
UNIVERSITY OF CALIFORNIA SAN DIEGO

Specialization as a Candle in the Dark Silicon Regime

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Nathan Goulding-Hotta

Committee in charge:

Professor Steven Swanson, Co-Chair
Professor Michael Bedford Taylor, Co-Chair
Professor Rajesh Gupta
Professor Ryan Kastner
Professor Ramesh Rao

2020

Copyright

Nathan Goulding-Hotta, 2020

All rights reserved.

The Dissertation of Nathan Goulding-Hotta is approved, and it is acceptable in

quality and form for publication on microfilm and electronically:

Co-Chair

Co-Chair

University of California San Diego

2020

iii

DEDICATION

To those who embrace humanity (and a sense of humor).

iv

EPIGRAPH

Maybe in order to understand mankind, we have to look at the word itself. “Mankind.”

Basically, it’s made up of two separate words—“mank” and “ind.”

What do these words mean? It’s a mystery, and that’s why so is mankind.

—Jack Handey

Hofstadter’s Law:

It always takes longer than you expect,

even when you take into account Hofstadter’s Law.

—Douglas Hofstadter

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xi

List of Listings . xii

Acknowledgements . xiii

Vita . xvii

Abstract of the Dissertation . xix

Chapter 1 Introduction . 1

Chapter 2 The Rise of Dark Silicon . 5
2.1 The Utilization Wall . 6

2.1.1 CMOS Scaling Theory . 6
2.1.2 The End of Dennard Scaling . 6
2.1.3 The Utilization Wall . 8

2.2 Dark Silicon . 9
2.2.1 The Dark Silicon Problem . 9
2.2.2 Dark Silicon Solutions . 11

2.3 Specialization as a Candle in the Dark . 12
2.3.1 Benefits of Specialization . 13
2.3.2 Challenges of Specialization . 14
2.3.3 Predictions Come True: Industry Trends . 16

2.4 Summary . 17

Chapter 3 Conservation Cores . 19
3.1 System Overview . 19
3.2 C-core Architecture . 21

3.2.1 Baseline C-core Architecture . 21
3.2.2 Improvements to C-cores . 23

3.3 Integration with CPU . 26
3.3.1 Shared L1 Data Cache . 27
3.3.2 Control Interface . 27

vi

3.4 Programming and Execution Model . 29
3.5 Patching Support . 30
3.6 Toolchain for Automatic C-core Generation . 32

3.6.1 C-core Selection . 32
3.6.2 Compiler Toolchain . 34
3.6.3 C-core Simulation . 35
3.6.4 ASIC Synthesis . 35
3.6.5 Power Estimation . 36

3.7 Summary . 37

Chapter 4 GreenDroid . 39
4.1 Application Processors . 39
4.2 Android’s Suitability to C-cores . 40
4.3 GreenDroid Architecture . 43

4.3.1 System Architecture . 43
4.3.2 Tile Architecture . 44

4.4 Generating C-cores for Android . 45
4.5 Placed-and-Routed GreenDroid Tile . 47
4.6 GreenDroid in 28 nm: MiniDroid . 51

4.6.1 Chip Architecture . 51
4.6.2 Catalyst CAD Flow . 55
4.6.3 MiniDroid Physical Implementation . 57

4.7 Summary . 60

Chapter 5 Image Processing Unit . 62
5.1 IPU Motivation . 63

5.1.1 Image Processing and Stencil Computations . 64
5.2 IPU Architecture . 67

5.2.1 Stencil Processor . 68
5.2.2 Line Buffer Pool . 72
5.2.3 Network-on-Chip . 72
5.2.4 I/O Block . 73
5.2.5 Scalability . 73

5.3 IPU Programming . 73
5.3.1 Halide Language . 75
5.3.2 Halide for IPU Programming . 76
5.3.3 Virtual Instruction Set (vISA) . 77
5.3.4 Physical Instruction Set (pISA) . 79

5.4 Execution Model . 82
5.4.1 PVC and IPU Runtime Boot Sequence . 82
5.4.2 PVC and IPU Runtime Job Execution Sequence . 83

5.5 Summary . 84

Chapter 6 Pixel Visual Core . 85

vii

6.1 Chip Architecture . 86
6.1.1 Image Processing Unit . 86
6.1.2 Control Processor . 87
6.1.3 Interconnect . 87
6.1.4 I/O Interfaces . 87
6.1.5 DRAM . 89

6.2 Physical Implementation . 89
6.2.1 Process Technology . 89
6.2.2 SoC Die . 90
6.2.3 System-in-Package . 90

6.3 Evaluation . 93
6.3.1 Maximum Performance . 93
6.3.2 HDR+ Benchmarks . 93

6.4 Summary . 95

Chapter 7 Related Work . 96
7.1 Dark Silicon Research . 96
7.2 Mobile Phone/SoC Accelerators . 99

Chapter 8 Synthesis and Conclusion . 101

Appendix A Acronyms . 106

Bibliography . 108

viii

LIST OF FIGURES

Figure 2.1. Spectrum of multicore designs in the dark silicon regime 10

Figure 2.2. Efficiency spectrum of general-purpose versus specialized hardware 13

Figure 2.3. iPhone accelerator count . 16

Figure 3.1. Organization of a c-core-based system . 20

Figure 3.2. Conservation core life cycle . 21

Figure 3.3. C-core example translation from source code . 22

Figure 3.4. Selective depipelining in c-cores . 24

Figure 3.5. Using selective depipelining to remove registers . 25

Figure 3.6. C-core cachelet architecture . 25

Figure 3.7. C-core state tree address format . 28

Figure 3.8. C-core toolchain . 33

Figure 4.1. Android software stack . 41

Figure 4.2. GreenDroid architecture and tile floorplan . 43

Figure 4.3. Android dynamic execution code coverage . 46

Figure 4.4. Placed-and-routed GreenDroid tile with 9 Android c-cores 48

Figure 4.5. Energy savings in c-cores compared to CPU . 49

Figure 4.6. Energy vs. area tradeoff for GreenDroid c-cores . 50

Figure 4.7. MURN conceptual diagram with on-chip ring network 52

Figure 4.8. MURN network packet format . 53

Figure 4.9. MiniDroid package layout . 56

Figure 4.10. MiniDroid package layout detail . 56

Figure 4.11. Sketching a MiniDroid floorplan . 58

Figure 4.12. MiniDroid 28-nm chip floorplan with pad ring and 2x2 tile array 59

ix

Figure 5.1. Organization of a digital camera’s lens, sensor, and ISP 64

Figure 5.2. Bayer pattern generated in raster scan order . 65

Figure 5.3. Image Signal Processor (ISP) pipeline example . 65

Figure 5.4. Stencil computation with a 3x3-pixel support region 66

Figure 5.5. Image Processing Unit architecture . 67

Figure 5.6. IPU Stencil Processor architecture . 68

Figure 5.7. Stencil Processor compute lane . 70

Figure 5.8. IPU toolchain . 74

Figure 5.9. 3x3 blur mapped onto IPU . 77

Figure 5.10. pISA VLIW instruction format . 80

Figure 6.1. Pixel Visual Core SoC architecture . 86

Figure 6.2. Pixel Visual Core photomicrograph . 91

Figure 6.3. X-ray radiograph of the Pixel Visual Core system-in-package 92

Figure 6.4. Pixel Visual Core BGA package . 92

Figure 6.5. Pixel Visual Core experimental setup . 94

x

LIST OF TABLES

Table 2.1. CMOS scaling theory and the utilization wall . 7

Table 2.2. Experiments quantifying the utilization wall . 9

Table 4.1. Android c-cores generated for one GreenDroid tile . 49

Table 4.2. MiniDroid chip pads . 54

Table 4.3. MiniDroid metal stack . 60

Table 6.1. Pixel Visual Core power and performance results for HDR+ kernels 94

xi

LIST OF LISTINGS

Listing 3.1. Example multicycle timing constraint from one c-core 36

Listing 5.1. Halide code for 3x3 blur [hal][DB18] . 75

Listing 5.2. Halide blur code from Listing 5.1, scheduled to run on the IPU 76

Listing 5.3. vISA code for the 3x1 blur x kernel from Listing 5.2 78

Listing 5.4. An example pISA instruction . 81

xii

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the help of myriad giants. I’m

eternally grateful to the people listed here and countless others for their support over the years.

I’m only using first names to protect the innocent (and not-so-innocent—you know who you

are).

First and foremost, I’d like to express my deepest appreciation for my amazing advisors,

Professor Steven Swanson and Professor Michael Taylor. Ever supportive, they have guided

and encouraged me since the beginning, and they never gave up on me finishing. Steve, a paper,

grant, and code writing machine, you taught me the value of efficiency, higher standards of one’s

best effort, and how to draw a good graph (among other things). Michael, a tenacious uberhacker,

you taught me to attempt the impossible, to persevere, and how to tell a great story about it

afterward. You both gave me the foundation necessary to succeed in life after UCSD.

Thank you to my committee members, Professors Rajesh Gupta, Ryan Kastner, and

Ramesh Rao, for your work that inspired me, your thoughtful feedback, and your willingness to

serve on the committee for nearly a decade. Thanks also go to Julie Conner, for dusting off my

file again and answering my never-ending questions.

The work presented in this dissertation was in close collaboration with a great number of

highly-talented individuals. I’m especially thankful to my partners in crime, Jack and Ganesh.

Jack, a walking Wikipedia, you taught me something about everything and everything about

some things. Your generosity and creativity are exemplified by your primordial dinner parties.

Ganesh, for someone so easygoing you sure get a lot done. It was a blast working with you

late nights; I laughed the hardest with you. I’m also grateful to my other coauthors, especially

Sravanthi, Qiaoshi, Sat, Vikram, and Jose. I could not have asked for a better research group.

Thank you to my classmates, office mates, roommates, foosball mates, and Chez Bob

mates, for making UCSD such a fun place to be: Emmett, Laura, Adrian, Anshuman, Donghwan,

Pat, Ravi, Zach, Jan, Joel, John, Justin, Ming, Hung-Wei, Edward, and so many more. Steve

Checkoway saved me enormous time with his invaluable LATEX dissertation template [Che].

xiii

Special thanks to Professors Ranjit Jhala and Sorin Lerner, for stimulating impromptu discussions

every time they stopped by our office providing (or in search of) snacks. And thank you to

Ryoko-san, for filling the halls with music.

I’d like to acknowledge the support of my colleagues at UCSC and GlobalFoundries:

Professor Jose Renau, Rigo, Luigi, Vito, Edward, Shobhit, and the whole group, for welcoming

me with open arms, for teaching me how to tackle the CAD tools, and for always helping me fix

one last DRC.

I’m extremely grateful to and humbled by my fellow Googlers and Paintboxers, a team of

serious superstars: Adam, Albert, Alex, Andrea, Artem, Ashok, Asif, Ben, Bill, Bobbie, Cheng,

Daniel, Dave, Don, Ed, Hua, Hyunchul, Jason, Ji, John, Jolin, Jon, Karthika, Masumi, Michelle,

Neeti, Penny, Rolf, Scott, Sean, Sha, Todd, Trevor, Victor, and intern-turned-distinguished-

software-engineer Professor Dave Patterson. A very special thank you to Ofer Shacham, who,

with his big heart and dedication, showed me what it means to be a true leader.

Thank you to my friends and family for their constant support and patience. To my BFFs,

Alex and Carlos, for their subtle and not-so-subtle encouragement until I finished. To my brother

Kevin, for all his helpful “ideas;” to my sister Emily, whose bubbliness and inside jokes always

make me feel special; and to my niece and nephews, who put a smile on my face during tough

times writing this dissertation. To my loving and lovely parents, for instilling confidence and

unbridled optimism in me, and for teaching me how to always see life with light and laughter.

