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As processor design complexities increase, so do their verification complexities. As a con-

sequence, processor verification has slowed down and become less reliable. The recent drift

towards agile chip design philosophies and increasingly expensive ramifications of bugs and

security vulnerabilities only aggravate the situation. Despite advancements in expensive com-

mercial verification solutions, there is still a need for cost-effective, fast and high-confidence

open-source verification solutions. Automated verification methodologies have emerged as

promising candidates for their speed and reliability; however, automation comes with its fair

share of open problems – which an inexpensive, easy-to-setup, and modifiable experimenta-

tion platform can help research.

This thesis presents an open-source framework, ZP Cosim, for FPGA-accelerated cosim-

ulation of RISC-V processors. The framework is cost-effective, customizable, and scalable to

FPGA-clusters, and has been field-tested against the silicon-validated BlackParrot processor.

The framework additionally offers a novel implementation of automated coverage instrumen-

tation and a customizable FPGA shell for coverage and trace extraction. ZP Cosim achieves

a speedup of over 2000x against cosimulation in a popular RTL simulator. The application

of the framework to BlackParrot resulted in the discovery of 4 designer-acknowledged mi-

croarchitectural bugs. The thesis discusses these in detail along with observations of the



coverage effected by popular benchmarks and randomly generated programs.
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Chapter 1

INTRODUCTION

Increased processor design complexity is generally an acceptable tradeoff for better per-

formance and energy efficiencies. This complexity is often a result of high-degree of hardware

customization through host coupled accelerators, coprocessors, complex memory hierarchies

and interfaces, and nuanced microarchitectural innovations. Consequently, verification of

complex processor hardware is significantly challenged in timespan, complexity, and reli-

ability. In addition, with the recent fascination with agile chip design philosophies [68],

aggressive time-to-market windows, aggravating ramifications of bug-fixes post-silicon and

resulting expensive ASIC respins, a fast and high-confidence verification becomes a funda-

mental necessity for commercial chip design.

Present-day processor designs easily span millions to billions of logic gates leading to

a humanly untamable, or practically inexhaustible, hardware state-space1 to verify, and

because of the nuances of the customized microarchitectures and the runtime ecosystems,

there is often a high non-recurring engineering (NRE) cost to setting up and exercising pro-

cessor verification. In practice, however, a significant fraction of the state space is safely

ignorable, never exercisable, or unimportant during verification for various reasons. In fact,

some fraction of the theoretically possible state-space of complex processors will likely never

be exercised in the entirety of the product lifetime 2. Moreover, it may often be crucial

to test nuanced microarchitectural innovations manually because complex states and state-

1Hardware state-space in the context of verification is the set of hardware states and/or functionalities
(that need to be tested and validated).

2Consider for example, a processor design with 1000 control path expressions (equivalent to decision
statements in the design description) which is not uncommon in a modern-day multicore. The resulting
hardware state-space is 21000. Assuming that the processor runs at 5 GHz continuously for 10 years
without ever repeating a state, the state-space it would cover would be less than 261
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transitions may not lend themselves to randomized test vectors3. Nevertheless, it remains

theoretically possible to test the design reliably by maneuvering the structural design de-

scription automatically – presumably, through well-devised coverage metrics that prioritize

the annotation of important states and state-transition in the design followed by intelligent

test-vector mutations.

A concise hardware state-space enables effective hardware fuzzing4 over a chosen con-

straint – usually, program length (or equivalently, simulation time). Critical feedback, often

in the form of functional or structural coverage5, assists the fuzzer in reaching hitherto uncov-

ered (or unexercised) states, usually via learnable test vector mutations. However, manually

identifying reliable and useful coverpoints to infer coverage is laborious. This motivates

automated coverage metrics. Complementing fuzzing with cosimulation against a golden

reference model of the hardware obviates needing to define and reason about different states

of the hardware manually or formally, thus shorting high-confidence with fast and reliable

verification. Ultimately, the most important measure of a hardware verification infrastruc-

ture is the number of bugs discovered (new and inclusive of prior discoveries), and the ideal

verification infrastructure should excel at this.

With this in mind, the rest of the thesis presents ZP Cosim, a framework for fuzzing

and hardware verification of complex RISC-V processors, while remaining faithful to the

following adjectives:

Research-Fertile ZP Cosim allows accelerated critical evaluation of long running bench-

marks and the coverage they effect on the hardware. The insights gained through run-

ning SPEC benchmarks on BlackParrot processor are discussed in Chapter 4. More-

over, with the recent boom in hardware fuzzing based research [72, 124, 130], a ZP

3Randomized test vectors are one of the alternatives to manually constructing test vectors for testing
specialized states of the hardware.

4Hardware fuzzing is an iterative exercise of deploying random test vectors on the design-under-test for
converging an objective – usually, coverage.

5Coverage is discussed in Section 2.2.
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Cosim’s fast, cheap and open-source characteristics can accelerate fuzzing and security

research.

Cost-Effective ZP Cosim undercuts large scale verification costs which are often prohibitive

because of commercial tool licensing, expenses related to server-time acquisitions, and

non-recurring engineering costs, by being completely free to use, needing only modest

$300 FPGA boards, and being fairly portable.

Fast ZP Cosim is FPGA-accelerated and farm-deployable6 on small to medium-scale FPGA

clusters with independently operable verification routines.

Portable ZP Cosim allows for easy swap-in of other RISC-V implementation with reason-

ably minimal modifications to the hardware descriptions. In addition, because ZP

Cosim’s coverage automation is based on Verilog/SystemVerilog which is a widely-

adopted hardware description language (HDL) and what most high-level HDLs lower

to, and because the instrumentation is non-intrusive and places no requirements on the

design description whatsoever, the infrastructure provides good portability.

Customizable Because ZP Cosim is open-source, it is completely customizable and inte-

grable with other tools in the open-source ecosystem for an expansive feature set. It

can be specialized according to individual needs and developed upon for custom testing

requirements. This is an important quality because many commercial solutions that

offer comparable feature set as ZP Cosim, often are limited in customizability.

Field-Tested ZP Cosim has been exercised on the silicon-validated, previously extensively

tested BlackParrot processor revealing 4 new and important bugs.

6On FPGA farms or FPGA-clusters that can be hooked up to a Local Area Network and operated
through a host machine.
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Thesis Organization

Chapter 2 discusses popular concepts in processor verification and builds an outline of an

ideal, self-contained verification infrastructure. Chapter 3 describes the pith of this thesis –

an implementational baby-step towards a self-contained verification infrastructure. Chapter

4 discusses metrics to evaluate ZP Cosim, the insights gained as a result, and describes

critical bugs discovered through the exercising of ZP Cosim on BlackParrot processor. The

final chapter concludes the thesis with key takeaways.
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Chapter 2

LANDSCAPE OF SYSTEM-ON-CHIP VERIFICATION

Verification of processors is a crucial exercise for reducing the aggregate costs of chip

design by lowering the probabilities of microarchitectural and security bugs which helps

avoid expensive ASIC respins and product recalls later in the product cycle. In fact, an

industry-wide study conducted by Harry Foster, shows that over 70% of a variety of chip

designs needed ASIC respins because of predominantly design-related defects[44] that a well-

implemented verification plan could theoretically mitigate. Additionally, the insights gained

during verification and performance modelling is often invaluable to future design iterations

– both with improvements to the design, and with avoiding costly pitfalls and bad design

practices in the future.

This thesis evaluates 3 key aspects of verification:

• Speed of verification, often under the constraints of a given time budget,

• Completeness of verification, or, the tendency to discover bugs and security vulnera-

bilities, and,

• Cost of verification.

Processor verification is a balance between many factors such as time-to-market and

New Product Introduction (NPI) windows, design and verification budgets – both in people-

years, and in dollars for the tools and infrastructure costs, accessibility and modifiability

of the tools and infrastructures according to specialized needs, and the reasonableness of

effecting and distributing software patches. A 2022 research study on a mix of commercial

ASIC verification projects by the Wilson Research Group [1] gives us useful insight on the
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landscape of these tradeoffs: over 66% of the surveyed mix of ASIC projects are behind

schedules, and over 60% of the project lifetime is spent in verification.

However, with increasingly modular designs, practices of design reuse, and highly struc-

tured electronic design automation tools, verification has become highly conducive to au-

tomation. Despite long-standing practices of automation in verification, the process is still

fundamentally human-in-the-loop.

Empirically, chip designers have relied on software simulations, emulations/FPGA-prototyping,

and formal verification to satisfy various verification goals. And in each practice, there are

many people-hours invested in the infrastructure setup, exercise, debug, evaluation, and bug

fixes.

However, with growing complexity of designs, software simulations are inevitably getting

slower, although the increasing quality and reliability of cycle-accurate RTL simulators such

as Synopsys VCS, and functional modelers such as Verilator [100] maintain the simplicity

of setting up software simulations. Formal verification is getting harder and more time-

consuming to set up for complex systems and more complex specifications, and are often

limited to localized modular verifications or security evaluations, despite their reliability.

Modern practices notoriously under-formalize hardware in the design-time which makes set-

ting up formal models time-consuming and laborious in verification-time. And emulating

designs, has the advantage of order of magnitude of speedups over simulations, and, with

the improving FPGA synthesis and placement tools, continue to remain simple and efficient

in limited number of cases. Of course, with FPGA emulations, the test-time debuggability

is severely limited and often involves complex test harnesses and scaffolding in the original

design for even the most minimal debuggability.

In practice, however, commercial-grade verification methodologies rely on a combination

of human intelligence with each of these verification composites at various developmental

stages of the chip design, and use a variety of commercial ASIC verification tools and tool-

experts for achieving final verification sign-offs.
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2.1 Faster Verification

Fast verification leads to early fixing of bugs and security vulnerabilities, and in time-

constrained cases, discovery of more bugs. Two major enablers of faster processor verifi-

cation are design-reuse and design modularity which are embraced by many commercial and

open-source processor designs to varying extents. BaseJump STL [119] is one of the earliest

SystemVerilog standard template libraries (STL) [4, 2] popularized in the open-source com-

munity that promotes a high degree of design modularity. The use of such parameterized,

pre-verified, reliable templates obviates the need to verify template-internals every time the

functionality is implemented in a larger design.

Standardized IO interfaces, and decoupled module interfaces are integral parts of such

STLs. Standard interfaces enable reuse of verification infrastructures, reducing or sometimes

eliminating the time needed to setup and adapt new or existing simulation, emulation, and

testing infrastructures. Additionally, raising the abstraction level in which designers describe

hardware, such as with domain-specific languages (DSLs) like Chisel[23], TL Verilog[61],

Bluespec[27], etc., also raises the abstraction of verification. Similarly, with the use of hard-

ware generator infrastructures such as the RocketChip (part of Chipyard)[18], furthers the

philosophy of design (and verification infrastructure) reuse and composability, and with high-

quality, verified generators, the verification time can be reduced manifold.

Despite such practices, verification is still the predominant phase of chip design. The

key insight here is that even with high degrees of modularity and design reuse that enable

larger and more complex designs, the integrations and interfacial behaviors of the composite

modules and hardware IPs remains to be verified. Even considering just the extra-modular

design elements is a high-enough hardware state-space for exhaustive hardware verification.

However, because of the aforementioned nature of hardware design, much of this state-space

is an unintentional consequence of modularity and often, it is hidden behind parameteriza-

tions and functional redundancies. Understandably, such instances lend themselves better

to being recognized and tested manually, thereafter increasing human involvement in veri-
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fication iterations – which slows-down verification and reduces reliability. In most cases, a

randomized application of test vectors to the hardware interfaces, referred to as fuzzing, helps

in exercising much of the typical state-space, and the specialized states are manually tested

and accounted for. At such a juncture, the property of coverage of verification, discussed in

Section 2.2, becomes important.

2.1.1 FPGA-Accelerated Verification

One way of naively increasing speed of verification is to invest in servers for large scale

parallel simulations of designs. Commercial solutions like this include the Synopsys Zebu

Server 5[102]. Another possibility is moving to cloud-FPGA emulations [73] instead of large

scale simulations, with higher initial setup time that can be easily amortized over many

verification iterations. Commercial solutions such as the Cadence Palladium Z1/Z2 and

Proteum X1/X2 [31, 30] provide many different kinds of acceleration and support larger

design emulation and software bringup. Each of the options come with their own drawbacks

of being expensive and non-pliable.

