dance’, 'DIY’, ’volleyball’, *beach’,
’social_media’, *writing’, "'museum’, ’comics’, ’driving’, *'meditation’, ’swimming’, *cricket’, psychology’,

‘pets’, *painting’

A.4 Effect of latency on full-duplex interaction

In Fig. [A.T] we compare the performance in the interaction setting with different latencies. We find that our
method is robust to a latency as much as 200 ms, but the performance drops with latency greater than that.
Similar to our naturalness evaluation in the continuation setting in §3.5.2] to evaluate turn-taking capability
of SyncLLM in interaction setting, we compare Pearson correlation of the duration of turn-taking events
in generation and ground-truth continuations. In Table we observe that on a combined test set of in-
distribution and out-of-distribution prompts, performance in the interaction setting closely matches with

latencies 160 ms and 200 ms, but drops with 240 ms.

A.5 Turn-taking event correlation between prompt and generation

Similar to the naturalness evaluation in Table[3.2] where we consider ground-truth continuation as the refer-
ence for turn-taking event statistics, we could also consider prompt as the reference. In a way, this measures
style consistency between prompt and the continuation. In Table we compare turn-taking event corre-
lation of generations of our method in continuation setting, with that of dGSLM method. We observed that

our method demonstrates better turn-taking correlation with the prompts as well.
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