Finally, my biggest and heartfeltest thank you to Kana, my partner, my best friend, and

my favorite person in the world. (Don’t tell my BFFs I said that.)

Thank you!

xiv

Chapters 2 and 3 contain material from “Conservation Cores: Reducing the Energy

of Mature Computations,” by Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino

Garcia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swanson, and Michael Bedford Taylor,

which has appeared in the Proceedings of the 15th International Conference on Architectural

Support for Programming Languages and Operating Systems, c©2010 ACM. The dissertation

author is a primary contributor and third author of this paper.

Chapters 2 and 4 contain material from “GreenDroid: A Mobile Application Processor

for a Future of Dark Silicon,” by Nathan Goulding, Jack Sampson, Ganesh Venkatesh, Saturnino

Garcia, Joe Auricchio, Jonathan Babb, Michael Bedford Taylor, and Steven Swanson, which

has appeared in Hot Chips 22: A Symposium on High Performance Chips, c©2010 IEEE. The

dissertation author is a primary contributor and first author of this paper.

Chapter 3 contains material from “Efficient Complex Operators for Irregular Codes,” by

Jack Sampson, Ganesh Venkatesh, Nathan Goulding-Hotta, Saturnino Garcia, Steven Swanson,

and Michael Bedford Taylor, which has appeared in the Proceedings of the 17th International

Symposium on High Performance Computer Architecture, c©2011 IEEE. The dissertation author

is a primary contributor and third author of this paper.

Chapter 3 contains material from “QsCores: Trading Dark Silicon for Scalable En-

ergy Efficiency with Quasi-Specific Cores,” by Ganesh Venkatesh, Jack Sampson, Nathan

Goulding-Hotta, Sravanthi Kota Venkata, Michael Bedford Taylor, and Steven Swanson, which

has appeared in the Proceedings of the 44th Annual IEEE/ACM International Symposium on

Microarchitecture, c©2011 IEEE/ACM. The dissertation author is a contributor and third author

of this paper.

Chapter 4 contains material from “The GreenDroid Mobile Application Processor: An

Architecture for Silicon’s Dark Future,” by Nathan Goulding-Hotta, Jack Sampson, Ganesh

Venkatesh, Saturnino Garcia, Joe Auricchio, Po-Chao Huang, Manish Arora, Siddhartha Nath,

Vikram Bhatt, Jonathan Babb, Steven Swanson, and Michael Bedford Taylor, which has appeared

in IEEE Micro, c©2011 IEEE. The dissertation author is a primary contributor and first author of

xv

this paper.

Chapters 5 and 6 contain material from “Pixel Visual Core: Google’s Fully Pro-

grammable Image, Vision and AI Processor for Mobile Devices,” by Jason Redgrave, Albert

Meixner, Nathan Goulding-Hotta, Artem Vasilyev, and Ofer Shacham, which has appeared in

Hot Chips 30: A Symposium on High Performance Chips, c©2018 IEEE. The dissertation author

is a primary contributor and third author of this paper.

This dissertation was powered by 346 cups of tea.

xvi

VITA

2007 B.S. in Electrical Engineering
New Mexico Tech

2007 B.S. in Computer Science
New Mexico Tech

2011 M.S. in Computer Science
University of California San Diego

2011 C.Phil. in Computer Science
University of California San Diego

2015– Diplomatic Hardware Engineer
Google

2020 Ph.D. in Computer Science
University of California San Diego

PUBLICATIONS

Jason Redgrave, Albert Meixner, Nathan Goulding-Hotta, Artem Vasilyev, and Ofer Shacham,
“Pixel Visual Core: Google’s Fully Programmable Image, Vision and AI Processor for Mobile
Devices,” Hot Chips 30, Cupertino, CA, Aug. 2018.

Qiaoshi Zheng, Nathan Goulding-Hotta, Scott Ricketts, Steven Swanson, Michael Bedford
Taylor, and Jack Sampson, “Exploring Energy Scalability in Coprocessor-Dominated Architec-
tures for Dark Silicon,” ACM Transactions on Embedded Computing Systems, Apr. 2014.

Vikram Bhatt, Nathan Goulding-Hotta, Qiaoshi Zheng, Jack Sampson, Steven Swanson, and
Michael Bedford Taylor, “SiChrome: Mobile Web Browsing in Hardware to Save Energy,”
1st Dark Silicon Workshop (DaSi), 39th International Symposium on Computer Architecture
(ISCA), Portland, OR, Jun. 2012.

Nathan Goulding-Hotta, Jack Sampson, Qiaoshi Zheng, Vikram Bhatt, Joe Auricchio, Steven
Swanson, and Michael Bedford Taylor, “GreenDroid: An Architecture for the Dark Silicon Age,”
17th Asia and South Pacific Design Automation Conference (ASP-DAC), Sydney, Australia,
Feb. 2012.

Ganesh Venkatesh, Jack Sampson, Nathan Goulding-Hotta, Sravanthi Kota Venkata, Michael
Bedford Taylor, and Steven Swanson, “QsCores: Trading Dark Silicon for Scalable Energy
Efficiency with Quasi-Specific Cores,” 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, Dec. 2011.

xvii

Jack Sampson, Manish Arora, Nathan Goulding-Hotta, Ganesh Venkatesh, Jonathan Babb,
Vikram Bhatt, Steven Swanson, and Michael Bedford Taylor, “An Evaluation of Selective De-
pipelining for FPGA-based Energy-Reducing Irregular Code Coprocessors,” 2011 International
Conference on Field Programmable Logic and Applications (FPL), Crete, Greece, Sep. 2011.

Manish Arora, Jack Sampson, Nathan Goulding-Hotta, Jonathan Babb, Ganesh Venkatesh,
Michael Bedford Taylor, and Steven Swanson, “Reducing the Energy Cost of Irregular Code
Bases in Soft Processor Systems,” 19th Annual International IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), Salt Lake City, UT, May 2011.

Nathan Goulding-Hotta, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia, Joe Auricchio, Po-
Chao Huang, Manish Arora, Siddhartha Nath, Vikram Bhatt, Jonathan Babb, Steven Swanson,
and Michael Bedford Taylor, “The GreenDroid Mobile Application Processor: An Architecture
for Silicon’s Dark Future,” IEEE Micro, Mar./Apr. 2011.

Jack Sampson, Ganesh Venkatesh, Nathan Goulding-Hotta, Saturnino Garcia, Steven Swanson,
and Michael Bedford Taylor, “Efficient Complex Operators for Irregular Codes,” 17th IEEE
International Symposium on High Performance Computer Architecture (HPCA), San Antonio,
TX, Feb. 2011.

Nathan Goulding, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia, Joe Auricchio, Jonathan
Babb, Michael Bedford Taylor, and Steven Swanson, “GreenDroid: A Mobile Application
Processor for a Future of Dark Silicon,” Hot Chips 22, Stanford, CA, Aug. 2010.

Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose
Lugo-Martinez, Steven Swanson, and Michael Bedford Taylor, “Conservation Cores: Reducing
the Energy of Mature Computations,” 15th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), Pittsburgh, PA, Mar. 2010.

Nathan Goulding, Gopi Tummala, Emmett McQuinn, and Steven Swanson, “ReMOS Tech-
nology and the Mighty Morphin Microprocessor,” Wild and Crazy Ideas session of ASPLOS
2010, Pittsburgh, PA, Mar. 2010.

Thomas Claytor, Joel Marquez, Lian-Jie Huang, Brett Nadler, Nathan Goulding, and Emily
Prewett, “Ultrasonic Imaging Techniques for Early Breast Cancer Detection,” Review of
Progress in Quantitative Nondestructive Evaluation (QNDE), Golden, CO, Jul. 2007.

Nathan Goulding, Joel Marquez, Emily Prewett, Thomas Claytor, Lian-Jie Huang, and Brett
Nadler, “Ultrasonic Imaging Techniques for Breast Cancer Detection,” International Modal
Analysis Conference, Orlando, FL, Feb. 2007.

Nathan Goulding, Jason Hamlet, Gar Hassall, Furqan Chiragh, and Scott Cason, “An Expressive
Stereoscopic Vision Tracking System,” Electrical Manufacturing Expo, Indianapolis, IN, Sep.
2006.

xviii

ABSTRACT OF THE DISSERTATION

Specialization as a Candle in the Dark Silicon Regime

by

Nathan Goulding-Hotta

Doctor of Philosophy in Computer Science

University of California San Diego, 2020

Professor Steven Swanson, Co-Chair
Professor Michael Bedford Taylor, Co-Chair

For decades computer architects have taken advantage of Moore’s law to get bigger,

faster, and more energy-efficient chips “for free,” reaping the benefits of silicon process improve-

ments and shrinking technology nodes. Each new technology node brought exponentially more

transistors, balanced by exponentially lower transistor switching power, allowing the power

budget for a fixed silicon area to remain relatively constant. Architects could count on more

transistors—and use them to build more complex designs—without substantially increasing the

total power budget for a chip.

Today, however, rising CMOS leakage currents have limited further reductions in supply

xix

voltage, leading to a power-limited utilization wall and an end to classical Dennard scaling. This

breakdown results in a new regime of dark silicon, in which vast swaths of silicon area must

remain “dark” (powered down or under-clocked) most of the time. Architects must turn to novel

approaches to squeeze ever more performance out of every last square-millimeter of silicon.

This dissertation demonstrates that one viable approach to the dark silicon problem is

specialization. Rather than relying solely on bigger, faster, general-purpose processors, chip

architects have been increasingly augmenting their systems with special-purpose accelerators.

These accelerators can speed up a given computation, allow it to run with less energy, or both.

Using less energy frees up power and thermal budgets, allowing more computations to run in

parallel and extending the computational capabilities we’ve come to demand from silicon.

This dissertation presents two such specialized architectures. The first is GreenDroid, a

mobile application processor built with custom accelerators targeting Android. The accelerators

are energy-saving specialized circuits called conservation cores, or c-cores. In a 45-nm process,

just 7 mm2 of silicon dedicated to c-cores covers approximately 95% of our Android workload.

Powered by c-cores, GreenDroid uses 11× less energy on average than a general-purpose CPU.

The second is Pixel Visual Core, a commercial accelerator from Google that enables

energy-efficient computational photography and machine learning in the Pixel 2 and Pixel 3

smartphones. Pixel Visual Core is powered by an 8-core Image Processing Unit with 4,096

16-bit ALUs capable of performing 3.1 Tera-operations/second in under 5 watts. Compared to a

10-nm general-purpose application processor, the 28-nm Pixel Visual Core runs key compute

kernels 3-6× faster and with 7-16× less energy.

xx

Chapter 1

Introduction

For more than five decades chip architects and programmers have taken advantage of

Moore’s law to get bigger, faster, and more energy-efficient chips “for free,” reaping the benefits

of silicon process improvements and shrinking technology nodes. Each new technology node

brought exponentially more transistors, balanced by exponentially lower transistor switching

power, which meant the power budget for a fixed silicon area remained relatively constant.

Architects could count on more transistors—and use them to build more complex designs—

without substantially increasing the total power budget for a chip.

Today, however, rising leakage currents have limited further reductions in supply voltage,

so architects no longer see an exponential decrease in transistor switching power. As a result,

chips have run up against a utilization wall [VSG+10]: With each successive process generation,

the percentage of a chip that can actively switch drops exponentially because of power constraints.

The utilization wall and breakdown of classical CMOS scaling results in a new regime

of dark silicon [GSV+10]. Under the dark silicon regime, vast swaths of silicon area must

remain “dark” (powered down or under-clocked) most of the time. Architects must turn to novel

approaches to squeeze ever more performance out of every last square-millimeter of silicon.

This dissertation demonstrates that one viable approach to the dark silicon problem is

specialization. Rather than relying solely on bigger, faster, general-purpose processors, chip

architects have been increasingly augmenting their systems with special-purpose accelerators.