2.2 More Complete Verification

Completeness of verification is most commonly measured with the Coverage metric. Coverage

is an important quality of verification and is defined as an approximate indication of the

extent to which a round of testing satisfies a set of predefined verification objectives – usually,

the completeness or the effectiveness of the round of testing in exercising the hardware.

Coverage in hardware designs is broadly categorized as structural or functional. Struc-

tural coverage assesses coverage over structural elements of the design – usually, as described

with a hardware description language, and as such, can be automated in practice. Functional

coverage, on the other hand, assesses coverage over (usually) higher-level functional behaviors

of the design and as such, functional coverage, at times, relies on manual specification which
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involves high engineering effort, although, certain metrics like FSM coverage1 do a reasonably

good job in assessing functional coverage in well structured hardware descriptions.

The abstractions in which coverage is assessed can vary:

• Architectural or ISA-level coverage usually assesses coverage over instruction mixes,

operand combinations, ISA-defined CSRs. These can be evaluated with functional ISA

simulators.

• Microarchitectural coverage, on the other hand, assesses coverage over implemented

hardware entities. ISA-level coverage is, generally, a subset of microarchitectural cov-

erage, assuming all ISA-defined abstract elements are physically implemented in the

microarchitecture. Of course, the chosen coverage metric, can sometimes identify no

more coverpoints in the microarchitecture than defined by the ISA, such as with the

CSR coverage metric that only identifies CSR registers in the mircroarchitecture as

coverpoints.

ZP Cosim’s coverage metric assesses microarchitectural coverage as it scans the microar-

chitecture description (hardware) for identifying coverpoints. Because of microarchitectural

coverage’s wider statespace, there is a better chance of finding bugs.

Other aspects of coverage such as unreachability, toggle-only coverage, etc., are presented

in section 3.1.7. A key point to remember is that coverage is an approximate indication and

by itself, does not guarantee correct execution in the covered states of hardware. One would

need to rely on formal proofs or compliance with golden reference models for that. Most

importantly, coverage and verified execution of the benchmarks that effected the coverage

only guarantee the hardware is bug-free so much as coverage thoroughly assesses all possible

permutations of the inputs (instructions in the test vector) and the states of all the other

hardware elements around the chosen coverpoints.

1Finite State Machine (FSM) coverage metric computes coverage on FSMs identified in the design.
FSMs are usually a result of complex human coding than automated lowering from higher level hardware
description languages.
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2.2.1 Cosimulation and Formal Verification

Cosimulation is the practice of simulating two instances – one of a hardware under test and

another, a reference model – with the same input vectors for comparing execution traces.

Functional verification conducted this way is simpler and faster when there is a reliable

reference model, often called a golden-reference, in the form of ISA simulators for example.

The alternative would be to have mathematical or formalized model of the hardware derived

through formal specifications while ensuring fidelity, or a set of formalized properties an

implementation has to respect, and evaluating the model properties.

2.3 A Case for Self-Contained Hardware Verification

A well-reasoned combination of coverage metrics as critical feedback for fuzzing closes the

automation loop in verification – with a few additional elements in the setup.

2.3.1 Program Generator

Firstly, we need a controllable program generator that can generate semantically, syntac-

tically valid, executable test vectors2. Valid and executable test vectors are Instruction

Set Architecture (ISA)-compliant and execute an appropriate set of setup procedures for

the hardware under test involving, for example, register file initialization, setting up execu-

tion privilege modes, page tables, stack, and trap-handlers. This is an essential quality of

generated test programs that constrain execution to well-defined and supported execution

pathways. There are of course, deviations from these pathways that need to be tested de-

pending on the hardware and the architectures in question. Design-specificity of generated

programs is another quality that needs to be taken into consideration during program gen-

eration as customized features of the hardware can only be exercised by specialized program

generations. The generated programs can be either in binary – in which case they can be

readily executed, or in assembly or higher-level languages – in which case, they need to be

2Test vectors are minimal programs that can be readily executed on the hardware under test
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compiled and linked into binaries for execution. A good example of a program generator is

RISC-V DV [34]. The controllable aspect of a program generator is important for generating

targeted test cases that can be used to target specific components or hitherto-untargeted

components. The randomization ability of the generator helps span as much of the hardware

state-space as possible. Targeted program generation, on the other hand, focuses on a subset

of the state-space to increment coverage methodically – often driven by a fuzzer.

2.3.2 Program Loading and Execution Environment

Secondly, we need a supporting application execution environment, or a software stack ca-

pable of loading the binary, responding to environment calls, and facilitating IO operations.

An example of such an offering with RISC-V is the RISC-V Proxy Kernel [5]. ZP Cosim

provides a control program for loading program binaries and limited support for environment

calls.

2.3.3 Mutation Engine

Thirdly, we need a mutator. A mutator is a software entity that induces a minor change

in the test vector – while, ideally, maintaining the validity and executability of it – for a

subsequent rereun on the hardware for an increment in progress towards a verification goal

– usually, coverage. A mutator can be imagined in two different ways:

• A mutator analyzes coverage over the hardware states and, optionally, other forms

of critical feedback, and turns specific knobs in the program generator (hence the

controllability requirement of it) to create more targeted test cases for coverage closure.

• Another way to define a mutator is that a mutator operates directly on the generated

program and effects mutations on the test vector. Seemingly innocuous random muta-

tions such as instruction reordering, and changing the register operands and opcodes,

can often reveal tricky microarchitectural bugs.
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In some cases, the program generator can be tightly coupled with a mutator to compose

a fuzzer. AFL++ [43] is a popular example in software testing. FuzzFactory [87] is more

in the context of fuzzing for hardware verification. There is active research [95, 83, 29] in

the area of effecting reliable mutations – some exploring Reinforcement Learning models to

effect learnable mutations.

2.3.4 Debug Infrastructure

Finally, there needs to be support for saving interesting3 test cases for fuzzing and mutation

insights, and saving failing4 test cases for later, usually offline, debug. Offline debuggability

necessitates reproducibility of failing or interesting test cases.

This series of enablements allow for an iterative, self-contained verification infrastructure

which forms the ultimate target of ZP Cosim.

2.3.5 Cheaper, Modifiable, Portable Verification Infrastructures

Commercial solutions to reliable processor verification are expensive and unfavourable to

modifications. Open-source alternatives, on the other hand, mitigate this problem by being

free and easily modifiable. However, open-source solutions usually lack reliability and tech-

nical support structures to be useful in commercial settings. Research use-cases, however,

benefit hugely from the advantages of the open-source solutions. Open-source and standard

interfaces to hardware-under-test, and easy debuggability of tools and community-driven

bug-fixes in the tools is also greatly advantageous.

With this motivation, the thesis transitions to describing ZP Cosim.

3Interesting test vectors are those that have effected coverage over hitherto unexercised states of the
hardware.

4Failing test cases are the intended products of fuzzing which need to be analyzed to isolate the bugs or
defects from allowed implementational differences or tolerable functional behavior, or unintended software-
related defects.
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Chapter 3

ZP COSIM

One of the primary alignments of ZP Cosim is towards the previously described self-

contained hardware verification. As such, Figure 3.1 illustrates the ambition. Notice that

the blue fuzzing loop drives towards coverage convergence, and the pink verification loop

kicks in upon bug-encounter for fixing the bugs discovered as a result of co-emulation. The

tools exercised on the host support the identification of coverpoints, reduction of the cov-

erpoint state-space formed, inclusion of user-provided coverpoints (not implemented in ZP

Cosim), instrumentation of the original design wrapper, and FPGA synthesis and bitstream

generation.

The PL is the FPGA on-board, which has a synthesized FPGA-shell enveloping the

Processor-Under-Test (PUT).

The PS (the Processing Subsystem), which is a host processor for the FPGA in close

proximity, receives the bitstream, flashes it on the FPGA, launch the control program which:

• Orchestrates loading of test programs on both the PUT on the Programmable Logic

and an instance of the Dromajo golden-reference ISA simulator, iteratively stepping

through the PUT’s execution trace, cosimulating it with Dromajo, and analysis, and,

• Coverage extraction from the PUT upon program termination, processing of the cov-

erage, derivation of mutations (which has not been implemented on ZP Cosim, and

program-generation or benchmark step-through.

In case of a mismatch, the PS would save the failing test program for later offline debug

through software RTL simulations for greater visibility into the microarchitecture.
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Figure 3.1: Reference Block Diagram for self-contained, iterative verification. The blue loop

depicts the fuzzing loop, and the pink loop depicts the verification loop.

ZP Cosim builds on the existing Zynq-Parrot infrastructure [9] that enables rapid FPGA

prototyping for BlackParrot processor on Zynq 7000 and Ultrascale FPGA devices. The fol-

lowing sections methodically describe the infrastructure of ZP Cosim and detail the nuances

that make ZP Cosim a highly-reliable, portable, cost-effective, rapid verification research

platform.

3.1 Automated Coverage Instrumentation

Coverage is an important aspect of hardware verification. ZP Cosim introduces a new au-

tomated coverage collection implementation with the help of existing open-source offerings.

The fundamental requirement of coverage instrumentation is identifying key design elements

whose states need to be monitored during simulation or emulation for inferring the coverage

effected by test programs. Depending on the coverage metric in question, the design elements

can be:
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• Structural elements in the code, like expressions in assignment statements, case state-

ments, assertions, etc., or,

• Functional elements in the design, like complex composite expressions corresponding

to specific functionalities of the hardware.

The literature on which coverage metrics perform well in which situations is unclear, and

there is much research insights to be had on this frontier [103].

In ZP Cosim, we demonstrate and implement automated Mux Toggle Coverage popular-

ized by Kevin Laeufer et. al. [81], and a proof-of-concept case-statement coverage.

Mux Toggle Coverage is similar in spirit to the popular branch-coverage in software test-

ing. The idea behind Mux Toggle Coverage is that muxes are the sources of multiplicity in

hardware states – i.e., being the fundamental functional switches (or decision statements),

the cumulative combination of toggles in mux-selects across all the muxes amount to all the

different possible control paths in the hardware. The cumulative combinations are usually

identified by the cross-product of the toggles on all the (interacting) muxes, and this is the

truer indication of the actual coverage compared to individual toggles. Later works [63]

explore other coverage metrics for efficiency, applicability, and performance reasons.

Case-statement coverage is a structural/code coverage metric that assesses the complete-

ness of a test vector in exercising all the case statement control paths. It is not a standalone

metric; it simply provides another perspective on one frontier of verification progress.

3.1.1 Implementation

In order to identify muxes to monitor for coverage collection, ZP Cosim packages a pa-

rameterized, modifiable walker that parses the hardware design description and outputs

hierarchically referenced1 full-pathnames of mux select-signals in the design. There are three

1Verilog or SystemVerilog’s hierarchical referencing is a mechanism of referencing identifiers such as wires
or registers outside of the scope of the module they are referenced in, by prefixing the instance names of
connecting scope hierarchies. Xilinx tools support the synthesis of hierarchical referencing.
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parts to the coverage metric implementation:

• Surelog [37], an open-source SystemVerilog parser and compiler that takes in a Sys-

temVerilog hardware description of the design and generates a walkable parse tree-like

object,

• Universal Hardware Data Model (UHDM) [38], the data object produced by Surelog

that can be thought of as an elaborated intermediate representation of the hardware

design description, and,

• A customizable walker that can operate on the UHDM object to produce the hierar-

chical instance names of the muxes, or coverpoints2, for monitoring coverage.

The coverpoints generated thereof, need to be assembled into the top-level wrapper of the

hardware design. This can be done in two ways:

• For simulations: SystemVerilog assertions that can be assessed through debug prints

and debugged via waveform dumps, or,

• For emulations and post processing capabilities: Wired into dedicated coverage collec-

tion modules with memory modules for storage of coverage information during emula-

tion, and read interfaces for retrieval from test environment post emulation.

ZP Cosim provides GNU Make routines to automatically package the identified hierarchically

referenced coverpoints by grouping and wiring them into coverage modules in the top-level

wrapper of the design in consideration.

2Coverpoints are boolean or multi-bit expressions (wires or registers) in the Hardware Description Lan-
guage that are assessed, usually for toggles, for determining the coverage of a test case on the hardware
in question.
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3.1.2 Surelog

Surelog [37] is a SystemVerilog pre-processor, parser, elaborator, and UHDM compiler.