1

These accelerators can speed up a given computation, allow it to run with less energy, or both.

Using less energy frees up power and thermal budgets, allowing more computations to run in

parallel and extending the computational capabilities we’ve come to demand from silicon.

Specialization itself is not new (e.g., in 1980 Intel introduced a discrete coprocessor,

the 8087 floating point unit, to augment its 8086 line of processors). But what is new is the

number and variety of specialized architectures that have gained popularity in recent years. This

dissertation explains two such specialized architectures in detail. The first is a research prototype

called GreenDroid, a multicore application processor with custom accelerators for Android. The

second is a commercial chip called Pixel Visual Core, an image and machine learning accelerator

in Google’s Pixel 2 and Pixel 3 smartphones. Both architectures demonstrate the viability of

specialization.

The dissertation is organized as follows. First, Chapter 2 explains the dark silicon

problem and proposes specialization as a viable solution to continued scaling. The chapter starts

with background material on CMOS scaling theory. We show how the classical scaling model

has broken down under rising leakage currents, resulting in the utilization wall. Our research

on the utilization wall predicted the rise of dark silicon, and we discuss some approaches to the

problem. The most promising of these approaches is specialization. Our early research predicted

the appearance of larger and larger numbers of specialized accelerators as a path forward in the

dark silicon regime.

Chapter 3 describes our first approach to address dark silicon: a class of specialized

accelerators called conservation cores. Conservation cores, or c-cores, are application-specific

hardware circuits created to improve performance and reduce the energy consumption of

computationally-heavy applications. Whereas traditional accelerators focus on improving per-

formance, at a potentially worse, equal, or better energy efficiency, conservation cores focus

primarily on reducing energy and energy-delay. This chapter describes the c-core architecture

and execution model, as well as our toolchain for automatically synthesizing c-cores directly

from program source code.

2

Chapter 4 shows how c-cores can be applied to mobile SoCs running Android. Android

is well-suited for c-cores because the hot code is concentrated—in application libraries, the

virtual machine, and Linux kernel—meaning a relatively small amount of silicon dedicated

for hardware accelerators can cover a relatively large percentage of dynamic execution. We

propose a c-core-based application processor called GreenDroid and detail its architecture. This

chapter presents our experiments with a fully placed-and-routed GreenDroid tile that includes

9 c-cores generated from Android source code. We show how this tile could be included in

a larger many-tile system to cover modern Android workloads. The dissertation author also

collaborated with researchers at the University of California, Santa Cruz and GlobalFoundries to

design a 28-nm, 2x2-tile version of GreenDroid called MiniDroid. This chapter concludes with

the MiniDroid physical implementation in GlobalFoundries’ 28-nm SLP process.

The remainder of the dissertation shows how our original predictions on dark silicon and

the rise of specialization have come to pass in industry. After working on conservation cores

and GreenDroid at UCSD, the dissertation author worked as part of a broad team at Google to

design and implement a specialized programmable accelerator called the Image Processing Unit,

or IPU.

Chapter 5 describes the IPU architecture in detail, starting with the motivation and need

for a programmable image processing accelerator. Traditional Image Signal Processors (ISPs)

are built from fixed-function hardware with limited computational power and minimal or no

ability to update the hardened image processing algorithms after manufacture. In contrast, the

IPU provides a programmable, energy-efficient, and high-performance compute engine that

enables the latest computational photography techniques on mobile devices. We describe the

IPU’s architecture and programming model, and show how the IPU can accelerate HDR+ image

processing.

Chapter 6 introduces the first implementation of the IPU in silicon, Google’s Pixel Visual

Core. Pixel Visual Core (PVC) is included in Google’s Pixel 2 and Pixel 3 smartphones. It

comprises an 8-core IPU accelerator along with control processor, on-chip interconnect, I/O

3

interfaces, and stacked DRAM dies in one system-in-package. PVC provides raw performance

up to 3.1 Tera-ops/second (1.7 Tera-ops/sec arithmetic) on 16-bit integer data. It achieves about

0.84 pJ/op, or 1.5 pJ/op including only arithmetic operations without data movement. Despite

a three-generation process gap, the 28-nm PVC runs key HDR+ kernels 3-6× faster and with

7-16× less energy than a 10-nm general-purpose application processor with DSP.

In the intermediate years between the author’s work on GreenDroid and Pixel Visual Core,

academia and industry have created many other examples of specialized silicon architectures.

Chapter 7 reviews related work in dark silicon research, as well as accelerators for mobile,

datacenter, and ambient computing domains. Each of these domains includes accelerators to

optimize for different metrics—for example, performance per watt, total cost of ownership

(TCO), latency, or ultra-low power. Yet all share a common goal of reaping the benefits of

specialization.

Finally, in Chapter 8 we summarize the contributions of this dissertation in the context of

related work in specialization and accelerators, and conclude with some final remarks.

4

Chapter 2

The Rise of Dark Silicon

For more than five decades chip architects and programmers have taken advantage of

Moore’s law [Moo65] to get bigger, faster, and more energy-efficient chips “for free,” reaping the

benefits of silicon process improvements and shrinking technology nodes. Each new technology

node brought exponentially more transistors, balanced by exponentially lower transistor switching

power, which meant the power budget for a fixed silicon area remained relatively constant.

Architects could count on more transistors—and use them to build more complex designs—

without substantially increasing the total power budget for a chip.

Today, however, limits on threshold voltage scaling have stopped the downward scaling

of per-transistor switching power. Consequently, the rate at which we can switch transistors

is far outpacing our ability to dissipate the heat created by those transistors. The result is a

technology-imposed utilization wall [VSG+10] that limits the fraction of a chip that we can use

at full speed at one time. The utilization wall forces chip architects into a new regime of dark

silicon [GSV+10], in which the majority of a chip must remain off most of the time.

This chapter describes the fundamental breakdown of classical CMOS scaling in the face

of rising leakage currents, the utilization wall, and the resulting dark silicon problem. But the

dark silicon problem also presents a tremendous opportunity, ushering in a new computing era of

extreme specialization.

5

2.1 The Utilization Wall

This section provides background in CMOS scaling theory, shows how traditional scaling

breaks down in the face of rising leakage currents, and describes the resulting utilization wall.

2.1.1 CMOS Scaling Theory

Table 2.1 shows the classical CMOS scaling theory as described by Dennard [DGR+74].

The parameter S is the scaling factor between technology nodes, typically
√

2 ≈ 1.4×. In the

classical scaling regime, transistor threshold voltage Vt continues to decrease as 1/S because of

improvements in material science and transistor manufacturing. Meanwhile transistor supply

voltage Vdd is constrained by Vt (typically Vdd must be at least 3× higher), so Vdd also decreases

as 1/S. Decreasing Vt leads to increasing leakage current, but leakage was still a small fraction

of overall chip power in process nodes up to ∼130 nm.

Each new process node also brings an S2 increase in the per-unit-area number of tran-

sistors, and a factor of S increase in clock frequency. This would increase power by the same

factor (S3), but a 1/S lower Vdd brings with it a corresponding 1/S2 decrease in per-transistor

switching power, on top of 1/S lower gate capacitance, balancing the increase in per-transistor

switching power. Multiplied together, this means the total chip power at full frequency remained

relatively constant across process generations. In other words, in the classical scaling regime

chip architects could still use all of the new transistors simultaneously—i.e., at fixed power,

utilization U = 100% across process generations.

2.1.2 The End of Dennard Scaling

Starting beyond the 130-nm process node, rising transistor leakage currents started to

become a significant fraction of total chip power and could no longer be ignored [HAP+05].

Leakage is highly dependent on threshold voltage Vt , so in the leakage-limited regime Vt can no

longer continue scaling by 1/S [SKS+13]. As a result, supply voltage Vdd also stops scaling by

6

Table 2.1. CMOS scaling theory and the utilization wall The utilization wall is a consequence
of CMOS scaling theory and current-day technology constraints, assuming fixed power and chip
area. The parameter S is the scaling factor between technology nodes, typically

√
2 ≈ 1.4×.

The Classical Scaling column assumes that Vt can be lowered arbitrarily. In the Leakage Limited
case, constraints on Vt , necessary to prevent unmanageable leakage currents, hinder scaling and
create the utilization wall.

Param. Description Relation
Classical Leakage
Scaling Limited

(>130 nm) (<90 nm)
B power budget 1 1
A chip size 1 1
Vt threshold voltage 1/S 1

Vdd supply voltage ∼Vt×3 1/S 1
tox oxide thickness 1/S 1/S

W, L transistor dimensions 1/S 1/S
Isat saturation current WVdd/tox 1/S 1

p
device power

IsatVdd 1/S2 1
at full frequency

Cgate capacitance WL/tox 1/S 1/S

F device frequency Isat
CgateVdd

S S

D devices per chip A/(WL) S2 S2

P
full die, full

D× p 1 S2
frequency power

U
utilization at

B/P 1 1/S2
fixed power

7

1/S and must be held relatively constant. As shown in the Leakage Limited column of Table 2.1,

device power at full frequency (p) no longer scales with each process generation.

2.1.3 The Utilization Wall

Traditionally, thanks to Moore’s law, chip architects could count on exponentially more

transistors with each process generation. They could use these transistors to build faster and

more complex designs, such as superscalar, out of order, and multicore CPUs. And because

individual transistor switching power also decreased, the total power for a fixed die area did not

increase substantially.

Today, however, with the end of Dennard scaling, architects no longer see an exponential

decrease in transistor switching power. As a result chips have run up against the utilization wall,

which states:

With each successive process generation, the percentage of a chip that can actively
switch drops exponentially because of power constraints.

Consider an example when scaling from 32 nm to 22 nm [Tay13]. In this example

S = 32/22 = 1.4×. According to classical scaling theory, in the newer node we should have 2×

more transistors running at 1.4× higher clock frequency, for a total of 2.8× better computational

capability. But the utilization wall limits us to achieving only 1.4× of this benefit—a gap of 2×.

This is a serious problem that gets exponentially worse with every generation.

To quantify the impact of the utilization wall, we synthesized several datapaths using

Synopsys Design Compiler and IC Compiler. Table 2.2 summarizes the results. For each process,

we used the corresponding TSMC standard cell libraries to evaluate the power and area of a

40-mm2 chip filled with 64-bit operators, to approximate the active logic in a mobile processor.

Each operator is a 64-bit adder with registered inputs, running at maximum frequency for that

process. In a 90-nm TSMC process, running this chip at full frequency would require 61 W,

which means that only 8.2% of the chip could be used simultaneously within a 5-W power budget.

In a 45-nm process, a similar design would require 163 W, resulting in just 3.1% utilization for

8

Table 2.2. Experiments quantifying the utilization wall Our experiments used Synopsys CAD
tools and TSMC standard cell libraries to evaluate the power and utilization of a 40-mm2 chip
filled with 64-bit adders, separated by registers, which is used to approximate active logic in a
mobile processor. At a fixed power budget the utilization drops exponentially with each process
node, a phenomenon called the utilization wall.

Process 90 nm TSMC 45 nm TSMC 32 nm ITRS
Frequency (GHz) 2.1 5.2 7.3
mm2 Per Op. .00724 .00164 .00082
Operators 5.5k 24k 49k
Full Chip Watts 61 163 320
Utilization at 5 W 8.2% 3.1% 1.6%

the same 5-W power budget. Table 2.2 also extrapolates to 32 nm based on ITRS1 data for 45-

and 32-nm processes. Based on ITRS data the full chip running at full frequency would require

320 W, resulting in just 1.6% utilization.

As we’ll show in the next section, the utilization wall fundamentally changes the way

silicon architects must think about continued performance scaling.

2.2 Dark Silicon

Because of the utilization wall, ever smaller fractions of a chip can remain simultane-

ously active at full frequency. Huge regions of a chip must remain under-used, under-clocked,

or entirely powered off most of the time—these regions are known as dark silicon [Mer09]

[GSV+10]. The next two sections introduce the dark silicon problem, and recast dark silicon as

an opportunity ushering in a new era in specialized computing.

2.2.1 The Dark Silicon Problem

Dark silicon is a huge problem, and it gets exponentially worse with each process genera-

tion. For each new process node, instead of the expected 2.8× scaling in compute performance

1International Technology Roadmap for Semiconductors [itr09], succeeded in 2017 by the International Roadmap
for Devices and Systems [ird17].

9

Utilization Wall:
Dark Implications for Multicore

4 cores @ 1.8 GHz

4 cores @ 2x1.8 GHz
(12 cores dark)

2x4 cores @ 1.8 GHz
(8 cores dark, 8 dim)

(Industry’s Choice)

.…

65 nm 32 nm

.…

.…

Spectrum of tradeoffs
between # of cores and
frequency

Example:
65 nm to 32 nm (S = 2)

Figure 2.1. Spectrum of multicore designs in the dark silicon regime In newer process
generations, architects can choose between more cores running at approximately the same clock
frequency (dark silicon), or fewer cores running in bursts at higher clock frequencies (dim
silicon). Figure from [GSV+10].

predicted by Dennard scaling, in the dark silicon regime we see only 1.4× improvement—a gap

of 2×.

Industry’s initial response to the dark silicon problem was switching to multicore designs.

Figure 2.1 shows a spectrum of multicore options, with tradeoffs between the number of active

cores and the clock frequencies of those cores. Architects can either have fewer cores running at

higher clock frequencies, or more cores running at lower clock frequencies (an approach called

“dim” silicon). Industry has primarily chosen the dim silicon approach.

Unfortunately, just switching to multicore designs is not a long-term scalable solution

10

[GSV+10][VSG+10][EBA+11]. Even with optimistic ITRS projections, multicore scaling is

limited to a fraction of expected Moore’s law gains.

2.2.2 Dark Silicon Solutions

As dire as the dark silicon problem appears, it also creates new opportunities for rethink-

ing traditional computer architecture and chip design. In [Tay12], Taylor describes four potential

approaches to handling the influx of dark silicon:

Shrinking Silicon

Per-chip cost is proportional to silicon area, so one approach to dark silicon is to just build

smaller, cheaper chips. Although this could provide a short-term cost reduction, the approach

has several problems at scale. The cost of the silicon die is just a fraction of the total chip cost

after considering packaging, testing, NRE, and other costs. As dies shrink these other costs

grow proportionally. Smaller chips are also not always feasible, since smaller chips can quickly

become dominated by I/O pad area, which has not scaled as well as transistors. Finally, just

building smaller chips forfeits the Moore’s law performance benefits architects have come to

depend on, meaning an end to “free” performance scaling. For these reasons shrinking chips is

likely only a last resort, if we can find no more practical uses for dark silicon.

Dim Silicon

Dim silicon refers to general-purpose logic that is typically underclocked or used infre-

quently, in order to meet power constraints [SVGH+11][HRSS11]. Some dim silicon techniques

include near-threshold voltage (NTV) computing [DWB+10][PSD+12], coarse-grained recon-

figurable architectures (CGRAs) [PFM+08], building bigger caches, or temporal dimming

techniques such as Intel’s Turbo Boost [RNR+11] and computational sprinting [RLC+12].

11

“Deus Ex Machina” Silicon

In literature, deus ex machina refers to a solution that appears suddenly and unexpectedly.

It is possible the dark silicon problem will be solved with new breakthroughs in semiconductors

or device physics. Industry has a history of inventing techniques for one-time improvements to

continue Moore’s law scaling, for example high-k dielectrics, metal gates, FinFETs, or upcoming

gate-all-around FETs [SAB+06]. However, these one-time breakthroughs are unpredictable and

should not be relied upon.

Specialized Silicon

For decades, industry and computer architects have focused on general-purpose com-

puting, relying on new process nodes to deliver more transistors, and using those transistors to

build architectural improvements in order to continue performance scaling. A fourth approach to

dark silicon is to instead increase the focus on specialization and special-purpose computing.

Special-purpose accelerators can be 10-1000× faster and more energy-efficient than general-

purpose processors running the same workloads [CMHM10]. As chips fill up with dark silicon,

building specialized accelerators becomes an attractive option. Architects can put otherwise dark

silicon to good use by building accelerators for specific, key workloads, freeing up the power

and thermal budgets for additional computations. Effectively, specialization in the dark silicon

regime lets architects trade a relatively “cheap” resource (silicon area) for a more valuable one

(energy).

2.3 Specialization as a Candle in the Dark

Of the four approaches presented in the previous section, this dissertation argues that the

most promising is specialized silicon. Specialized accelerators have been getting increasingly

more attention lately because they let architects trade customized silicon area for performance

and energy efficiency. At the heart of most accelerators’ performance is the fact that architects

12

General-purpose Specialized

More Programmable Higher Performance
More Energy-Efficient

CPU GPU DSP ASIC

Figure 2.2. Efficiency spectrum of general-purpose versus specialized hardware Special-
ization presents a spectrum with tradeoffs between generality and efficiency.

have figured out how to attain parallel execution of the underlying algorithm, realized efficiently

in hardware.

The challenge in creating accelerators is in reorganizing the algorithm to achieve parallel

execution. Being able to do this effectively depends on the availability of exploitable parallelism

in the algorithm and the ability to expose this parallelism in the form of an accelerator circuit

without errors or excessive effort, complexity, or cost. In particular, creating accelerators for

irregular code that’s difficult to analyze or lacks parallelism is often challenging, if not impossible.

This section highlights the benefits of specialization as well as challenges, and we show

that many of the challenges can be addressed with automation and layers of abstraction.

2.3.1 Benefits of Specialization

Specialized hardware can provide orders of magnitude better performance and energy ef-

ficiency compared to general-purpose hardware running the same workload [BVCG04]. General-

purpose processors (e.g., CPUs) are flexible but relatively slow and inefficient compared to

special-purpose hardware. This comes from extra overheads such as a general-purpose compute

engine, complicated instruction fetch and decode logic, reorder buffers, branch predictors, and

others. By reducing the scope and targeting a specific workload, specialized hardware can

eliminate or reduce many of these overheads.

13

Specialization is not a binary design decision—rather, specialization presents a spectrum

with tradeoffs between generality and efficiency (see Figure 2.2). General-purpose processors

like CPUs, and to some extent GPUs, are more programmable and can handle more workloads,

at a cost in energy efficiency [FKDM09]. More specialized hardware, such as DSPs, loop

accelerators [CHM08] [AS01], and at the extreme end single-purpose ASICs [SAR+00], can run

specific workloads with better performance and much better energy efficiency. Some approaches

include [KAS+02], [VSL08], [WKMR01], and [YGBT09].

2.3.2 Challenges of Specialization

Specialization is not free from challenges, especially for coprocessor-dominated archi-

tectures (CoDAs) with 100s or even 1000s of accelerators [ZGHR+14]. This section describes

some of the challenges of specialization and suggests ways to overcome or mitigate them.

Complexity

In general, simpler systems are easier to design, verify, use, and debug. Adding accelera-

tors to a system introduces additional complexity. Hardware complexity comes from increased

quantity and diversity of compute engines, each of which requires some form of interconnect

(e.g., on-chip network or point-to-point connections) for inter-block communication and access

to the memory system. To manage complexity, an accelerator system should use common

communication protocols and interconnect when possible, for example ARM’s AMBA protocols

or Celerity’s Tiered Accelerator Fabric [DXT+18].

Accelerators also introduce complexity during the chip design, verification, and man-

ufacturing process. Each accelerator requires its own design and (maybe more importantly)

verification efforts. Verification becomes especially tricky if the accelerators interact with each

other. Accelerators increase the physical design effort (synthesis, place and route), and may

complicate the top-level floorplan, where placement is key to good QoR. Each block also re-

quires DFX (Design For Test and Manufacturability) structures such as scan chains and built-in

14

self-test (BIST) logic. Some of this increased complexity can be addressed with automation

(e.g., high-level synthesis and high-level verification [KLG14]), and by using common interfaces

between accelerators.

Programmability

A system with heterogeneous accelerators can be difficult to program. Many acceler-

ators support the C or C++ programming languages, but accelerators may also support more

targeted languages or language subsets. For example, Nvidia GPUs can be programmed with

OpenGL, OpenCL, or CUDA, while DSPs like Qualcomm’s Hexagon can be programmed with

domain-specific languages such as Halide [hal]. In addition to needing to learn a new language,

accelerator programmers must also acquire a deep understanding of the hardware architecture

in order to extract maximum performance. Help for these challenges may come from smarter,

advanced compilers, and accelerators may use translation layers to hide some complexity from

programmers (see Section 5.3.2 for examples).

Scalability

Dark silicon designs will some day require 100s or 1000s of accelerators [ZGHR+14],

but scaling a chip to include so many coprocessors is a significant challenge [CGG+12]. The

hardware for each accelerator must be designed and implemented. Part of this burden can be

reduced through the use of automation and high-level synthesis tools (see Section 3.6 for an

example). Each coprocessor also needs access to a general-purpose host CPU and the memory

system. Section 3.1 describes how tiled architectures with replicated CPUs and a distributed

memory system may help.

Limits on Efficiency Gains

The benefits of any optimization are limited by Amdahl’s law [Amd67], and specialized

architectures are no exception. Performance and efficiency gains from accelerators are limited

by the fraction of the workload that can’t run on the accelerators, as well as overhead required to

15

25

20

15

Nu
m

be
r o

f A
cc

el
er

at
or

 B
lo

ck
s

10

5

0
A4 A5 A6 A7 A8

Figure 2.3. iPhone accelerator count The number of accelerators in Apple’s iPhone SoCs has
been rising exponentially. Figure from [SRWB15].

set up execution and transfer data. For example, even if 99% of a workload can be accelerated

by 1000×, the remaining 1% of the workload limits the total system performance improvement

to just 91×. Clearly, “nines matter,” and the best way to get more nines is to target as much code

as possible—not just regular, parallel code, but irregular, hard-to-parallelize code too. Chapter 3

presents one approach to do this.

2.3.3 Predictions Come True: Industry Trends

The author’s initial research in dark silicon ([GSV+10][VSG+10][GHSV+11]) predicted

a significant increase in the use of specialization and hardware accelerators. Ten years later we

see that those predictions have come to pass in industry. Today, industry’s mobile application

processor SoCs couple multicore CPUs with GPUs and dozens of specialized accelerators. For

example, Apple started building its own in-house A-Series SoCs, with more and more specialized

accelerators every year. Figure 2.3 shows how this accelerator count has indeed been rising

16

exponentially. Today these accelerators offload a multitude of functions such as graphics, digital

signal processing, multimedia encode/decode, cryptography, security, image signal processing,

machine learning, I/O, and more ([Qua19][App19][Sam19][Hua19]).

In modern application processors, the vast majority of die area is now used for accelerators

and specialized hardware. For example, of the Qualcomm Snapdragon 845’s 95-mm2 die, just

12% of the silicon area is occupied by the 8-core CPU and L3 cache [YW18], while the rest is

reserved for GPU, I/O, modem, and accelerators.

2.4 Summary

This chapter has described the origin of dark silicon and its dark implications for chip

design. We have shown how hardware specialization is a viable option for continued performance

scaling in the dark silicon regime. Indeed, industry has agreed, by dedicating more and more

silicon area to special-purpose accelerators in modern application processor SoCs.

The next two chapters present the author’s work on an energy-saving specialized archi-

tecture called conservation cores, and then show how conservation cores can be built for Android

in an application processor called GreenDroid.

Acknowledgements

This chapter contains material from “Conservation Cores: Reducing the Energy of

Mature Computations,” by Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino

Garcia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swanson, and Michael Bedford Taylor,

which has appeared in the Proceedings of the 15th International Conference on Architectural

Support for Programming Languages and Operating Systems, c©2010 ACM. The dissertation

author is a primary contributor and third author of this paper.