Surelog adheres to the SystemVerilog 2017 standard [13]. Surelog also provides IEEE De-

sign/TB C/C++ Verilog Procedural Interface (VPI) [40] and Python AST Application

Programming Interfaces (APIs). In ZP Cosim, Surelog functions as a parser, elaborator,

and compiler that takes as input, a file list of distributed hardware design description in

SystemVerilog, among other crucial parameters, and generates a walkable UHDM object.

Among the parameters taken, some of the important ones are: the specification of the top-

module, SystemVerilog library extensions, compilation ordering, parameter value overrides,

a switch to request full or folded UHDM elaboration, and trace and debug options.

3.1.3 Universal Hardware Data Model

UHDM [38], the product of compiling SystemVerilog hardware designs, is a representational

model of the input design according to the IEEE SystemVerilog Object Model. UHDM can

be operated on though the provided VPI interfaces. The provided default visitor, invokable

via uhdm-dump, can dump out the elaborated UHDM object in textual, human-readable

format.

3.1.4 Coverage Walker

ZP Cosim’s Coverage Walker [85] is a parameterized visitor written to walk the compiled

UHDMmodel of an input processor design, to identify key design elements for use as coverage

indicators. The coverage metric chosen dictates the walk algorithm. The walker holds C++

STL list data structures for saving the key design elements identified during the walk which

are ultimately written to an output file.

The following subsection limitedly describes the walk for the mux-toggle coverage metric

as an example.
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3.1.5 Implementation of Mux Toggle Coverage Metric

Recall that for the Mux Toggle Coverage metric, the walker identifies multiplexer select-

signals in the design. Depending on the parameters passed into the walker, either the entire

design of a specific subset can be walked, and muxes therein, identified. ZP Cosim’s imple-

mentation of the walker identifies muxes by parsing the structural hardware description.

In behaviourally described designs, muxes can manifest through if-else statements,

case statements, ternary statements, and occasionally, implicitly. Note that sometimes, in

longer if-else statements, priority encoders are inferred in place of muxes; and other logic

optimizations can affect inferring muxes. Despite deviating from the metric, the ultimate

goal of establishing the indicators of different possible states of the hardware is still preserved.

Of the UHDM-provided VPI APIs, there are 3 main APIs utilized while walking the

generated UHDM:

1. Obtaining and releasing handles to UHDM objects via vpi handle and vpi release handle,

2. Iterating through multiple UHDM objects at a depth under a chosen object type via

vpi iterate and vpi scan, and,

3. Obtaining object or design element attribute attributes via vpi get and vpi get str

APIs.

When using the VPI API Within the UHDM abstraction, every node of the tree is a

unique structural code element that has its own VPI handle. The VPI handles are unique

and exhaustively refer to all elaborated code elements. Every node also contains pointers

to its children nodes – each with their own VPI handles. The root of the tree is the design

instance node. The top module(s) are children of the design instance node. A typical walker

starts with the handle of the design and the top-module nodes thereof, obtains VPI handles

for relevant children nodes and recurses until there are no more children nodes. Relevant

children nodes can be nodes that correspond to:
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• Submodules, which begin a new recursion,

• Generate blocks, which elaborate and begin new recursions,

• Procedural blocks which can hold the aforementioned structural elements which need

to be collected algorithmically, and,

• Continuous assignment statements which can hold ternary statements.

Figure 3.2 represents a flow diagram for identifying almost3 all of the code structures birthing

muxes in the elaborated UHDM object.

Coverpoints can be identified in two different ways in the design process:

• During design time, design engineers can manually identify and establish key cover-

points in the design for functional coverage. The obvious advantage here is the easier

expressed complex functional coverpoints, and the concision of the coverspace4 thus

formed. The disadvantage is the manual nature of the exercise, and the potential of

human oversight.

• During compile time, design compilation tools such as VCS and Verilator, can identify

key coverpoints based on common coverage metrics such as line-coverage, expression-

coverage, etc., with the hardware description, or more accurately, an Intermediate

Representation (IR). The synthsized netlist might also offer key coverpoints for other

verification objectives. The advantage is the more-complete coverspace and the poten-

tial for algorithm-based automation. The disadvantages are the redundancies, irrele-

vant coverpoints, missing of potentially important complex functional coverpoints in

constrained coverspaces, and the resulting increased coverspace in general.

3A drawback of the implementation mentioned in Section 4.3 discusses a gap in the algorithm.

4Coverage state-space
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Figure 3.2: Flow Diagram of ZP Cosim’s Automate Coverage Metric Walker
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ZP Cosim implements compile-time, automated identification of coverpoints. There is planned

support for design-time source-level coverpoints via user-provided SystemVerilog coverpoint

and covergroup constructs identifiable, during the walk, through their UHDM object VPI

handles.

3.1.6 Coverspace Preprocessing

Coverpoints identified automatically usually suffer from duplicate or redundant, and unin-

teresting coverpoints.

Duplicate coverpoints : Duplicate coverpoints are a result of duplication both through

structural duplications such as through multiple module instances or generate blocks,

and through inherent duplication of branch conditions that are based on common wires

or boolean expressions. While the latter can be blindly ignored, the former could be

important depending on how the coverpoints interact external to the instances they

are defined in. ZP Cosim’s post processing eliminates duplicate coverpoints.

Uninteresting coverpoints : For example, values of an operand register in the ALU, could

be interpreted as coverpoints in certain automated metrics – one example being control-

register coverage [63]. However, they are not as important as other control-flow-related

coverpoints that refer to branches and other critical functional properties of a design

description. ProcessorFuzz [33], for instance, identifies such unimportant coverpoints

in the FPU operands that were found to derail coverage computations in an existing

implementation [63], and ignores them by construction (by only looking for Control and

Status Registers and transitions). Two more examples are the misidentification of reset-

conditions as mux-select signals, and the identification of parameters and constants

based conditions which never toggle. ZP Cosim’s post-processing also eliminates reset-

conditions, and ignores parameters-only and constants-only conditions during the walk.

And since ZP Cosim only identifies control-flow-related coverpoints, they are never

uninteresting in the metric chosen.
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1 wire s e l = x | ∼x ;

2 a s s i gn r e s u l t = ∼s e l ? e1 : e2 ;

Listing 3.1: Example of unreachable coverage targets

3.1.7 Coverspace Optimization

In general, coverpoints identified in the Mux Toggle Coverage metric in the aforementioned

manner suffer three major drawbacks:

Drawback 1 The post-processed coverspace is still large

Drawback 2 Many of the muxes identified this way suffer from aliasing issues

Drawback 3 Covering the identified individual coverpoints singly does not imply conver-

gence5. In fact, assuming there are N coverpoints identified, the coverage over the

individual coverpoints would indicate exercising of 2N hardware states. However, the

true hardware state-space is actually the cross-product (i.e., cartesian product) of the

N states, equal to 2N .

Following subsections describe how ZP Cosim fares against the above drawbacks.

3.1.8 Unreachability Analysis

Firstly, the large number of coverpoints are unreachable. Unreachable coverpoints are those

coverpoint boolean expressions that cannot be satisfied within the normal operation of the

hardware. For example, in the below hardware description, One coverpoint that is identified

automatically in Mux Toggle Coverage metric, is ∼sel. However, it is not a satisfiable

expression because ∼sel can never be true, and so, the coverpoint is never covered. When

5Coverage convergence is a term used to indicate a state of testing where all the possible hardware states
are tested.
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the root expression 6 for the coverpoint is available, unreachability can be determined by

framing it as a boolean satisfiability problem. Algorithms, or tools thereof, for solving

such problems are called SAT solvers, and today’s SAT solvers are capable of determining

the satisfiability of an expression of millions of boolean variables [86]. Sometimes design

compilation often eliminate some of these cases through optimizations such as dead code

elimination (DCE) or constant folding.

In ZP Cosim, Synopsys’s VC Formal tools-suite with a dedicated tool, called the For-

mal Coverage Analyzer (FCA), helps determine unreachability of coverpoint expressions.

FCA determines unreachability using proprietary constraint solvers. In addition, for the

coverpoints in question, the root expressions does not have to be manually isolated – FCA

leverages the VCS-compiled design representation to derive the root expressions for satis-

fiability checks. FCA formally proves that certain uncovered coverpoints in coverage goals

(sum total of coverpoints) are indeed unreachable with the expression hierarchies that derive

the coverpoints.

ZP Cosim provides a GNUMake routine to invoke VC Formal’s FCA tool to automatically

analyze input hardware designs, and to output an unreachable coverpoints file, called the

exclusion file. This process is compute-intensive to carry out on large designs. However,

having a simulation database, with randomly covered coverpoints in the design makes the

process significantly faster. ZP Cosim also provides this option within the Make routine.

Once the unreachable coverage targets are determined, they can be safely excluded. This

might help reduce the coverspace, thereby saving manual effort from verification engineers

or fuzzers. Quantitative evaluation is presented in 4 shows that unreachability analysis does

in fact help reduce the coverspace, albeit a little.

6Root expression is an in-house term for expressions in the hardware descriptions that are composed
purely of constants and variables that can be externally set or determined. For example, in code listing
3.1, assuming x is an input to the module of that logic, the expanded expression of ∼sel is x & x | ∼x.
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3.1.9 Coverage Aliasing

Mux Toggle Coverage metric generally overlaps in the coverage information it provides. This

is because many muxes are coupled to common wires and registers in the design. This intro-

duces aliasing in coverage data that can be reduced with additional processing of coverage

metrics7. Currently, ZP Cosim does not provide any support for detecting or reducing alias-

ing.

3.1.10 Toggle-Only Coverage on Coverpoints

Toggle-only coverage is the default case of assessing coverage over individual coverpoints

in isolation. Because correct execution on hardware is dependant on interactions of many

hardware design elements in the right states and transitioning to the right states individual

assessments of design elements as implied by individual coverpoints do not cover the full

scope of the hardware functionalities.

Despite seeming not very helpful at first glance, toggle-only coverage of the coverpoints

identified can, at times, provide crucial insights on benchmark simulations on hardware

targets – mainly, coverage holes, which are uncovered or untoggled coverpoints in the design.

Chapter 4 discusses some insights obtained through analyzing toggle-only coverage effected

by benchmarks on the BlackParrot processor. Some of the bugs discovered were in fact due

to the insights had from this.

7Coverage Aliasing is a term to refer to instances where a coverage target is correlated with one of more
other targets and can be proven to be fully covered when the correlated targets are fully covered. For
example, a coverpoint A aliases with two coverpoints A&B and B, because when A&B has covered 0 and
B transitions 0 → 1 or 1 → 0, both values of A are covered; therefore coverpoint A becomes redundant.
Redundancies in the coverspace can unnecessarily increase instrumentation costs and may occasionally
lead to increased verification effort and time; however, redundancies do not affect verification’s reliability
or functional correctness in bug finding. Nevertheless, for the former reason, it is considered crucial
to reduce redundancies in coverage statespace. Aliasing in Mux Toggle Coverage can be reduced in
design compilation time by assessing common ancestry of mux select signals and isolating unique and
independently driven muxes.
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3.1.11 Localized Cross Products

The third drawback mentioned is a bit more broader scoped. As mentioned previously, indi-

vidual coverpoint assessments are not extremely useful. Taking cross-products on coverpoints

is one way to expand the relevance of coverage to more realistic testing goals. Cross-products

take into consideration, the states of the interacting design elements in combination, and of-

ten, those are significantly more revealing of bugs. Often, the coverage map corresponding

to the cross product of the coverpoints thus obtained, are hashed down for better storage

footprints on the hardware [63].

The major drawback of assessing cross-products are that they explode the state-space

of coverage exponentially as described in Drawback 3. ZP Cosim overcomes this limitation

by limiting the cross-product scan window. The key insight from the coverage obtained

on running SPEC benchmarks is that the coverpoints do not interact exhaustively – i.e.,

not every coverpoint interacts with every other coverpoint. Covering non-interacting cross-

products is then a redundant exercise. For example, the cross product of two coverpoints –

one corresponding to a mux in the FPU, and the other to a mux in the integer multiplier

functional unit – do not need to be covered because the state of one of them most definitely

does not affect the state of the other in any functional sense8. ZP Cosim allows for grouping

coverpoints and performing the cross-product within the groups. This reduces the coverage

state-space (in implementation) to: ⌈
N
G

⌉
2G

2N

where N is the number of coverpoints, G is the grouping size with G << N and ⌈x⌉ is the ceil

of x. In Chapter 4, we quantify the reduction with actual values. The obvious trade-off for

the reduced coverspace is the potential of missing bugs in ignored crossings of coverpoints.