This chapter also contains material from “GreenDroid: A Mobile Application Processor

for a Future of Dark Silicon,” by Nathan Goulding, Jack Sampson, Ganesh Venkatesh, Saturnino

17

Garcia, Joe Auricchio, Jonathan Babb, Michael Bedford Taylor, and Steven Swanson, which

has appeared in Hot Chips 22: A Symposium on High Performance Chips, c©2010 IEEE. The

dissertation author is a primary contributor and first author of this paper.

18

Chapter 3

Conservation Cores

In the previous chapter we explained the dark silicon phenomenon and suggested special-

ized architectures as a path forward. This chapter introduces one such specialized architecture,

conservation cores [VSG+10]. Conservation cores, or c-cores, are highly specialized, application-

specific hardware circuits derived automatically from program source code, with a primary goal

of reducing energy. Whereas traditional accelerators focus on improving performance, at a

potentially worse, equal, or better energy efficiency, conservation cores focus primarily on

reducing energy and energy-delay, with performance acceleration as a secondary goal.

This chapter presents an overview of c-core-based systems and then explains the c-core

architecture and programming model. We describe the ability of c-cores to stay useful even as

the source code evolves, through a set of generalized datapath operators and firmware-patching

mechanisms. We also describe our toolchain for automatically generating c-core hardware

directly from source code (nearly unrestricted C), along with simulation models and synthesized,

placed, and routed netlists.

3.1 System Overview

A c-core-based system includes many c-cores embedded in a multicore tiled array like

the one shown in Figure 3.1(a). Each tile in the array contains a general-purpose processor

(CPU), cache, on-chip network connection, and a collection of c-cores. The c-cores execute “hot”

19

D-CacheI -Cache

CPU

FPU

Tile

C
on

tro
l I

nt
er

fa
ce

C-core

C-core

C-core

C-core

OCN

cond==0

ld

0

<

init

stValid==0

Control
Path

Cache
Interface

Scan
Chain

C-core

Data Path
Operations

st

ldValid==0

(a) (b) (c)

Figure 3.1. Organization of a c-core-based system A c-core-based system (a) comprises
multiple individual tiles (b), each of which contains multiple c-cores (c). Conservation cores
communicate with the rest of the system through a coherent memory system and simple scan-
chain-based control interface to a general-purpose CPU. Different tiles may contain different
c-cores or other accelerators.

regions of specific applications that represent significant fractions of the target workload. The

CPU serves as fallback for the parts of applications that are not supported by any c-cores. Using

a tiled architecture ([SMSO03][TLM+04][SNH+03]) ensures each c-core is close to a host CPU,

to minimize execution overheads and distribute access to the memory system.

Within a tile, the c-cores are tightly coupled to the host CPU via shared connection to

the L1 data cache, and by a collection of architecturally-visible scan chains that allow the CPU

to read and write all register state within each c-core (Figure 3.1(b)). Each c-core consists of a

fixed compute datapath under the control of a hardware state machine (Figure 3.1(c)).

Figure 3.2 shows the life cycle of a c-core from program source code to hardware

accelerator in a many-core processor: (a) The life of a c-core starts with C code from a set

of relatively stable target applications. (b) The c-core toolchain is used to profile the target

applications and extract the energy-intensive code regions. The toolchain converts these regions

into patchable c-core specifications. (c) The specifications are used to generate synthesizable

Verilog and simulation models for each c-core. (d) Sets of c-cores are placed on different tiles in

a many-core tiled processor. (e) As new versions of the target applications are released over time,

20

Versions
Released
Over Time

10

00
11101

Extracted
Energy-Intensive
Code Regions

Patchable
C-core
Specifications Conservation Cores

Many-core
Processor
with C-cores

1.2 1.21 1.22 1.3

3.4 3.5 4.2 4.212.96

.9

Stable
Applications

Patching-Aware Compiler

(a)

(b) (c)

(d)

(e)

Figure 3.2. Conservation core life cycle The life of a c-core begins with program source code
and results in a patchable hardware accelerator in a many-core tiled processor.

the toolchain can analyze the differences between versions and patch the firmware of existing

c-cores, extending the useful lifetime of the c-cores.

3.2 C-core Architecture

This section describes the conservation core architecture in more detail. First we discuss

the original, baseline implementation of c-cores. Then we discuss upgrades to the baseline

architecture that improve performance and generality.

3.2.1 Baseline C-core Architecture

Each c-core serves as a drop-in replacement for a piece of code, specifically a leaf

function in the target workload. The principle components of a c-core are a computation datapath

and control unit, a cache interface, and a control interface to the CPU.

By design, the c-core datapath and control unit very closely resemble the internal repre-

sentation that our toolchain extracts from the C source code. The code’s data flow graph (DFG)

serves as a blueprint for the c-core’s datapath, which contains functional operators, such as

21

computeArraySum
{
 sum = 0;
 for(i = 0; i < n; i++)
 {
 sum += a[i];
 }
 return(sum);
}

i = 0
sum = 0

phi(i)
phi(sum)

i < n

sum+=a[i]
i++ return(sum)

F

(a) (b) (c)

isum a

+

ld unit
addr

valid

en

value+

0 0

+1

muxSel
muxSel

ldEn

ldValid

<

n

cond

Data Path

sInit

s1

s2

s3 ldValid==0

sRet
cond==0

Control
Path

Cache
Interface

Scan Chain
Interface

Scan Chain

Figure 3.3. C-core example translation from source code An example c-core starting from
C code (a), translated into the compiler’s internal representation (b), and finally a hardware
datapath controlled by state machine (c).

adders, shifters, and comparators, for each mathematical operation in the code. Muxes are used

to implement control decisions, and registers are instantiated only when needed, to hold program

values across basic block boundaries or between iterations of a loop.

The control unit is a hardware state machine that mimics the original program’s control

flow graph (CFG). It tracks branch outcomes computed in the datapath to determine which state

to enter on each cycle. The control unit sets the enable and select lines on the registers and

muxes in the datapath so that the correct basic block is active each cycle. The control unit’s state

machine also includes self-loops to wait for the results of memory operations.

The first implementation of c-cores enforces memory ordering constraints by issuing at

most one memory operation per cycle to a pipelined, in-order cache interface. Both the c-core

and the cache block on misses. The load/store units connect to a coherent data cache that ensures

that all loads and stores are visible to the rest of the system regardless of which addresses the

c-core accesses. Subsequent, improved versions of c-cores (described in Section 3.2.2) allow

multiple memory operations to be in flight simultaneously.

Figure 3.3 shows an example translation from C code (a) to internal representation (b)

and finally hardware datapath and control unit state machine (c). The hardware corresponds

very closely to the DFG and CFG of the sample code. It has muxes for variables i and sum

22

corresponding to the φ -functions in the CFG. The c-core’s state machine is almost identical to

the CFG, but with an additional self-loop to wait for the valid signal from the memory load

operation. The valid signal is similar to the memory ordering token used in systems such as

Tartan [MCC+06] and WaveScalar [SMSO03].

The close correspondence between the program’s structure and the c-core is important

for two reasons: First, it makes it easier to enforce the correct memory ordering from the original

program. The control unit enforces an ordering that corresponds to the same order that the

program counter provides in a general-purpose processor, and we use the same ordering to

enforce memory dependencies. Second, by maintaining a close correspondence between the

original program and the c-core hardware, it is more likely that small changes in the source code

(which are the common case) will result in correspondingly small patches to the hardware.

3.2.2 Improvements to C-cores

After the initial design and evaluation of c-cores in [VSG+10], we made significant

changes to the c-core architecture to improve their performance, energy efficiency, and generality.

Whereas the original implementation allowed at most one memory operation per basic block,

upgraded c-cores can combine multiple memory operations along with dozens of datapath opera-

tions into large basic blocks called fat operators. We employ fat operators in efficient complex

operator cores [SVGH+11], which extend the baseline architecture with two techniques that

improve c-core efficiency: selective depipelining and cachelets. Additionally, the improvements

in quasi-specific cores [VSGH+11] generalize the c-core datapath and patching mechanisms to

support even broader ranges of applications. These techniques are fundamental to the design of

c-cores but also apply to any architecture that uses fat operators, such as the “magic” instructions

discussed in [HQW+10].

23

BB 2 BB 1

+

ld ld

X

+

+

ld

+

+

+

ld

+

ld ld

-1

-1

+1

st

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.1

B

A

D

C

i

slow clock

fast clock

memory

datapath (settling)

<N?

fast states

CFG
basic blocks

datapath

C code:

for (i=0;; i<N;; i++) {
 x = A[i];;
 y = B[i];;
 C[x] = D[y] + x + y +
 (x-­1)*(y-­1);;
}

2.2

Figure 3.4. Selective depipelining in c-cores An example of selective depipelining (SDP) for
one complex basic block, called a fat operator. Under SDP, non-memory datapath operators
chain freely within a basic block under the control of a slow clock pulse, while memory operators
and associated load registers align to fast clock boundaries.

Selective Depipelining

Selective depipelining (SDP) is a novel pipelining scheme that employs two clocks

operating at different speeds: a fast clock allows memory requests to operate at a faster clock

rate than the datapath, improving memory performance, while a slow clock saves power in the

rest of the datapath. Figure 3.4 illustrates SDP for one example basic block.

The fast clock effectively replicates the memory interface in time (by exploiting pipeline

parallelism), while the datapath runs at a slower clock rate, saving power and leveraging

instruction-level parallelism by replicating compute resources in space. By driving the non-

memory datapath with a slower clock, synthesis tools can use smaller and more energy-efficient

operators, since these timing paths are permitted multiple fast-clock cycles to settle. SDP also

saves energy by removed many registers from the datapath (see Figure 3.5), since only the final

live-out values need to be captured, at fat operator basic block boundaries.

24

+

LD LD

+

×

+

+

A

B

key

key

z

x

y

search

Registers removed by SDP

while (key != search)

 key = A[B[key]] + x*y + z;
Code:

To L1

=?

fast clock

fast clock

slow clock slow clock

Figure 3.5. Using selective depipelining to remove registers The light-gray boxes highlight
registers that are removed with selective depipelining. These intermediate datapath values do not
need to be captured, and only the final live-out values are captured in registers by the slow clock,
at fat operator basic block boundaries.

L1const.

const.

LD

LD

ST

tag data

=?

Cachelet

wordaddress

hit

store value from L1

to L1

C
a
c
h
e
l
e
t

Figure 3.6. C-core cachelet architecture Cachelets are small, distributed L0 caches that
improve memory latency in the common case. Memory operations with good locality are
mapped to cachelets, while other operations continue to interface directly with the L1 cache.

25

Cachelets

In a conventional processor all loads and stores go to a single cache, since all memory

instructions execute on a small set of load/store functional units. C-cores, however, can optimize

load and store operations in isolation through the use of cachelets. Cachelets are small (one- to

four-line), very fast, coherent, distributed L0 caches embedded in the c-core datapath to reduce

load-use latency. Figure 3.6 shows the internal architecture. Cachelets enable sub-cycle load-use

latency in the common case, which is 6× faster than the L1 in our system. For more details

please see [SVGH+11].

Quasi-specific Cores

Quasi-specific cores are generalized c-cores built to support multiple, similar code regions

across many applications. Quasi-specific cores are based on the insight that similar code patterns

exist within and across applications.

To generate these cores, the c-core toolchain analyzes the program dependence graphs

(PDGs) [FOW87] of hot spots from multiple applications in the target workload. The toolchain

locates similar code segments across hot spots by searching for isomorphic subgraphs across

the PDGs and identifying subgraphs that are suitably similar. Next, the toolchain generates

generalized datapaths that can be configured to handle each of the subgraphs. The generalized

datapaths operate similarly to the c-core patching mechanisms (see Section 3.5).

Quasi-specific cores improve the scalability of c-core-based systems because they in-

crease the total workload coverage while simultaneously decreasing the total number of accelera-

tors needed. For more details please see [VSGH+11].

3.3 Integration with CPU

Traditional accelerators typically execute coarse-grained “jobs” offloaded from the CPU.

As long as the jobs are large enough and can run independently, these accelerators don’t require

26

a very tight coupling with the CPU.

In contrast, conservation cores are designed to cover much smaller, fine-grained pieces

of code. Execution transfers between c-cores and the CPU much more frequently. To minimize

overhead and maximize performance, c-cores are tightly integrated with a general-purpose CPU

and share direct access to the CPU’s L1 data cache.

3.3.1 Shared L1 Data Cache

Within a tile, c-cores are tightly coupled to the host CPU via a direct, multiplexed

connection to the L1 data cache. This enables very quick transitions back and forth between

CPU and c-cores, because the cache is already warm and no flushing, refilling, or data transfers

are necessary.

A coherent, shared memory interface allows us to construct c-cores for applications with

unpredictable access patterns. Conventional accelerators cannot speed up these applications,

because they can’t extract enough memory parallelism.

Since only one c-core within a tile is active at any time, and since the CPU and c-cores

do not simultaneously access the cache, the impact on the CPU’s cycle time is minimal, because

the c-cores can multiplex in through non-critical, pre-existing paths that are used to handle cache

fills.

3.3.2 Control Interface

Apart from the shared cache, the only connection between the CPU and the c-cores is a

control interface. The control interface allows the CPU to access all of a c-core’s internal state.

The control interface is used to transfer input arguments and also to install patches to the c-core

firmware (see Section 3.5).

The first version of conservation cores ([VSG+10]) used a simple control interface based

on scan chains. A scan chain is a 1-bit wide network that connects every flop of every register

(or a subset of registers) serially. Data can be read or written by shifting the entire chain one bit

27

State Tree Address
Field c-core id basic block id register id
Width 6 13 13
Bit 31 0

Figure 3.7. C-core state tree address format Every c-core register is accessible with a 32-bit
address consisting of c-core, basic block, and register IDs.

at a time until the desired word is in place.

Scan chains are typically inserted during the physical design stage of a chip, and they are

normally reserved for debug, testing, and screening during manufacture. C-cores give the scan

chains an additional purpose, and expose the scan chains at the architectural level. To access the

scan chains, we added three new instructions to the CPU’s instruction set:

• MTSC (Move To Scan Chain): Writes a 32-bit word to the specified scan chain

• MFSC (Move From Scan Chain): Reads a 32-bit word from the specified scan chain

• SCRL (Scan Chain Rotate Left): Rotates the specified scan chain left by n bits

Scan chains scale well physically in terms of silicon area, since each chain adds only

a 3-bit interface to a module (scan-in, scan-out, and scan-enable), and scan chains are already

included in the silicon for chip manufacturing and testing. However, accessing data via scan

chain is very slow, since an n-bit chain must be shifted for n clock cycles to access every (or

any) register. It is also power-hungry, because cycling through an n-bit chain will cause n2

flop toggles. This may be acceptable for infrequently-accessed scan chains (e.g., for patching

firmware), but for this reason the original implementation of c-cores limited performance-critical

scan chains such as input arguments to a maximum length of 64 bits.

In [SVGH+11] we replaced the scan chain interface with a pipelined register tree network.

The tree network assigns a unique address to every register. This address comprises the c-core

ID, basic block ID, and register number within the basic block (see Figure 3.7). To save power

28

and area, unnecessary address bits are stripped off at each level of the tree.

It takes just 3 cycles to write any register in the tree, and just 6 cycles for reads: 3 cycles

to send the address down to the leaf register and another 3 to send the data back up the tree.

The tree is pipelined to allow for back-to-back reads and writes, enabling much faster system

initialization and reducing the overhead of exceptions and interrupts. This provides both faster

access and random access to register state in any c-core.

To access the state tree we added two new instructions to the CPU:

• MTST (Move To State Tree): Writes a 32-bit word to the specified tree register

• MFST (Move From State Tree): Reads a 32-bit word from the specified tree register

3.4 Programming and Execution Model

When compiling an application or library containing functions that are compatible with a

c-core, the compiler inserts stubs that enable the code to choose between running on the c-core

hardware or running in software on the CPU. This choice will happen dynamically at runtime.

At runtime, when the application calls the function, the stub checks for an available

c-core. If it finds one, the CPU uses the control interface to pass arguments to the c-core and, if

necessary, install the correct firmware patch. If no suitable c-core is available, the application

falls back to running the original (software) implementation on the CPU. A c-core might not be

available if it is already in use by another process, or no longer supports the latest version of the

code.

To start execution, the CPU configures each c-core with the necessary firmware. This

configuration only happens when the CPU requests a version of the code that is different (newer

or older) than that which the hardware is based on. Patching the c-core firmware is typically

done at most once per device boot or application launch, for example when the application first

starts executing or when a shared library is loaded into memory. C-cores may be patched as

29

many times as needed, though, for example if multiple applications require switching between

different versions of the original code.

After launching execution on a c-core, the CPU can either context switch to another

process or save power by going to sleep and waiting for an interrupt from the c-core. A c-core

will interrupt the CPU when it is finished, or if it needs to trigger an exception. The most common

exception occurs when a c-core needs to fall back to the CPU to perform some computation it

doesn’t support. This can happen if a newer version of the application requires additional features,

or if the control flow changes significantly, such that it’s no longer possible or energy-efficient to

continue executing on the c-core (see next section for details).

3.5 Patching Support

Although c-cores are created to support existing versions of specific applications and

libraries, they also need to support newer versions of the software that are released after the

original c-cores are synthesized, or older versions to maintain some backwards compatibility.

To do this, c-cores include reconfiguration bits which allow their behavior to adapt to common

changes found in programs. This section describes several patching mechanisms [Bry09] that

allow c-cores to adapt to these software changes, extending the useful lifetime of c-core hardware.

Our analysis of successive versions of our applications revealed a number of common

change patterns. In mature software the most common changes are small bug fixes, including:

fix an off-by-one error or modify a constant value; insert a new field into a data structure, which

shifts existing field offsets; correct an operation error, for example by swapping an addition for

subtraction; or insert a new block of code, such as a new conditional or function call.

To support these types of common changes, c-cores include the following patching

mechanisms:

• Configurable constants: Instead of hard-wiring immediate values, c-cores instantiate

configurable registers to support changes to the values of compile-time constants, and the

30

insertion, deletion, or rearrangement of structure fields, which change the field address

offsets. Many of these constants have small absolute values (i.e., most of the upper bits are

all zeros or all ones), and changes to field offsets similarly only affect the lower bits. To

save area and power, 32-bit constants may have only the lower 8 bits configurable, leaving

the upper 24 bits hard-wired with the original program value.

• Generalized datapath operators: In hardware, it is relatively inexpensive to generalize

some datapath operators. For example a fixed adder can become an add/subtract unit with

just one extra configuration bit and minor changes to the logic. C-cores also extend single

comparison operations (e.g., less-than) into generalized comparators that can evaluate all

six comparisons (<,≤,>,≥,=, 6=). Similarly, c-cores also generalize individual bitwise

operators (e.g., AND or OR) into configurable bitwise ALUs.

• Control flow exceptions: In order to support changes to a program’s CFG, or to handle

more significant datapath changes that can’t be handled with the other patching mecha-

nisms, c-cores include a flexible exception mechanism that allows control to fall back to

the CPU on any basic block transition. Each transition in the control unit state machine

contains a configuration bit that determines whether the c-core should treat it as an excep-

tion. When the state machine makes an exceptional transition, it gets a round of applause

and transfers control to the CPU. The exception handler extracts current values from the

c-core registers via the state tree network, performs the required computation, transfers the

new values back into the c-core, and resumes c-core execution. The exception handler can

restore control to any point in the CFG, so exceptions can arbitrarily alter the control flow

or replace arbitrary portions of the original CFG.

The c-core toolchain employs these patching mechanisms in order to support newer

software versions. When a new version is released, the toolchain generates a patch to the c-core

firmware using an algorithm described next.

31

Changes to the software may happen at either the high-level source code or assembly

code. In order to handle either type of change and to stay as general as possible, the patching

algorithm operates directly on the program’s DFG and CFG, since these representations can

be generated from either source code or a compiled binary. The goal of the patching algorithm

is to generate a firmware patch that will allow the new, target software to run on the original

hardware.

The patching algorithm operates on basic blocks and proceeds in four stages. First,

the algorithm identifies which basic blocks in the original hardware are candidates to run the

new target code. The patching mechanisms often allow multiple suitable options. Second, the

algorithm builds a map between the control flow graphs of the original and target versions. The

result is a set of hardware regions that map to basic blocks in the original c-core, as well as a set

of software regions that don’t map to any part of the c-core hardware and will need to execute on

the general-purpose CPU via the exception mechanism. The third stage of the patching algorithm

generates a consistent mapping between registers in the original and target basic block pairs. This

mapping is used to ensure consistency, and any mismatching hardware regions are converted into

software regions if needed. At this point the algorithm has all the information needed to generate

a firmware patch. The firmware patch is divided into three sections: configuration bits for each

of the generalized datapath operators along with values for configurable constants; exception

bits for each control flow edge that passes from a hardware region to a software region; and CPU

code to implement any of the remaining software regions.

By supporting multiple past and future versions of applications, the patching mechanisms

and patching algorithm extend the useful lifetime of c-cores.

3.6 Toolchain for Automatic C-core Generation

As described in Chapter 2, dark silicon designs will require scaling to 100s or 1000s

of accelerators. The key to achieve this level of scaling is automation. Figure 3.8 shows our

32

Patching Enabled
Compiler

Original
Version

C-core
Identification

Configuration
Generator

BTL Simulator

VCS + PrimeTime

Synopsys
CAD Tool Flow

Source Code

C-core Code

HW Spec in C
Verilog

Placed and Routed
Circuit

Memory Trace

New
Version

C-core
Identification

C-core Code

Patching
Algorithm

3 Address Code

Fully Configured HW

Source Code

C to Verilog C to Binary

Performance
ResultsPower Results

Figure 3.8. C-core toolchain The c-core toolchain compiles C code to RTL Verilog, then runs
a Synopsys CAD flow for synthesis, placement, and routing. As new versions of the application
code are released, the toolchain can generate patches to the c-core firmware to support them on
existing hardware.

33

toolchain for automatically generating and synthesizing c-cores directly from application source

code. This section describes each stage of the toolchain in detail.

3.6.1 C-core Selection

The goal of a c-core is to reduce energy and accelerate hot spots in target applications,

while minimizing c-core execution overhead. The overhead is incurred every time a c-core is

called, e.g., to pass input arguments and transfer control from the CPU. There is also overhead

with each exception in the CFG. To reduce these overheads, the best candidates for c-cores are

“fat” leaf functions that spend a lot of time executing within each call.

Because the c-core toolchain can handle nearly unrestricted C, a wide body of code can

be converted into c-cores. To achieve the maximum performance and energy savings, relatively

stable code is preferred because the c-cores will have to rely on fewer patching mechanisms

if fewer software updates are released. Prime candidates for c-cores include stable operating

system code and shared libraries, as well as parts of specific applications.

To select a set of c-core candidates, the first step is to profile the target workload

applications and identify hot regions of code. If needed, function inlining and outlining can help

shape the source code to form suitable leaf functions. The only user input required is a list of

function names. Selected functions are then passed into the c-core C-to-Verilog compiler for

hardware generation.