8Presumably, this exercise could still be useful in training Machine Learning models to derive and isolate
mutations on the program to encourage exploration of new coverspace.
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3.2 Simulation

A concise enough coverspace for useful coverage feedback enables more reliable hardware

verification. Verification of a hardware target can be done through simulation or emulation.

This section talks about simulation.

3.2.1 Dromajo

Dromajo [122] is a formally proven RISC-V RV64GC9 functional reference model and a

multi-CPU simulator written in C++ that is extensively verified. Dromajo allows for spec-

ification of operable memory address ranges, any IO mappings therein, bootrom sequence,

and ISA extensions and custom extensions support. One of the most important features

of Dromajo, that ZP Cosim considers critical is its ability to checkpoint a snapshot of the

simulating system state for later resumption, thus allowing replay of key sections of long-

running programs. In addition, Dromajo provides APIs for cosimulation which is crucial for

ZP Cosim. Cosimulation in Draomjo is discussed in subsection 3.2.2.

Dromajo, by itself, can be useful for quick insights on ISA-level coverage effected by

benchmarks. For microarchitectural coverage on the hardware design elements, which is a

more complete indication of coverage, ZP Cosim leverages Dromajo cosimulation with an

instance of the processor providing microarchitectural coverage information.

3.2.2 Cosimulation

Cosimulation is the process of simulating two (or more) instances of the same design with,

generally, the same inputs. The expectation is that if they are both compliant with a

formalized specification of the implementation, the observable states at the granularity of

architecturally visible event boundaries such as instruction retirements, CSR updates, etc.,

9G and C are initials of extensions to the base RV64I ISA – G is a stand-in for I, M, A, F, and D. I is
the base integer ISA, M is the multiplication extension, F and D are single and double precision floating
point instruction extensions, A is the atomics instruction extension, and C is the compressed instructions
extension.
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would match within reason. At the very least, deviations would indicate one or both of the

instances are not compliant with the specification.

In ZP Cosim, we explore a few different options for cosimulation. One constant instance

is the Dromajo functional reference model, treated as a golden reference model for simulating

BlackParrot. For the other instance, there is support for simulating BlackParrot with the

ZP Cosim infrastructure in Verilator [100], Synopsys VCS [12], and emulation of ZP Cosim

on the FPGA which is discussed in Section 3.3.

Verilator Verilator is an open-source Verilog and SystemVerilog simulator that works by

converting the input hardware designs to functional, optionally multi-threaded, C++

functional models (among other options) that can be compiled together with an in-

stantiation code (generally in C++) and other optional C++ functional models for IO

interactions. Execution of the compiled binary simulates the hardware functionalities.

In ZP Cosim’s case, Verilator generates the functional models for the ZP Cosim hard-

ware infrastructure (synthesizable on the FPGA), and BlackParrot. The compilation

also takes in the control program, Dramajo’s Cosimulation libraries that instantiate

the Dramajo virtual machine and provide APIs for stepping through program execu-

tion and comparing the executions. More details on the control program is available

in Section 3.3.

Synopsys VCS Synopsys VCS is a high-performance commercial functional verification

solution widely used in the industry. ZP Cosim utilizes VCS simulation support for

simulating hardware designs. Like Verilator, VCS also allows for linking C/C++ mod-

els with the hardware design description.

The inputs to the cosimulation instances are managed by the control program, which

itself takes the executable program binary as the input along with other parameters. For

comparison of execution, ZP Cosim relies on the default trace comparison option provided

by Dromajo. The essence of trace comparison is that the execution trace, consisting of the
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retired instruction word, the side-effects on the hardware (registers in the Register Files

written, important CSRs modified), the program counter. Any asynchronous events encoun-

tered during execution such as external interrupts, and unmodelled IO interactions, if any,

are manually overridden in Dromajo to match the state of the instance of ZP Cosim being

simulated. More details on this is available in Section 3.4. In addition, the trace comparison

is done in ”almost”10 real time so as to reduce the amount of time spent on early-fail test

cases, and lessen the deviation of hardware state from the point of bug, which improves

human debuggability and the deviation of the coverage.

3.3 Emulation: Zynq-Parrot

Zynq-Parrot [9] was conceived as a customizable FPGA shell to present a flexible AXI wrap-

per around accelerators and soft processors such as the open-source BlackParrot processor

[91], to facilitate easy interfacing with the host Zynq-7000 series FPGA boards. At its current

state, Zynq-Parrot has evolved into a rapid emulation/prototyping solution for more proces-

sor designs on more FPGA boards, along with a host of new features and capabilities. In this

thesis, however, we restrict our discussion to evaluating BlackParrot on the Avnet Ultra96v2

[10] FPGA board featuring Zynq Ultrascale+ Multiprocessor System-on-Chip (MPSoC).

3.3.1 Infrastructure

Zynq-Parrot’s hardware system involves the Xilinx Zynq Ultrascale+ MPSoC component

with a customizable FPGA shell. In Xilinx’s nomenclature, the MPSoC component is re-

ferred to as the Processing System (PS), while the FPGA component is referred to as the

Programmable Logic (PL). In the Ultra96v2 board, the MPSoC is the Xilinx Zynq Ultra-

Scale+ MPSoC ZU3EG A484 which comprises of a quad-core ARM Cortex-A53 processor

with support for ARM’s Single Instruction Multiple Data (SIMD) extension, called NEON.

The MPSoC also comes standard with 2 GB (512M x 32) of LPDDR4 memory and Delkin

10It is not exactly real-time because of the FIFO interfaces (asynchronous and synchronous) used to
communicate the commit information.
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Core Configuration Quad-core ARM Cortex-A53

CPU Frequency Up to 1.5GHz

Architecture Armv8-A Architecture in A64 or A32/T32

Features
NEON Advanced SIMD instructions

Single and double precision Floating Point instructions

Cost $299

Table 3.1: Specification of Zynq Ultrascale+ MPSoC in Ultra96v2 board

System Logic Cells 154,350

CLB Flip-Flops 141,120

CLB LUTs 70,560

Distributed RAM 1.8 Mb

Block RAM 216 blocks; 7.16 Mb

36 Kb block granularity

Table 3.2: Specification of Zynq Ultrascale+ PL (FPGA) in Ultra96v2 board

16 GB microSD card for storage. More details on the MPSoC is presented in Table 3.1. The

details of the FPGA package is presented in Table 3.2.

The PS is capable of booting Linux and communicating with the PL through a variety of

PS-PL interfaces. Zynq-Parrot utilizes 2 of 6 high-performance slave AXI interfaces in 32-bit

configuration for DRAM communication (m00 in Figure 3.3), and the 2 high-performance

master AXI interfaces in 32-bit configuration for communication with the FPGA shell (s01

in Figure 3.3) and the slave port of BlackParrot (s00 in Figure 3.3).

The PS runs a control program (in C++ or Python), ps.cpp, that memory-maps the

address space of the AXI interface to user memory, and is capable of:
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Figure 3.3: Concise Block Diagram of Zynq-Parrot FPGA shell.

• Flashing the system bitstream on the PL using APIs made available by the PYNQ

development environment,

• Resetting BlackParrot hardware, initializing DRAM pointers and other configuration

registers in the shell (PL) by writing to CSRs in the shell.

• Loading RISC-V compliant program binaries and writing configuration registers in the

address space of BlackParrot,

• Processing and responding to some environment calls, and interpreting termination

signals from BlackParrot, and,

• Reading and writing FIFOs and registers in the FPGA shell for any auxiliary informa-

tion like profiling data.

On the PL is the synthesized FPGA shell that wraps over a unicore configuration of

BlackParrot. The FPGA shell hosts a parameterized number of synchronous FIFOs and

general-purpose registers that can be read and written-to by the PS via the s01 interface.

Figure 3.3 is a high-level block diagram of Zynq-Parrot FPGA shell with the interfaces

highlighted.
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3.3.2 Additional Capabilities of Zynq-Parrot

Prototyping Ariane

Zynq-Parrot supports simulating Ariane[134], another open-source RISC-V RV64GC imple-

mentation. The modifications to the original infrastructure to enable support for Ariane are

minimal, and the modifications are made available on GitHub [9]. This also indicates the

portability of Zynq-Parrot to other microarchitectures.

Zynq Farm

Zynq-Farm[49] is a hosted FPGA cluster maintained by the Bespoke Silicon Group. The

farm consists of 20 Ultra96v2 FPGAs with statically allocated IP addresses. The value of

this farm is in the shared Network File System (NFS) over ethernet LAN that provides

much greater shared mounted storage on the host server than on the individual FPGAs.

This enables a unified view of the workspace for running multiple test programs and co-

dependant fuzzing instances in parallel, reliably running extremely long programs such as

SPEC benchmarks for similarly long and storage-intensive trace-based performance analysis

and coverage insights, and, faster storage than the de facto offering from the SD card. The

defacto SD card based storage caps access speeds to around 95 MB/s read and 55 MB/s

write [21], whereas with the farm, the storage speeds would only be limited by the network

bandwidth and the host’s SSD speeds.

3.4 ZP Cosim

Building on the existing Zynq-Parrot infrastructure, ZP Cosim provides enhances support

for FPGA-cosimulation, coverage extraction, and enablements for additional features.

3.4.1 Description of the Modified FPGA Shell

Figure 3.4 is a concise representational block diagram of the ZP Cosim FPGA shell. ZP



32

Figure 3.4: Block Diagram of ZP Cosim’s modified FPGA shell.
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Cosim modifies the original Zynq-Parrot shell in four important ways. The reasoning and

the enablements thereof are also discussed inline:

1. Execution Trace Transfer for Cosimulation In order to transfer the execution trace

from the FPGA to the control program on the PS running an instance of Dromajo, ZP

Cosim introduces additional data paths for buffering and transferring execution trace

information. ZP Cosim allows for the transfer of the following required variables for

cosimulation (in addition to the existing resources in the shell):

• Program Counter (pc) is used for comparing the address of the retired instruction.

• Instruction Word (insn) is used for comparing the actual instruction executed.

Along with the PC, it ensures that the right instructions are fetched from the

right addresses in the (instruction) memory.

• Commit Data (irf data, irf addr, frf data and frf addr) are used to com-

pare the effects of the execution on the hardware. Instructions that commit data

to either the Integer Register File need to match the register written (irf addr)

and the written data (irf data) with those of Dramajo’s. Similarly the Floating

Point Unit, in BlackParrot, has its own FPU Register File, the changes to which

need to match with those of Dromajo’s. This is important for both correctness of

execution in instruction granularity and for localizing bugs to specific instruction

executions.

• Machine Status (mstat) is used to compare the machine hart’s11 current operating

state which includes status information on interrupts, functional units, execution

privilege modes, among other things. Matching machine status is important in

debugging as execution can differ significantly when there are changes in the

machine status which needs to be debugged separately.

11A Hart is a RISC-V terminology to refer to a hardware thread, or equivalently, a hardware execution
context that holds its own independantly operable set of states mandated by the RISC-V ISA. It differs
from a core in that a core can host one or more harts.
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• Interrupt/Exception Data (cause, epc) and Instructions Retirement Count (minstret)

includes the cause of the exception or interrupt (which also indicates if it’s an

exception or interrupt) which is necessary for adjusting Dromajo execution to

replicate the events, and the exception PC so Dromajo may take the exception

when appropriate. Note that the instruction retirement count also needs to match

for Dromajo to take the exception at not just the right PC, but also the right rep-

etition of that PC. This is important because the FPGA shell greedily enqueues

commit-data as and when available; it does not ”stitch” the commit to the RF

with the corresponding instruction retirement. For example, if a load instruction

succeeds and gets retired, the shell fetches the instruction word, the PC of the

retired instruction and the mstatus, and enqueues them into the commit FIFOs.

Only later, when the load is serviced, an update to the register file gets enqueued

into the commit FIFOs. This allows for better decoupling of the two pieces of the

commit information.