3.6.2 Compiler Toolchain

The c-core toolchain is based on the OpenIMPACT (1.0rc4) [ope], CodeSurfer (2.1p1)

[Gra], and LLVM (2.4) [LA04] compilers. The compiler accepts a large subset of the C

language, including arbitrary pointer references, switch statements, and loops with complex

branch conditions. Unlike traditional high-level synthesis tools, which require meticulous

programmer annotation and support only limited code structures, the c-core compiler accepts

nearly arbitrary leaf functions. The programmer only has to specify a list of function names for

34

conversion to c-cores, without modifying the code itself.

The heart of the c-core compiler is a custom module added to OpenIMPACT that generates

synthesizable Verilog from an internal representation (IR). The IR is a 3-address code with

unlimited virtual registers allocated in static single assignment (SSA) form [RWZ88]. SSA is

a natural fit for c-core hardware generation: operations in the source code become operators

in the datapath, basic block live-out values become registers, and SSA φ -functions become

multiplexers.

When creating datapaths for a c-core, the toolchain estimates the amount of time required

to get through the logic of each fat operator basic block. The timing estimates are based on

technology node and standard cell library (see Section 3.6.4). For a given technology node and

cell library, we synthesize every pair of chained operators to generate a timing table used for

scheduling operators. This table improves timing estimates for fat operators, since the synthesis

tools perform cross-module optimizations: for example, the delay through two chained adders

will be less than 2× the delay of a single adder.

3.6.3 C-core Simulation

For each c-core, the compiler also generates a C model that can run in the cycle-accurate

c-core simulator. The c-core simulator is based on btl, the Raw simulator [TLM+04], which

models a many-core tiled architecture like the one in Figure 3.1(a). Our modifications to btl

include adding the c-core control interface and new instructions (see Section 3.3.2), adding a

cache-coherent memory shared among a tile’s CPU and c-cores, as well as integrating the c-core

simulation models themselves.

The simulator is used to measure total system performance, with and without c-cores.

The simulator also records input and output traces that are used to drive Verilog simulation,

verification, and power estimation.

35

Listing 3.1. Example multicycle timing constraint from one c-core
set PREFIX tile00/ccMonitor/genblk1_cc_0

set_multicycle_path \

-from ${PREFIX}_SRInst1_91_state_reg_*_ \

-through ${PREFIX}_cpInst/cmp31 \

-to ${PREFIX}_${PCREG}_state_reg_*_ \

-setup 5

3.6.4 ASIC Synthesis

The c-core compiler generates synthesizable register transfer level (RTL) Verilog, suit-

able for ASIC or FPGA CAD flows [ASGH+11][SAGH+11]. The c-core experiments in this

dissertation target a TSMC 45-nm GS (General Purpose and High Speed) process [TSMb], using

Synopsys Design Compiler (C-2009.06-SP2) and IC Compiler (C-2009.06-SP2). The toolchain

runs automated synthesis, floorplan, placement, clock tree, and routing flows. This gives very

accurate timing and area results for each c-core.

As described in Section 3.2, c-core datapaths consist of fat operators that can take several

or even tens of cycles to settle. This requires specifying complex multicycle timing constraints in

the CAD tools during synthesis. The c-core toolchain generates these timing constraints for each

c-core. Listing 3.1 shows an example timing constraint that allows up to 5 cycles for a timing

path from one live-in data register through a comparator used to determine the next PC. Our

largest c-cores have thousands of such timing constraints governing hundreds of thousands of

individual paths in the datapath. It would not be feasible to specify so many constraints by hand,

but the c-core toolchain generates them automatically.

Specifying multicycle timing paths allows the synthesis tools to use smaller, slower gates.

This results in smaller silicon area and lower static and dynamic power.

3.6.5 Power Estimation

In order to estimate power, the c-core simulator captures traces of execution during

multiple sampling windows. Each sample starts with a complete snapshot of all register state

36

in the c-core, and then records all inputs and outputs to the c-core for the next N cycles. We

use a sampling policy that captures 10,000 out of every 50,000 cycles, and we discard sampling

periods corresponding to the initialization phase of an application.

After synthesis and c-core simulation in btl, the toolchain replays the trace from each

sample in a gate-level netlist simulation using Synopsys VCS (C-2009.06). VCS generates a

VCD waveform activity file, which feeds into Synopsys PrimeTime-PX (C-2009.06-SP2) to

estimate static and dynamic power consumed during the sampling window.

Power for other system components is modeled as follows. Processor and clock power

values are derived from specifications for a MIPS 24KE processor in TSMC 90-nm and 65-nm

processes [TAB+], as well as component ratios for Raw reported in [KTMW03]. We have scaled

these values to a 45-nm process, and assume a 1.5-GHz MIPS core running at 0.077 mW/MHz.

Finally, we use CACTI 5.3 [TMAJ08] for I- and D-cache power.

3.7 Summary

This chapter presented one example of a specialized architecture, conservation cores, that

attacks the dark silicon problem with extreme specialization. Conservation cores allow architects

to trade dark silicon area, which has become relatively cheap, for power, which has become

relatively expensive. The key to this level of specialization is automation, and we presented our

toolchain for automatically generating c-cores directly from program source code. In the next

chapter we will apply the toolchain to generate and evaluate c-cores for Android.

Acknowledgements

This chapter contains material from “Conservation Cores: Reducing the Energy of

Mature Computations,” by Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino

Garcia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swanson, and Michael Bedford Taylor,

which has appeared in the Proceedings of the 15th International Conference on Architectural

37

Support for Programming Languages and Operating Systems, c©2010 ACM. The dissertation

author is a primary contributor and third author of this paper.

This chapter also contains material from “Efficient Complex Operators for Irregular

Codes,” by Jack Sampson, Ganesh Venkatesh, Nathan Goulding-Hotta, Saturnino Garcia, Steven

Swanson, and Michael Bedford Taylor, which has appeared in the Proceedings of the 17th

International Symposium on High Performance Computer Architecture, c©2011 IEEE. The

dissertation author is a primary contributor and third author of this paper.

This chapter also contains material from “QsCores: Trading Dark Silicon for Scalable

Energy Efficiency with Quasi-Specific Cores,” by Ganesh Venkatesh, Jack Sampson, Nathan

Goulding-Hotta, Sravanthi Kota Venkata, Michael Bedford Taylor, and Steven Swanson, which

has appeared in the Proceedings of the 44th Annual IEEE/ACM International Symposium on

Microarchitecture, c©2011 IEEE/ACM. The dissertation author is a contributor and third author

of this paper.

38

Chapter 4

GreenDroid

In this chapter we apply the conservation core toolchain to target Android workloads,

and we show how c-cores can run Android code using 11× less energy than a general-purpose

processor. To that end, this chapter introduces GreenDroid [GHSV+11], a multicore application

processor for mobile devices running Android.

The chapter is organized as follows. First we describe mobile application processors in

general, and then demonstrate the suitability of the c-cores approach for accelerating Android

workloads. We describe the GreenDroid system architecture, including details about each tile,

and then present results from generating c-cores for Android in a 45-nm process. The results

include a fully placed-and-routed GreenDroid tile with nine Android c-cores, along with area

and energy results. We conclude the chapter with the author’s work on a 28-nm, 2x2-tile

version of GreenDroid called MiniDroid. We describe details of MiniDroid’s on-chip network,

pad ring, off-chip communication channels, package, and physical implementation in a 28-nm

GlobalFoundries process.

4.1 Application Processors

Heterogeneous, specialized hardware has been demonstrated as an effective approach

to scaling the utilization wall ([HQW+10] [SB15] [MKGT16]). Mobile platforms such as

smartphones already exploit specialized hardware to address power and performance concerns,

39

by integrating specialized accelerators along with general-purpose CPUs on one system-on-chip

(SoC). Smartphones such as Apple’s iPhone and Google Android phones rely on general-purpose

application processors with scalable performance. These application processors must run an

extremely diverse collection of software that relies upon general-purpose software execution

models. The utilization wall threatens to limit the performance scaling of these processors, which

will impede the evolution of what is becoming the dominant computing platform for much of the

world.

The remainder of the chapter demonstrates how GreenDroid overcomes these barriers

through the use of conservation cores. GreenDroid’s conservation cores allow architects to trade

dark silicon area, which has become relatively cheap, for power, which has become relatively

expensive, for frequently executed regions of an application processor’s workload.

4.2 Android’s Suitability to C-cores

GreenDroid targets the Android operating system and mobile platform. At the time of

GreenDroid’s design in early 2010, Android was still a nascent operating system for mobile

phones. It was even questioned if Android would ever be able to compete with Apple’s iOS!

Today Android is the most popular operating system in the world, powering more than 85% of

all new smartphones [Gar18].

Android’s software architecture is a good match for the c-cores approach, because it

relies heavily on a relatively small number of shared software components, and there is a core

set of commonly used applications (such as the web browser, video, music, and navigation

programs) that represent common-case usage across a large number of users. Since GreenDroid

was first presented in [GSV+10], Google has made a few significant changes to the Android

software stack, but the c-cores approach is still applicable. The rest of this chapter focuses on

Android at the time of GreenDroid’s design.

The core of the Android platform (see Figure 4.1) comprises a collection of native libraries

40

Figure 4.1. Android software stack Android is based on a Linux kernel foundation plus
hardware abstraction layer (HAL) supporting the Android Runtime and native C/C++ libraries.
These layers support applications that call into Java APIs. Prior to Android version 5.0 (API
level 21), the Dalvik virtual machine was the Android runtime. Figure from [Gooa].

41

written in C and C++ that implement basic services such as window compositing, 2D graphics,

3D graphics, and HTML rendering. This layer also contains the Dalvik virtual machine1. At

compile time, a translator converts Java .class and .jar files into Dalvik executables. The native

libraries are available via Java Native Interface calls. A consequence of this architecture is that

much of the performance-critical “hot” code is concentrated in native libraries that applications

reuse. The remainder of the code, much of which remains relatively “cold,” runs on the virtual

machine, making the VM code “hot” as well.

Our research shows that in this system c-cores can be used in two ways. First, c-cores can

target key portions of the native libraries and Dalvik, providing energy reduction and program

acceleration across the general class of applications that run on the phone. We refer to these

shared c-cores as broad-based c-cores. In our studies, broad-based c-cores can collectively cover

an average of 72% of the execution of an Android mobile phone workload.

Second, c-cores can target key applications that many users run. These targeted c-

cores can, depending on the silicon area dedicated to them, cover up to 95% of the targeted

workload [GSV+10][BGHZ+12]. Although targeted c-cores may not accelerate new Android

applications that are deployed after a GreenDroid processor tapes out, the rapid replacement

cycle of smartphones suggests it is reasonable to continuously deploy new c-cores into future

processors as new applications become popular. Conversely, as applications wane in popularity,

targeted c-cores can be removed without affecting backward compatibility, because applications

can always fall back to running on the CPU (at a cost of increased energy).

To summarize, Android is well-suited for c-cores for several reasons. First, although many

applications are available for download, Android has a core set of commonly used applications.

Hot code is concentrated in these applications as well as shared libraries, the virtual machine,

and parts of the Linux kernel. Because the hot code is highly concentrated, targeting these

components with c-cores lets us attain high coverage over the source base and a significant

impact on overall energy usage. Although c-cores support patching, which reduces the impact of

1In Android version 5.0, the Dalvik virtual machine was replaced with the Android Runtime (ART) [Goob].

42

C
P

U
L1 L1

L1 L1

C
P

U

C
P

U
C

P
U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U
C

P
U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U
C

P
U

C
P

U
L1 L1

L1 L1

C
P

U

C
P

U
C

P
U

1 mm

1 mm

OCN

D $

C
P

U

I $

C C
C

C

C

C

C

C

C C

(a) (b)

Figure 4.2. GreenDroid architecture and tile floorplan (a) The GreenDroid architecture
contains 16 non-identical tiles. (b) Each tile contains components common to every tile: a CPU
with instruction cache, on-chip network (OCN) interface, and shared L1 data cache, as well
as space for multiple conservation cores of various sizes. Different tiles can contain different
c-cores and other accelerators.

post-silicon source code changes, we are also aided by smartphones’ short replacement cycle

(typically 2-3 years), which lets smartphone chip designers deploy new c-cores regularly to target

the latest popular applications.