Porting ZP Cosim to other RISC-V implementations such as Ariane [134] requires iden-

tification and wiring of the aforementioned data structures from the implementation to

the shell infrastructure. With SystemVerilog, there is support for hierarchically scoped

variable wiring which obviates needing to modify the original RTL. Note that each of

these are specified as pl to ps fifos – parameterizable number of FIFOs provided by

the shell. In Figure 3.4, you can observe each of the above FIFOs within the Zynq

Shell on the right. The dequeue of the FIFOs happens through the slave AXI Lite

interface, s00 axil.

2. Asynchronous Clock Domains This modification separates the clock to the FPGA

shell from the clock to BlackParrot, and enables asynchronously12 clocked DDR and

BlackParrot’s IO interfaces. Because ZP Cosim compares the execution trace in real

12Asynchronously to the processor’s clock
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time during emulation, there is continuous exchange of data between the PL and the

Draomajo virtual machine instance running on the PS. The rate at which the shell

communicates with the PS (determined by the AXI clock to the shell) and the speed of

execution of the processor under test, BlackParrot (determined mostly by the clock to

BlackParrot), need to be decoupled so that each may run at their maximum potential

independently. In Figure 3.4, the two clock domains are represented by the red and

yellow shaded polygons. Understandably, this introduces two problems:

• Clock domain crossing13, which needs to be specially handled. ZP Cosim uses ded-

icated asynchronous FIFOs from the BaseJump STL [119] – bsg async fifo. It

implements gray-code pointers to synchronize FIFO pointers across clock domains

for correct valid and ready signal generation [36].

• Because of the different rates of enqueuing and dequeuing across the clock do-

mains, there is a potential for data drop when the rate of trace generation is

greater than the rate at which the asynchronous FIFOs are dequeued. The in-

verse case is handled via a FIFO (occupancy) counter presented as a register to

the PS – essentially, when the occupancy of the FIFO is non-zero, it would be safe

to dequeue the FIFO, and so if the rate at which the control program dequeues

the commit FIFOs is higher, the control program loops back around on a waste

cycle.

From Figure 3.4, notice that all of the trace data crossing the source clock domain

are crossed safely through BaseJump STL’s asynchronous FIFOs, hereon referred to

as the commit FIFOs for simplicity (dark gray boxes in the junction between the two

clock domains). Each of these FIFOs are also 32 elements deep to enable contiguous

bursts of execution (between FIFO empty and FIFO full) which are easier to debug on

a waveform viewer.

13The mechanism of safely crossing data from one clock-domain to another, usually by techniques such
as double-latching, or via use of carefully designed asynchronous FIFOs.
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Notice also that the clock domains intercede the DDR and IO interfaces with Black-

Parrot. These are also safely crossed with bsg async fifos. A few important notes

here:

• BlackParrot’s L2 cache is parameterizable and banked – in the configuration used

in ZP Cosim, dual banked. The AXI adapter is parameterizable too, and replicates

the cache-facing IO to match the number of banks so each bank has its dedicated

IO to the adapter. Both the replicated interfaces are similarly safely crossed.

Zynq UltraScale+ MPSoC devices can potentially have AXI Timeout Blocks with

which AXI masters, when the corresponding slaves do not send responses within

a stipulated time, can lock up. Even otherwise, when the slave device does not

respond in time, the master would stall. It is therefore crucial to ensure a slave

in a transaction responds fully irrespective of whether a gate is asserted at the

source.

The requests going out of BlackParrot’s L2 cache (within bp axi top in Figure

3.4) in BlackParrot’s clock domain into the AXI adapter (cache2axi in Figure

3.4), are 64-bits-wide packets with data generated from L2 writebacks, if any,

sent separately. Read requests are sent out in a single packet, and write requests

are sent out in a single write packet with as many packets of write data as the burst

length supported by the interface. For write requests, there is a store-and-forward

FIFO (AXI-burst-length deep) that stores data packets and forwards them when

full. The incoming responses can be burst transactions (with a programmable

maximum burst size; in the configuration used, it is 8 words), and so, ZP Cosim

implements a dedicated buffer per bank which can hold conservatively 4 times

(parameterizable) the maximum size of a transaction (or 64 words), and since

there can only be a maximum of 1 outstanding request per bank, this is well

within capacity. So, if BlackParrot gates mid-transaction, the implementation

ensures no violations.
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• Both AXI Lite interfaces (incoming and outgoing) are also safely asynchronously

crossed. The AXI bus is never gated in the implementation; only BlackParrot.

There are no outstanding requests possible in the AXI Lite IOs as configured, and

the AXI Lite transactions are necessarily single-beat, and so there is no possibility

of gating mid-transaction.

3. Clock Gating Clock-gating BlackParrot facilitates control of the rate of trace generation

as an indirect way of handling the back-pressure from commit FIFOs. The ARM PS in

the Ultra96v2 board, running Linux, is capable of dequeuing the shell at a maximum

rate of 13.36 MTPS14 for writes and 3.57 MTPS for reads. And BlackParrot, as

synthesized, can operate at a (tested) maximum of 50 MHz, i.e., assuming the limiting

Instructions Per Cycle (IPC) of 1.0 for the single issue BlackParrot, the maximum rate

of trace generation is 50 MIPS15. In order to automatically match the speed of the

producer (trace generation from BlackParrot) and the consumer (AXI Lite reads from

the PS intp the PL) across the asynchronous FIFO, ZP Cosim opts for controlling the

producer. In order to slow down trace generation, two solutions were explored:

• Architecturally freezing the core so that there are no new instructions fetched

while the FIFOs are full. This requires intrusive changes in the description of

the design (reducing portability of the verification infrastructure) and can lead to

complications in handling the full conditions of the commit FIFOs because there

is the possibility of in-transit commits (mid-pipeline) getting dropped when the

commit FIFOs become full. There are solutions such as early-full signalling16 and

bypass-buffering that was implemented. However, the conservatively-sized buffer

is not utilized consistently and the alternative solution discussed below is much

14Million (32-bit word) Transfers Per Second

15Million Instructions Per Second

16Early-Full is the concept of declaring a FIFO as full prematurely so that any ”limited” soon-to-be-
enqueued data can still be safely accepted.
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simpler.

• Clock-gating the core so that the entire activity (including in-transit commits) are

held constant until the FIFO recovers space. This is the better option because it

does not intrude into the RTL of the processor (BlackParrot in this case) and al-

lows for a simpler FPGA-implementation on Ultra96 through the Xilinx-provided

clock gating macros, while also saving area of the extra buffers.

The gating assertion signal (gate r) is derived from the wired-OR full-signals of the

commit FIFOs. However, the deassertion is derived from the wired-AND of the empty-

signals of the commit FIFOs. This means any of the commit FIFOs becoming full

would assert the gate, but only all the commit FIFOs becoming empty deasserts gate.

This along with the previously mentioned judicious asynchronous commit FIFO buffers

together allow for debug-friendly, burst-trace generation. Note that the gate assertion

and deassertion signal is synchronous with the original clock, as it should be. In Figure

3.4, this is seen as the gate r signal being entirely in the input (pink) clock domain.

Note that in order to guarantee correct clock domain crossing, all the crossings are

either synchronized through BaseJump STL’s asynchronous FIFOs, or through two-

clock synchronizers17.

4. Coverage Collection and Extraction ZP Cosim implements the synthesizable Mux

Toggle Coverage metric with supportive interfaces for coverage retrieval from the PL.

The coverpoints are synthesized on the FPGA in groups. Each group is an instance of

a dedicated coverage collection module each of which:

• Take the parameters corresponding to the group size, the type of coverage (toggle

vs cross-coverage), and a group ID (useful for addressable coverage retrieval),

17Two-clock or three-clock synchronizing is the technique of crossing usually single-bit data across two
cross domains with the use of cascaded flip-flops clocked by the output clock domain. Any metastability
is local to the first of the flip-flops outputs and the subsequent ones correct for it.
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• Take the inputs of the individual coverpoints which are wires, a reset and a master-

reset signal, and related control signals for coverage retrieval, and,

• Emit the addressable coverage maps after program execution of interest.

The inputs are registered and backwards-retimable, and the coverage collection module

is flattenable, meaning the input register placement can be external to the module and

can be automatically retimed to aid timing.

When toggle-only coverage is implemented, the coverage collection module houses just a

register as wide as the number of coverpoints collected that OR-updates the cumulative

coverage. The coverage collection is an action of reading the register. When cross-

coverage is implemented, the coverage collection module synthesizes BRAM module

for distributing and storing the coverage map18.

Distributing coverage map into groups as described in Section 3.1.11 is done to also

reduce the size of memories . Within each distribution, the cross-coverage state-space is

rearranged to fit within standard BRAM instances. Ultra96v2 provides 36 KB BRAMs

that can be used in a few different BRAM configurations. The chosen grouping of G=10

optimizes the fragmentation of the BRAM memories.

3.4.2 Control Program

Understandably, the control program in ZP Cosim has a broader functionality. There are

two major modifications to the control program:

1. Cosimulation Support The control program initializes an instance of the Dromajo

virtual machine, and supplies the same program executable that will be loaded on

the PUT, along with basic configuration of the ISA. The PL presents the previously

mentioned trace information through distinctly addressable PL to PS FIFOs. There

18Coverage map is a one-hot encoded representation of the coverage statespace represented by the cover-
points in question.
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are dedicated read-only count registers that can be used to determine when to safely

dequeue the FIFOs. The control program reads the FIFOs accordingly, sequentially,

in a loop, into software-managed queues. This is a polling sequence as opposed to an

interrupt-based sequence. When an instruction commit with all corresponding changes

effected19 are recorded, the Dromajo virtual machine is stepped one instruction, and

the corresponding execution states compared. The failure of comparison halts the

cosimulation and dumps out limited runtime data structures for a minimal debug. In

simulation, debug exercise is significantly faster with simulation waveforms for greater

visibility into the causes of the mismatches; not so much in emulation which motivates

the needs to save failing tests in emulation for a later offline simulation for debug.

Upon completion, indicated by a write to a certain address, the benchmark is declared

to either PASS or FAIL. A FAIL would indicate correct functioning of the hardware,

in compliance with the ISA, but an incorrect execution of the program.

2. Coverage Extraction ZP Cosim readily supports once-per-program coverage extrac-

tion, and with some modifications, can support dynamic coverage extraction through

key epochs in the test-programs. Because the coverage maps are distributed and ad-

dressable, the control program can be modified to implement customized coverage

extraction which supports targeted fuzzing. ZP Cosim supports sequential reading of

all the covergroups. For toggle-only coverage, any non-zero write to it triggers tog-

gle coverage dump; for cross-coverage, a valid address of the coverage map module

needs to be provided, and the interface dumps the entire coverage map of the module

addressed. Note that, with minimal post-processing, the toggle-only coverage can be

computed from cross-coverage. The coverage extracted from the control-program is

saved in files according to the benchmarks or test-programs the coverage maps were

extracted from. Another Python script analyzes the coverage map and re-associates

19Whether an instruction commits to one of the register files is known by just the instruction word
composition. In cosimulation, such effects are to be completely carried out before comparison so we
compare the most up to date effects of execution.
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coverpoints with corresponding hits. Ideally, at this point, the coverage information

should be utilized to derive specific (valid) mutations to perform on the generated pro-

gram or the benchmark to target coverage increments. This activity has been pushed

to future work.

3.4.3 Solutions and Optimizations

Memory for coverage map ZP Cosim saves coverage maps in Block RAMs. The coverage

modules always update a single bit (corresponding to the coverpoints hit-pattern) in

a BRAM entry. In the FPGA implementation, a 1RW RAM with support for bit-

maskable write is necessary. However, not all FPGAs support bit-maskable writes20;

the FPGA on Ultra96v2 board does not support bit-maskable 1RW RAMs21. This

is implemented with a 1R1W RAM which internally, at every clock cycle, reads the

memory, sets a bit according to a mask, and writes back the update in the next cycle.

This optimization is also made available in the BaseJump STL [119].

Utilization optimization for coverage map The basic unit of BRAM provides a 36 Kb

storage capacity. Obliviously managing coverage maps could lead to external fragmen-

tation, thereby leading to inefficient utilization of the BRAM resources. ZP Cosim

optimizes the coverage map storage with carefully sized RAM instances, and for that,

the crossing groups are appropriately chosen. For example, with a crossing group of

15 bits, implying 15 coverpoints in a grouping, the coverage map is 215 bits wide. This

is implemented with a 512-deep 64 bit wide memories22.

Faster PL-PS communication Another optimization is employing ARM NEON SIMD

loads in the control program to load 4 32-bit words from the PL at a time. The PS in

20Some FPGAs, like the one on Ultra96v2 board, only support byte masks.

211RW is a RAM port configuration that stands for 1 port Readable and Writable. 1R1W is another
commonly used configuration that stands for 1 port Readable and 1 (more) port Writable.

22In actuality, this will be implemented as 512 x 72b BRAM; unless there are further optimizations that
can be employed to utilize the wastage.
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the Ultra96 board supports ARM NEON SIMD operations upto 128 bits (or 4 words).

This allows for the control program running on the PS to load upto 4 words of memory

mapped PL to PS FIFOs and registers. However, because the FPGA shell employs a

memory-mapped 32-bit AXI Lite bus to link the FPGA shell FIFOs and registers to the

PS, the realistic throughput improvements are limited until the point of serialization

of the SIMD loads – at the AXI Smartconnects between the PS and the PL.

Toggle-only coverage Because the cross-product on the coverpoints explodes the coverage

map to be stored, and the area consumption thereof, opting for toggle-only coverage

could be a tradeoff on area for being able to fit larger designs. The alternatives would

be to either leverage some sort of multi-FPGA systems support [57] to be able to

distribute larger designs, or have multiple FPGAs execute the same test-program and

collect coverage over different covergroups and later combine the coverages.

In addition to the aforementioned optimizations, there are the following two potential

optimization in the works:

Buffered Writes for Coverage Map Memories A potential optimization is to employ

write-buffers to reduce total writes into the BRAMs. This can reduce energy consump-

tion, and enable the use of 1RW memories yet again, but may not lead to improvements

in utilization on FPGA. An insight obtained from Verilator simulations is that not all

coverage maps are freshly updated at each cycle. Sometimes, there could even be

same RAM addresses consecutively written as some coverpoints are consistently hit,

and some not so much. In Ultrascale+ FPGAs, 1R1W RAMs and 1RW RAMs do not

change the BRAM utilization much, but do improve energy and timing. This is because

the BRAMs in the FPGAs are inherently dual-ported, and can be configured to run

as single-ported by disabling one of the ports. Within dual-ported operation, there are

two more subcategories – Simple Dual Port (SDP) where both the ports have a fixed

read or write functionality, and True Dual Port (TDP) where either port can perform
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either read or write. As designed, the BRAMs for coverage modules employ SDP mem-

ories which are already optimal. Moving to single-ported RAM thereon would lead to

better energy efficiencies. However, using 1RW RAMs for bit-maskable writes leads to

a problem: at each clock cycle, assuming there are incoming write requests at every

clock-cycle (the worst case scenario), the RAM needs to perform a write of an updated

previous cycle’s read, and a read for the current cycle’s write request. However, relying

on the aforementioned quality of coverage maps, the existence of write-buffers could

reduce the number of writes enough so that a 1RW RAM could be utilized in place of

the 1R1W RAM for recording coverage maps.

However, there is still a possibility of a hazard when the write-buffers are full; potential

solutions include:

• Conservative writes: When the write-buffers are full, incoming writes can be

dropped. This does not affect the reliability or the functional correctness of ver-

ification, but ”underrepresents” coverage – thus increasing verification time and

effort. This would be just fine during the initial, coverage-explosion phase of pro-

gram runs since the hard-to-hit coverpoints are less likely to be hit during this

phase; they get targeted later towards the coverage saturation phases. In order

to be more confident that none of the hard-to-hit coverpoints were dropped, we

could re-run a few initial programs with a randomized dropping of writes so some

more of the previously dropped writes could be incorporated.

• Deeper write-buffers for greater buffering capacity. Presumably, larger write-

buffers would lead to larger or more comparators, which worsen overall utilization.

• Clock-gating BlackParrot when any of the write-buffers are full. This could be an

overkill considering the first bullet point.
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3.5 RISC-V Design Verification

Finally, ZP Cosim comes packaged with RISC-V Design Verification (riscv-dv)[34], a con-

figurable RISC-V random program generator. RISC-V DV is the penultimate step towards

closing the hardware verification loop – the coverage feedback obtained through emulation

of a generated program remains to be connected to a mutator to dynamically reconfigure

the program generator. At the time of writing the thesis, this connection has not been

implemented.
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Chapter 4

EVALUATION OF ZP Cosim

In this chapter, we evaluate ZP Cosim on the BlackParrot processor, and compare existing

commercial and open-source solutions to full system verification.

4.1 BlackParrot

BlackParrot [91] is an open-source, silicon-validated1, RISC-V RV64GC-compliant processor

that is capable of booting Linux. Due to BlackParrot’s rich feature-set [35, 94, 84, 70, 131, 33]

and widespread adoption for both research and utility, BlackParrot is seeing continued aca-

demic development, which makes BlackParrot a valuable candidate for ZP Cosim’s evalua-

tion. BlackParrot is FPGA-validated and runs at a maximum clock frequency of (at least)

50 MHz on the ZU3EG A484 FPGA on the Ultra96v2 board.

4.2 Performance Evaluation

The speed of verification is an important consideration while evaluating a verification infras-

tructure. The pith of ZP Cosim’s verification is cosimualtion, and so the speed of cosimulation

is an important metric for evaluation. BlackParrot supports cosimulation against Dromajo

with Verilator [100] functional simulation, Synopsys VCS [12] simulation, and, with ZP

Cosim’s FPGA-cosimulation.

Table 4.1, details the average baseline Dromajo cosimulation speeds with the above three

simulators. Baseline corresponds to the system without any of the optimizations discussed

in Chapter 3.

1BlackParrot has been taped out in Global Foundries 12 nm.
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Simulator
Cosimulation

Speed (MIPS)

Absolute

Speedup

Emulation

Speedup

Verilator 0.000177 1.00x

VCS 0.001477 8.34x

Emulation (with tracing) 0.011 62.14x 1x

Emulation (no tracing) 0.192 1084x 17x

Emulation (with SIMD reads) 0.273 1542x 24.8x

Emulation (with reduced reads) 0.308 1740x 28x

Emulation (with async1 operation) 0.372 2101x 33.8x

Table 4.1: Average baseline Dromajo cosimulation speeds in various backends. The speedup

factors are in comparison to Verilator cosimulation – for being the lowest.

1 With FPGA shell/AXI bus at 80 MHz, and BlackParrot at 40 MHz. This is achieved by employing clock

divider macros provided by Xilinx. It may be possible to run the bus at higher frequencies, and this only

serves as a proof-of-concept of the asynchronous operation optimization discussed in Section 3.4.1
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Dromajo Simulation Simulation Speed (MIPS)

On x86 64 (3.2 GHz) 16 — 0.9 with trace on

On ARM AArch64 (0.3 GHz) 2.4 — 0.07 with trace on

Table 4.2: Baseline Dromajo functional simulation speeds on AMD Ryzen 5800H and the

Ultra96v2 board. In both cases, simulation is on a single-core for the same benchmark.

Observing the time spent by the control program on various activities shows that that

the majority of the time spent on an instruction cosimulation is in the 14 PS-PL memory

accesses2.

Inference: Reducing the PL-PS access time would significantly speed-up cosimulation.

Applying the optimization discussed in Section 3.4.3 – SIMD loads from the commit

FIFOs, we observe that the cosimulation speed has increased by nearly 40%. Additionally,

every time we read the FIFO count registers, we can save the value for the subsequent

iteration where we can skip verifying that the count is non-zero which reduces the number

of loads. This increases cosimulation speed by an additional 10%. The number of reads into

the PL-PS FIFOs can be reduced further by 4 by combining the 5 FIFO count registers into

1 and operating with a local copy for the iteration.

For reference, the average speed of functional simulation in Dromajo is provided in Table

4.2. Functional simulation in Dromajo is useful as a reference for comparing executions of

programs on architectural simulators; it does not provide any information on the correctness

of a hardware implementation.

Note that, in Table 4.1, there are cosimulation speeds stated with and without tracing

enabled. Tracing is for enabling debug prints and execution trace dumps – which would add

2Note that the 14 PL reads are: 5 FIFO count registers – for emulation status/standard library calls, the
instruction commit FIFOs, the Integer RF and FPU RF commit FIFOs and the trap/exception FIFOs, and
8 data registers on average: 2 each for PC, mstatus, commit-data to the RF and 1 each for instruction word,
and the register ID in the RF (either Integer RF or FPU RF; not both); this excludes the trap/exception
and instruction retire counts FIFOs as these are relatively less common events.
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latencies corresponding to environment calls and file IO in case of FPGA emulation. Since

the intention is for the FPGA emulation to merely expose failing test programs and the

actual debug to be performed in simulation offline, the requirement of tracing on the FPGA

is obviated to an extent.

Also note that RTL simulation through VCS or verilator is much slower than Dromajo

functional simulation, which is an ISA simulator that is implemented in software. The

ISA simulator does not model any of the implemented microarchitecture and so does not

provide any visibility into the actual working of the processor; it is instead used for software

testing and debugging. But as a reference, it allows for sanity checking of the generated

test-programs which is an important part of cosimulation – for isolating bugs within the

context of valid and well-defined behaviors.

Additionally, Synopsys VCS simulator is commercially-licensed, Verilator and ZP Cosim

are open-source. The speed differences (as evaluated on Intel(R) Xeon(R) Gold 6254 CPU

at 3.1 GHz) between the simulators are not negligible, however, there are nuances to be

appreciated. For example, there are differences in the way VCS simulates target – with

ASIC synthesis as a primary goal, which leads to stricter rules on hardware descriptions and

clocking infrastructure. Verilator is a fast functional simulator that is forgiving of clocking

and other more synthesis related rules.

Emulation on the FPGA is clearly significantly faster than simulations through VCS

or Verilator. This is the intended bracket ZP Cosim competes in. With the automated

coverage extraction implemented, there is little to no change in performance. But the logic

utilization on the FPGA increases significantly. Table 4.3 details the baseline utilization

with group-wise crossed coverage implementation for a group size, G=10, and toggle-only

coverage implementation.

4.2.1 Efficient crossing of coverpoints

From the logic utilization, we see that the FPGA shell infrastructure implementing toggle-

only coverage leads to a minor increase in utilization. Note that because of the use of
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Logic

Block

Total

Available
Baseline

Toggle

Coverage

Cross-Coverage

Ternary

St. Only
Combined

LUT 70560 56.98% 60.15% 65.03% 136.82%

LUTRAM 28800 12.77% 17.43% 31% 111.7%

FF 141120 13.90% 14.47% 18.33% 139.89%

BRAM 216 49.31% 49.31% 81.01% 106.3%

BUFG 196 1.53% 4.59% - -

Table 4.3: Logic utilization (in %) on the FPGA. The total number of logic blocks of each

type is also provided for reference.

clock-gating, there are additional clock buffers utilized, but the utilization increase is still

not concerning. Cross-coverage, on the other hand, explodes the utilization as hypothesized

earlier. The full-scale cross-coverage – of 219 groups of 10 coverpoints each, does not fit

within the FPGA on Ultra96v2, and so, Table 4.3 records, separately the increase for limited

ternary statement-based covergroups, and all covergroups. We see that for a grouping size

of 10 coverpoints in a covergroup, leading to instantiation of a 32x32 BRAM per coverage

module, the increases in BRAM and LUTRAM utilization for the combined covergroups

exhausts the FPGA device. Two optimizations that may be valuable are discussed in 3.4.3. A

naive way to solve this problem is by having multiple FPGAs collect coverages from different

covergroup sets. For BlackParrot, that would be 3 FPGA’s for a combined collection of all

the cross-coverages.

A better solution would be to further limit the grouping to 6 coverpoints per group –

which would lead to 64 bit cross-products per covergroup that can be assembled into available

BRAM resources efficiently. Besides making it possible to use a single unified BRAM that

would greatly simplify coverage arbitration hardware, it also establishes a more effective
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usecase for coverage map write-buffers disscussed in 3.4.3.

4.3 Coverage Evaluation

4.3.1 Motivation for Coverage

To motivate the need for coverage in verification, consider a real-world example in testing

BlackParrot [91]. RISC-V Tests [6] is a suite of individual targeted functional test programs,

a group of which tests the floating point unit (FPU) in RV64FD or RV32FD [129] compliant

hardware implementations. All the FPU test cases in RISC-V Tests execute on BlackParrot

without any failures. They also do not show any mismatches during cosimulation against

a golden-reference ISA simulator, Dromajo[122]. However, relying on the passing test cases

as an indication that the implemented FPU in BlackParrot is functionally correct would be

imprudent. Case in point, the FPU precision bug described in Section 4.4. This bug goes

undetected through the RISC-V Tests benchmark suite. And obtaining the coverage effected

by the test cases identified the reason in retrospect to be uncovered branches in the hardware

description by the programs of the benchmark.

Objectively evaluating coverage metrics could be tricky mainly because of the huge cov-

erage state-space. Defining a coverage metric is context-dependant. For example, software

testing often characterizes coverage of a test case based on number of lines of the software

that were made to execute (code-coverage), or the number of different combinations of control

statements exercised, etc. Often times, coverage is in the context of optimizing an objective.

In our use case, that objective is in exercising as many functional states combinations of

the hardware. Looking at coverage as an indication of the progress of verification, different

coverage metrics highlight different frontiers of progress. Some research works have explored

different coverage metrics, and evaluated their relevance and utilities [103, 69, 93]. Some of

the metrics that can be objectively evaluated across automated coverage metrics are:

• Completeness in identifying coverpoints,
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Coverage Metric Coverspace (bits)

Mux Toggle Coverage

if statements 5849

Ternary statements 1486

case statements 196

Total 7531

Mux Toggle Coverage

+ Post Processing

if statements 1399

Ternary statements 810

case statements 111

Total 2320

Mux Toggle Coverage

+ Post Processing

+ Coverspace Reduction

2190

Case-Statement Coverage 196

Case-Statement Coverage + Post Processing 111

Table 4.4: Number of coverpoints identified for different coverage metrics, their composition,

and improvements through post processing and coverspace reduction.

• Concision of the coverpoints for the same bug-discovering capacity, and,

• Time taken for coverage convergence, or saturation when appropriate. In some cases,

the number of programs or total instructions emulated for coverage convergence could

be more meaningful.

Because ZP Cosim only implements Mux-Toggle coverage, there is no reference or a baseline

to compare the completeness of the metric against other coverage metrics.

The evaluation of the coverpoints identified by ZP Cosim’s walker in the description

of BlackParrot processor is compiled into Table 4.4. Post-processing is done through parse
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scripts to reduce duplicates and reset-only coverpoints. Post-processing also identifies parameters-

only and constant-only coverpoints (through parameter and constant substitution). Note

that the UHDM elaboration also eliminates parameterized blocks that are not activated in

the chosen parameter config. Additionally, note that the coverage statespace reduction of

about 6% (130 bits) in BlackParrot may be significant in that the failing efforts needed for fi-

nal sign-off can be avoided. Curiously, in a test evaluation of Chisel-lowered Verilog, we found

that in the case of BOOM[137], case-statement coverage does not identify any coverpoints

presumably because the Chisel compiler lowers the hardware description to synthesizable

Verilog while also performing optimizations such as Dead Code Elimination (DCE), logic

inference, and logic simplifications. One of the structural optimization is in reducing Case

Statements in Chisel to a series of if statements in Verilog.

Note that a cross-product on the post-processed and reduced coverspace of 2190 bits

would lead to a cross-coverage state-space of 22190, whereas exercising localized group-wise

cross-products with G = 10 leads to a cross-coverage state-space of 219 × 210 which is

approximately 2212 times smaller.

4.3.2 Coverage over benchmarks

BlackParrot was evaluated with 300 randomly generated test programs with RISC-V DV

[34], and 4 benchmark suites: RISC-V Tests [6] for targeted functional test cases, BEEBS

[89] for its instruction distributions and its adaptability to bare metal execution, SPEC [7] for

extremely long-running performance-related insights, and BP-Tests, an in-house developed

suite of customized test cases for previously discovered bugs. BlackParrot is also capable of

booting Linux, and so, the coverage effected by running Linux is also recorded. Figure 4.1

is a graph of toggle coverage achieved over some of the benchmarks as captioned. The black

pixels correspond to coverpoints that have not been toggled, and the white pixel correspond

to toggled coverpoints which are 88.01% of the total coverpoints. The inference is that there

is still some space of the hardware functionality that remains to be tested, and that begs for

further testing.
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Figure 4.1: The coverage map indicating ”coverage holes” after running the RISC-V Tests,

BEEBS, and 4 of 9 SPEC 2017 benchmark programs. The Y-axis represents the covergroup

IDs, and the X-axis represents the individual coverpoint toggles within the corresponding

covergroups.

4.3.3 Coverage Convergence

For the Mux-Toggle coverage metric, we plot the coverage effected by 300 randomly generated

programs on a coverspace of 600 bits or 60 covergroups each with 10 coverpoints in simulation,

and the coverage convergence is plotted in Figure 4.3. As for the case-statment coverage

metric, there are 46 case statements with unique condition expressions distributed between

1 bit wide to 6 bits wide, totalling to 151 bits3. A simulation run in Verilator with the same

300 randomly generated programs (generated by riscv-dv) is captured in the coverage graph

3We manually ignore the 32-bits instruction word in cases where it appears.
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(a) Individual coverage effected by each of

the groupings at G=10

(b) Cumulative coverage effected in all the

identified coverpoints

Figure 4.2: Case-statement coverage effected by RISCV-DV generated programs on Black-

Parrot.

in Figure 4.2. The coverage effected is plotted both group-wise (according to ZP Cosim’s

grouping of coverpoints), and cumulatively.

One of the important observations is that coverage saturates early into program runs,

following which there is infrequent and spaced out increments to coverages. ZP Cosim

implements the coverage modules such that all of them can be read out sequentially. However,

barring a few initial programs, most other times, just transferring individual coverpoint hits

to the PS makes sense.

Another related observation (not from the graphs above) is that most of the initially

hit coverpoints are consistently hit. This was confirmed by randomly resetting the coverage

hits and restarting the coverage counts, and the convergence graph remains very similarly

shaped. This leads to the conclusion that some coverpoints are very frequently and very

easily hit – causing the large initial boost in coverage. And the rest of the coverpoints are

very rarely (if at all), and very infrequently hit. This allows for very useful optimizations in
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(a) Individual coverage effected by each of

the groupings at G=10

(b) Cumulative coverage effected in all the

identified coverpoints

Figure 4.3: Mux (select-signal) toggle coverage effected by RISCV-DV generated programs

on BlackParrot.

the coverage infrastructure in the shell – mainly, the use of a unified write-buffer as there

are rarely ever updates to the coverage hit memories. Even if conservatively, we maintain

a shallow write-buffer, and drop write-updates whenever the write-buffers are full – which

will be a lot of writes initially, eventually, most of the easily-reachable coverpoints will be

hit, and moving closer towards convergence, inevitably reduces the number of writes to the

coverage hit memories.

Ideally, the best way to collect coverage would be by running a small number of benchmark

programs first – which hits most of the easily hittable coverpoints. When the coverage is

stable, which is when the easy coverpoints are all hit, the updates become less frequent, and

the PS can then rely on individual coverpoint hit updates from the shell to guide its fuzzer

or any other form of analysis tool to learn what changed in the program that caused the

increment in coverage, and try and mutate the cause of that with other stimuli to hit even

more coverpoints in combinations.
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4.3.4 Insights

ZP Cosim’s implementation of Mux Toggle coverage has a few drawbacks:

Implicit Muxes The walker does not recognize implicit muxes during its identification of

coverpoints in the input hardware design. Implicit muxes are those that are elabo-

rated in the design itself, that logic inference4 tools would otherwise interpret as and

synthesize into muxes.

Coverage Aliasing The walker does not preclude coverage aliasing which is discussed in

Section 3.1.9.

Cross-Coverage The implementation of grouped cross product (as opposed to total cross-

product) on coverage may sacrifice useful coverage for being able to FPGA-accelerate

coverage-extraction as otherwise the coverage infrastructure will not fit on the FPGA;

this is discussed in Section 3.1.11.

Coverage Metric The Mux Toggle Coverage metric is also not a stand-alone metric. For

example, expression coverage, sometimes also called condition coverage, is defined as

the coverage over all the expression and subexpressions in the design description. There

could be cases where an expression can evaluate the select signal of a mux, but the

expression could be buggy while evaluating to both true and false incorrectly. Relying

solely on the Mux Toggle coverage might not help discover the bug in the expression

as fuzzers may not ”work towards” discovering all evaluations of the expression. So

there needs to be a combination of different coverage metrics for a more ”complete”

indication of coverage.

4Logic inference during ASIC or FPGA synthsis, is the mechanism of detecting and recognizing particular
code patterns in the logic description that can be supplanted with standardized logic elements available
in the library. For example, a code structure like assign X = A & S | B & ∼S is inferred as a Mux with
two wire inputs A and B, a wire select S, and a wire output O.
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Simulation reproducibility In addition, there is the possibility of the offline simulation

not matching emulation – in that the mismatches encountered during emulation may

not be visible during simulation in Verilator or VCS. This could be because of some of

the non-deterministic design elements in the implementation of ZP Cosim – clock gat-

ing, which depends on the PS dequeuing the shell FIFOs, and DDR response latencies,

which depends on other contending DDR accesses such as from the PS itself. Deter-

ministic replay in SoC verification is the ability to replay failing test vectors to observe

the same sequence of hardware states and the failing condition. Without reproducibil-

ity, the value of bug finding rests entirely on how good the real time debuggability of

emulated designs is, and even then it will be restrictive with the insight that can be

had with replays.

In order to support complete emulation reproducibility, all not-deterministic behavior

of the hardware and the FPGA support environment need to be made deterministic or

eliminated. In ZP Cosim, there are two sources of non-determinism:

1. Clock-gate assertion signal depends on the rate of dequeuing of the commit FIFOs

(any of the full signals assert the gate). The FIFOs are dequeued by the control

program executing on the PS which has many non-deterministic agents such as

uncached memory accesses among those by other background processes in the

operating system, context switches by the operating systems, etc.

ZP Cosim allows for a configurable commit FIFO depth – when set to 1, every

instruction commit in BlackParrot asserts the gate on the clock to BlackParrot.

Instruction commits are deterministic5 with the next adjustment.

2. DRAM latencies: ZP Cosim can be modified to implement an additional gating

assertion signal that is asserted at every DRAM request generated at the adapter

interface, and deassert it when the corresponding DRAM response arrives. This

5When memory accesses are deterministic too.
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way, what would have otherwise been a non-determinable latency of request, will

be a deterministic 1 cycle latency form the processor’s point-of-view.

There are also additional bug-discovery advantages to implementing this6

4.4 Practical Utility and Reliability

The true measure of any verification infrastructure is in discovering known bugs and its

potential of discovering new bugs. ZP Cosim has supported the discovery of 4 new bugs in

BlackParrot processor. Note that BlackParrot is silicon-validated, so the impact of the bugs

discovered is high. The following subsections describe the bugs, their importance, and rea-

soning on why they were not found through previously exercised verification methodologies.

4.4.1 Bug 1: FPU Precision

BlackParrot implements both single and double precision Floating Point extensions of the

RISC-V ISA. In the microarchitecture, however, BlackParrot only implements the double-

precision FPU with modifiable control signals to execute single-precision operations. In

the buggy state, a series of accumulations of single-precision values lose precision gradually

because of how rounding was handled for both single and double precision registers similarly

in BlackParrot. Because the placements of the guard and round bits differs in bit positions

across the two precisions, there have to be dedicated implementions of rounding for single

and double precision values.

This was discovered in the process of running the SPEC [89] benchmark suite, which runs

long sequences of programs with higher probability of encountering accumulations into the

6Reproducible randomness can often be useful in a more robust closed-loop fuzzing. These could be in the
form of injecting external interrupts, or asserting clock gates on various clock domains – such as modulating
the physical execution characteristics like latencies of DRAM accesses. The quality of reproducibility is
important here because any bug or a hardware malfunction or a misbehavior encountered during fuzzing,
needs to be reproducible for later offline debugging and bug fixing. In ZP Cosim, this can be implemented
with configurable (between 1 and N cycles) DRAM response latencies as seen at the AXI interface at
BlackParrot. This is possible because any chosen latency is an addition to the latency of 1 clock cycle
made possible by the additional clock gating assertion. A reproduction emulation would then imitate the
exact gating assertion and deassertion sequence.
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same register. This was made possible because of the orders of magnitude faster cosimulation

speeds of ZP Cosim.

4.4.2 Bug 2: Negative Zero

BlackParrot’s Floating Point Unit (FPU) implementation superimposes multiplication and

the Fused Multiply Add (FMA) operations. The FMA unit is part of a translated, and

slightly modified HardFloat [25] implementation (originally in Chisel). The FMA unit takes

3 parameterizable data inputs, A, B and C, and control signals specifying the rounding mode,

the specific operation to be performed, among other things, and performs the operation

below:

result = ±A×±B ± C

For floating point multiplication, BlackParrot retains A and B and adds C = +0. However,

according to the IEEE 754 Standard for Floating Point Arithmetic [14] that the Instruction

Set Architecture adheres to, adding a +0, is not always an additive identity:

(−0) + (+0) =

−0 ifroundingmode = RDN

+0 ifroundingmode ̸= RDN

Clearly, adding a +0 to the result of the floating point multiplication can change the sign

of the result when the rounding mode for the operation is set to anything other than RDN

(Round Down). The bug in question is because of BlackParrot not accounting for this

possibility. During cosimulation, instructions fmul.d and fmul.s which are floating point

multiply instructions in double and single precision, respectively, that ideally should compute

to a -0 when the rounding mode is not RDN, end up computing to +0, mismatching with

reference Dromajo simulation.

This bug was not encountered in RISC-V Tests or BEEBS, but numerous times in running

the SPEC benchmarks. An important observation is that the average execution time of

each the SPEC benchmarks programs is significantly higher than BEEBS and RISC-V Tests

programs. Longer-running test programs have greater probability of hitting more coverpoints
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or crosses. This led to further construction of a more complete sweep of special operand

values (NaN, +inf, -inf, +0, -0, negative and positive fractions and integers), and rounding

modes. This manual exercise of inferring possible interesting cases from a mismatching case,

and constructing programs to exercise those interesting case methodically is something that

an ideal fuzzer should be able to automate with properly guided mutations and program

generations.

4.4.3 Bug 3: NaN-Boxing

In implementations that support both single and double precision floating point operations,

and allow for shared register files, there is the issue of distinguishing precision. NaN-boxing

is a requirement imposed by the ISA, where, a narrow n-bit value, where n < FLEN and

FLEN is the maximum supported width of the FPU Register File, need to be NaN-boxed for

it to be valid, i.e., all upper FLEN−n bits are set to 1. In our case, NaN boxing requires the

implementation to set the upper 32-bits of a 64-bit register if the lower 32 bits are used to

hold 32-bit floats. As an example, when a flw fa4, 0(a4) instruction is executed, the 32-

bit data, say 0xdead beef, at the address a4+0 is loaded into the lower 32-bits of fa4, while

also setting the upper 32 bits, essentially resulting in fa4 holding 0xffff ffff dead beef.

In implementations that do not implement correct NaN boxing, a non-boxed single-precision

value will be considered as a NaN (from the way NaNs are encoded in 64-bit double-precision

encoding). As a corollary, operations (double-precision, for example) performed on narrower

(single-precision, for example) registers should compute to NaN. BlackParrot had a bug

where this was not recognized as a case to NaN the result.

4.4.4 Bug 4: Integer to Floating Point Conversion

In the buggy state, during the execution of a fcvt.s.w which converts a signed 32 bit integer

value to a single-precision floating point value, BlackParrot fails to recognize the sign of the

integer, essentially executing fcvt.s.wu converting an unsigned integer instead of a signed

integer.
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This is not particularly a hard-to-find bug, but having the insight on the coverage holes

left over by previous programs definitely helps. The emulation framework did not necessarily

help with the discovery by itself, but hte automated coverage instrumentation contributed

the insight.

4.5 Existing Work

4.5.1 Open-Source Alternatives

The work on Simulator Independent Coverage by Kevin Laeufer et. al. [80] carries a similar

motivation as ZP Cosim – the need for automated coverage metrics that enable more accurate

and customized coverage measurement. The work builds on FireSim, Fromajo and related

projects [73, 137, 74], and demonstrates and assesses various automatic coverage metrics

[93], and describes compiler support in Chisel hardware description language for extracting

and synthesizing cover statements that estimate simulation-time coverage. They propose a

common coverage format and a report generator that can be used to assemble and accumulate

coverages across different simulator and emulator runs. However, the infrastructure here

relies heavily on compiler support which adds significant engineering effort in porting to

other high-level languages. The cover statements count the number of times a coverage

target was hit on a test using a saturating counter, and so, is viable for limited number of

coverage targets. In large designs, however, the automation may not scale.

ZP Cosim also demonstrates and assesses automatic coverage metrics, and relies on com-

piler support. However, the hardware description languages it supports, Verilog and Sys-

temVerilog, are more popular and sometimes the only language that commercial chip designs

are described in. Additionally, the coverage metrics as identified in Chisel, are not always

relevant in the generated Verilog which adds to the instrumentation complexity; the Chisel

compiler will also need to raise the coverage information back to Chisel for it to be inter-

pretable in context of the high-level language, which adds overheads in compilation and

coverage interpretation. The compiler support in ZP Cosim comes in the form of a walker
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skeleton for the open-source Surelog-compiled Universal Hardware Data Model that can be

used as is, or developed to implement custom coverage metrics. The walker, written in

C++, walks a standardized SystemVerilog Object Model [13] through standard VPI APIs

and is more adaptable in practice. In addition, the coverage extraction can be limited to

key submodules needed to be tested by changing just one flag during the invocation of the

walker which can enable localized coverage extraction. Moreover, unlike the implementation

in comparison, ZP Cosim allows for a zero-footprint7 instrumentation with SystemVerilog

hierarchical scopes. As such, ZP Cosim’s approach is more customizable and adaptable. The

option of emulation on FPGA clusters makes ZP Cosim more easily scalable and emulation-

friendly; the work in comparison also allows for FPGA cluster emulations on FireSim[73]

instances, but the cost offsets are unclear due to their use of expensive servers and cloud

FPGA infrastructures with expensive PCIE interfaces.

4.5.2 Commercial Alternatives

Among the industrial solutions, ImperasDV [3] matches all the feature set ZP Cosim pro-

vides. ImperasDV has its own reference ISA simulator, Imperas Instruction Set Simulation

(ISS) and the riscvOVPsim which supports cosimulation against simulated and emulated

hardware targets designed in Verilog/SystemVerilog. They provide mechanisms for func-

tional coverage measurement – not the broader microarchitectural coverage like ZP Cosim

does, and the testbench/harness for interfacing hardware targets. The also have a customiz-

able random instruction test generator for a similarly closed-loop verification strategy as ZP

Cosim. The main areas we hypothesize ZP Cosim would perform well is in the modifiability

of the platform, cost of the overall verification infrastructure – which is mainly the cost of

the inexpensive FPGA boards and the cost of operation, and a more extensive and pliable

coverage measurement infrastructure.

7Zero footprint in submodules. Hierarchical scopes on variables allow wiring variables from deep within
the module hierarchy into modules in the top-module without having to introduce any extraneous IO in
the hierarchy. Of course, the coverage modules of ZP Cosim can be placed in a separate file, and wrapped
together with the original ”truly untouched” hardware description of the implementation under test.
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Renode [19] defines cosimulation to mean a full system simulation where Renode simulates

a part of the system – usually, the host processor which can be chosen from an arsenal of ARM

and RISC-V implementations, and a ”verilated” 8 user designed accelerator, peripheral IP,

or processor. Renode supports communication with the verilated part via AXI or Wishbone

[60] with simple user-defined software shims. The infrastructure is still evolving and open-

sourced. Renode also provides a vast feature set that includes automated CI setups for

testing soft cores and versatile prototyping of processor designs.

4.5.3 Alternative Components

Spike [8], like Dromajo, is an alternative C++ functional model for RISC-V ISA. Spike

also provides support for cosimulation and serves as a golden-reference model. For applica-

tion execution environment, Spike is often paired with RISC-V Proxy Kernel. Spike supports

RV32GC (just like Dromajo) and extends support to Q (quad-precision floating point instruc-

tions) and V (vector instruction) extensions. Spike also provides parameterizable memory

consistency models: Weak Memory Ordering (WMO) and Total Store Ordering (TSO), and

supports the Debug specification for visibility into memory/register contents.

RISC-V Architectural Test Suite and (a broader) RISC-V Compatibility Framework [11]

are minimum necessary test programs to be passed for licensing of hardware implementations

with a corresponding RISC-V ISA. Passing here does not indicate that the implementation

is fully compliant, but rather checks important aspects of the implementation and the spec-

ification matching. One of the goals of ZP Cosim is to generate minimal high-coverage test

cases for checking microarchitectural compliance with the corresponding RISC-V ISA, and

to discover bugs in the process. The two test suites in question provide a set of readily

available tests for ISA-level compliance.

RISC-V Formal Verification Framework [41] is another alternative to functional cosimula-

tion with RISC-V ISA simulators. It features a processor-independent formal description of

8Verilated peripherals are hardware peripherals that have been compiled into a functional C++ model
that can be executed, usually with a user-customizable wrapper.
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the RISC-V ISA, and set of formal testbenches to verify compliance. The setup costs include

designing the RISC-V Formal Interface (RVFI) which is the verification-only scaffolding for

interfacing with RISC-V Formal. This allows for a portability of the verification infrastruc-

ture. Though this may involve intrusive changes to the processor under test, a sequential

equivalence check verifies the equivalence of the core with/out the RVFI modification, so the

verification reliability is unaffected. RISC-V Formal uses the SymbiYosys formal verification

front-end which helps in composing portable formal checks.
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CONCLUSION

This thesis introduced ZP Cosim as an enabler towards the concept of iterative, self-

contained processor verification. ZPD combines portable and configurable toolset, an FPGA

shell, and a control program, enabling cosimulation and automated coverage extraction.

The toolset is comprised of automated, concision-driven coverpoint identification, and

non-intrusive instrumentation of the processor-under-test. This toolset is completely open-

source and portable due to the use of standard languages and tools.

The FPGA shell interfaces with the PUT (here, BlackParrot, a RISC-V processor) on one

side, and provides a decoupled, standard AXI interface with an ARM based host processor

on the other side. The shell allows BlackParrot to run asynchronously, and it does so without

creating any back-pressure on the PUT, by instead clock-gating it and safely managing the

clock crossings.

And the control program manages the execution on the PUT, extracts execution trace

in real-time, cosimulates against a golden reference model (Dromajo RISC-V ISA simula-

tor), and extracts coverage post-emulation. The coverage can be analyzed post emulation

for completeness of testing, and can be utilized towards driving a coverage-guided fuzzing

instance or manually targeting hitherto uncovered coverpoints.

Moreover, the cosimulation-based verification infrastructure can be scaled up to multiple

FPGAs via FPGA-clusters to accelerate verification even further. And because of the use

of inexpensive consumer-FPGA boards, the infrastructure is economical. In the process, the

coverage effected by popular benchmarks and randomly generated programs were studied and

the resulting gaps motivated the discovery of 4 key microarchitectural bugs in the silicon-

validated BlackParrot processor.
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Appendix A

CODE REPOSITORIES

• BlackParrot is available as an open-source GitHub repository at https://github.

com/black-parrot/black-parrot

• The hardware development kit for BlackParrot is maintained under https://github.

com/black-parrot-hdk

– Zynq-Parrot is the FPGA enablement for BlackParrot; it is located at https:

//github.com/black-parrot-hdk/zynq-parrot.

– The thesis work is hosted by the ZP Cosim repository. It enables a complete

closed-loop system verification, and is constantly evolving. It is available on-

line, at https://github.com/black-parrot-hdk/zynq-parrot-dromajo. The

repository README.md file details the procedure to set up the repository and

exercise the verification framework described in the thesis.

• ZynqFarm is a private FPGA farm composed of 20 Ultra96v2 boards hosted by the

Bespoke Silicon Group (BSG). It is available at https://github.com/farzamgl/

zynq-farm. At the time of writing this thesis, the ZynqFarm is maintained by Farzam

Gilani, a Ph.D. student at BSG. For research use, please contact Prof. Michael Taylor.
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