4.3 GreenDroid Architecture

A GreenDroid processor contains an array of many heterogeneous tiles with dozens of

conservation cores and other types of accelerators, as well as associated I/O and interface logic.

This section describes the architecture at the system level and at the tile level.

4.3.1 System Architecture

As shown in Figure 4.2(a), a complete GreenDroid chip comprises many tiles. The

majority of tiles contain c-cores targeting different hot spots in the Android software stack (see

Section 4.4). Some tiles are also reserved for other, traditional accelerators. These include

43

dedicated hardware for audio and video processing, JPEG image compression, and 2D graphics

acceleration. An integrated GPU accelerates 3D graphics computation. GreenDroid also includes

standard I/O, memory, and camera interfaces, including PCIe, DDR, USB, Flash, and MIPI.

Collectively, the tiles in a GreenDroid system exceed the system’s power budget. A

GreenDroid chip must incorporate aggressive clock gating and power gating to reduce energy

consumption. In the dark silicon regime, the majority of the tiles—and even the majority of

components on an active tile—will be power-gated most of the time.

As a tiled architecture, GreenDroid distributes execution to multiple threads or processes

running on different tiles. The on-chip network is similar to the network in the Raw micro-

processor [TLM+04]. It is a point-to-point mesh interconnect, used for memory traffic and

synchronization. This interconnect enables message passing between tiles and facilitates parallel

execution of multiprocessor code across tiles.

Across the tiles, c-cores are clustered on the basis of profiling Android workloads,

examining both control flow and data movement between code regions. Related c-cores are

placed on the same or nearby tiles, and in some cases c-cores may be replicated. As described in

Section 3.4, at runtime an application starts on one of the general-purpose CPUs, and whenever

the CPU enters a hot-code region, execution transfers to the appropriate c-core. Execution moves

from tile to tile on the basis of the applications that are currently active and the c-cores they use

[Ric11].

4.3.2 Tile Architecture

Each GreenDroid tile contains a general-purpose host CPU, L1 data and instruction

caches, an interface to the on-chip network (OCN), and a collection of conservation cores and

other accelerators. The c-cores share access to the D-cache with the CPU (see Section 3.3 for

details).

Each tile contains a different collection of c-cores and accelerators, though most tiles

follow a common floorplan template, shown in Figure 4.2(b). In a 45-nm process each tile is

44

1 mm2 and contains: general-purpose CPU (0.09 mm2), on-chip network (0.03 mm2), 16 KB of

I-cache and 32 KB of D-cache (0.30 mm2 total), and a set of c-cores (0.58 mm2). More than half

of the silicon area is reserved for Android c-cores.

The tile CPU is a low-power, 32-bit, single issue, 7-stage MIPS processor [TAB+]. The

CPU has an integer multiplier unit and a pipelined single-precision floating point unit (FPU) that

can also be accessed by the c-cores [Mar10]. The frequency target of 1.5 GHz is set by the cache

access time, and is reasonably aggressive for a 45-nm design.

4.4 Generating C-cores for Android

As described in Section 4.2, Android is well suited to the c-cores approach because c-

cores can target hot spots across the entire Android software stack. The hot spots include portions

of the Linux kernel, the Dalvik virtual machine (or its replacement the Android Runtime), other

hot spots in the Android core libraries, and key portions of important applications.

To create our list of candidate c-cores, we performed a detailed trace-based analysis of

an Android system to identify system hot spots. The traces include hot spots across the entire

Android system, running a typical user-level workload that spans a diverse set of applications

including the Google Browser, Gmail, Google Maps, Google Music, Google Video, Pandora,

Photo Gallery, Photoshop Mobile, and others. The results show that a relatively small amount of

code accounts for a large fraction of dynamic execution, and that there is significant intersection

between application hot spots.

This level of reuse drives down the amount of static code c-cores need to cover in order

to achieve good overall coverage of dynamic execution. In a 45-nm process, 7 mm2 of silicon

dedicated to c-cores will implement approximately 43,000 static instructions and cover 95% of

dynamic execution across our workload (see Figure 4.3). Of this 95%, approximately 72% of the

code is library or Dalvik code shared between multiple applications in the workload, suitable for

conversion into broad-based c-cores.

45

P
er

ce
nt

ag
e

D
yn

am
ic

 C
ov

er
ag

e

0

20

40

60

80

100

Static Instruction Count
0 10000 20000 30000 40000 50000

Targeted C−Cores
Broad−based C−Cores

Figure 4.3. Android dynamic execution code coverage Dynamic execution coverage for a
typical Android workload. 95% of execution can be covered with a combination of broad-based
and targeted c-cores built from 43,000 static instructions.

46

A tile-based, c-core-based approach allows for alternative tradeoffs between silicon area

and code coverage. For instance, 10,000 static instructions provide 76% coverage, and 20,000

static instructions provide 87% coverage. Thus, even as diversity in commonly used Android

applications grows, there are tradeoffs that can be exercised between per-application (targeted)

coverage and broader coverage across multiple applications.

4.5 Placed-and-Routed GreenDroid Tile

In order to prove the GreenDroid concept and to get more accurate area and power

estimates, we designed one complete GreenDroid tile using the c-core toolchain and 45-nm

synthesis flow described in Section 3.6.

First, we identified a list of candidate functions from our Android profiling exercise

in Section 4.4. Based on area estimates we converged on nine c-cores that collectively cover

10.6% of execution (see Table 4.1). Seven of these functions come from libskia, a 2D graphics

library that provides window compositing, object rendering, and geometry calculations for most

Android applications. The other two c-cores come from a JPEG decompression library and a fast

Fourier transform (FFT) function.

We used our fully automated c-core toolchain [Jia13] to generate and synthesize RTL

Verilog for each c-core. Then, starting with the floorplan template in Figure 4.2(b), we placed

and routed all nine c-cores, along with the CPU, I- and D-cache, and on-chip network. The

result is shown in Figure 4.4. Collectively the c-cores occupy 0.58 mm2 and run at 1.57 GHz on

average.

To measure the energy savings of GreenDroid c-cores, we ran post-route gate-level netlist

simulations in VCS and PrimeTime-PX, using the methodology described in Section 3.6.5. We

compared the energy of functions running on the c-cores versus running in software on the MIPS

CPU. Figure 4.5 shows the comparison and energy breakdown. Compared to the MIPS core’s

91 pJ per instruction, on average the c-cores use just 8 pJ—an improvement of 11×.

47

OCN

I $

CPU

3

6 7

D $

8

9

1

254

Figure 4.4. Placed-and-routed GreenDroid tile with 9 Android c-cores The layout for one
GreenDroid tile includes an interface to the on-chip network (OCN), a general-purpose MIPS
CPU with 16-KB I-cache, and a 32-KB D-cache shared with and surrounded by 9 c-cores
generated from Android source code (see Table 4.1). This tile is 1.0 mm2 in a 45-nm process.

48

Table 4.1. Android c-cores generated for one GreenDroid tile This list of c-cores appears in
the tile layout in Figure 4.4. The c-cores cover functions in libskia (a 2D graphics library), JPEG
image decompression, and a fast Fourier transform. Collectively the c-cores cover 10.6% of
dynamic execution in 0.58 mm2 of silicon.

Dynamic Static
execution instr. Size

No. Description Android function coverage (%) count (mm2)
1 Dithering function S32A D565 Opaque Dither 2.78 80 0.052
2 Downsampling S32 opaque D32 filter DXDY 2.20 86 0.070
3 Bit-block image S32A Opaque BlitRow32 1.15 96 0.024

transfer subroutine
4 Render with overlay Sprite D16 S4444 Opaque::blitRect 1.11 96 0.059
5 Saturating downsampling Clamp S16 D16 filter DX shaderproc 0.80 97 0.063
6 Fast Fourier transform fft rx4 long 0.76 138 0.066
7 Image format conversion ycc rgba 8888 convert 0.61 92 0.046
8 Lempel-Ziv decompression DGifDecompressLine 0.59 334 0.168

routine for GIF files
9 Image format conversion Sample Index D565 D 0.57 67 0.032

for dithering
Sum 10.57 1086 0.580

D-cache
6%

Datapath
3%

Energy
Saved
91%

D-cache
6%

Datapath
38%

Reg. File
14%

Fetch/
Decode

19%

I-cache
23%

MIPS baseline
91 pJ/instr.

C-cores
8 pJ/instr.

Figure 4.5. Energy savings in c-cores compared to CPU C-cores save energy by eliminating
hardware structures like instruction fetch and decode logic, and by having much more energy-
efficient datapaths than a general-purpose processor. The c-cores use 11× less energy on average.
[GHSZ+12]

49

C−Core Area (mm^2)
0 1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 E
ne

rg
y

pe
r

In
st

ru
ct

io
n

(p
J)

0

20

40

60

80

100

Figure 4.6. Energy vs. area tradeoff for GreenDroid c-cores As more area is dedicated to
GreenDroid c-cores, the average energy per instruction continues to decrease. This allows
architects to trade area for energy in the dark silicon regime.

The energy savings come from several sources. First, c-cores don’t execute software

instructions, so they don’t access the I-cache and don’t require logic for instruction fetch and

decode. Second, instead of using a conventional (and power-hungry) register file, c-cores only

instantiate registers where they are needed (to preserve values across basic block boundaries),

and most of these registers are only activated once per basic block or memory operation. Finally,

the c-core’s ASIC datapath composed of fat operators is much more energy-efficient than the

CPU’s general-purpose ALUs.

It should be noted that the CPU and the c-cores require the same D-cache energy, because

they both perform the exact same memory operations. Figure 4.5 illustrates the importance of

Amdahl’s law limits on total energy savings: for non-cache computation energy, the difference

in consumption is more than 21×.

At the system level, the total energy savings depends on how much of the workload runs

on c-cores, which in turn depends partly on how much silicon area is made available for c-cores.

50

Figure 4.6 shows the average energy per instruction as a function of c-core area. As additional

silicon area is made available, more and more of the workload can be offloaded from the CPU.

Smaller chips can get significant savings from just 1-2 mm2 of c-cores, while larger chips with

bigger area budgets can save even further. This is a practical example of trading area for energy

savings in the dark silicon regime.

4.6 GreenDroid in 28 nm: MiniDroid

The dissertation author collaborated with researchers at the University of California,

Santa Cruz, to develop a 28-nm prototype of GreenDroid in partnership with GlobalFoundries,

as part of the Multi-University Research Network (MURN) project [DR12]. MURN’s goal is to

provide a silicon framework that enables researchers to more easily prove architectural concepts

through chip fabrication. MURN helps academic institutions gain access to state-of-the-art

foundry technology.

As part of this effort, the dissertation author built a 2x2-tile version of GreenDroid called

MiniDroid. The work included synthesis, layout, and physical design for MiniDroid in a brand

new 28-nm process at GlobalFoundries. The author also developed extensions to a new VLSI

design flow called Catalyst [Dic12].

4.6.1 Chip Architecture

A MURN chip begins with a baseline silicon platform, shown in Figure 4.7. The baseline

platform includes logic and pads for off-chip I/O, a clock management unit with PLL, clock-

gating and power-gating infrastructure, and access to an on-chip ring network. Researchers then

provide their own design nodes (custom blocks or IPs) that connect to the ring network following

the MURN protocol. This allows multiple institutions to reuse a common infrastructure and share

the costs of chip fabrication. A MURN chip can be thought of as a heterogeneous architecture

with a common communication network.

51

PLL

MURN IO

Special
Node 0 Switch

Power Gating Cells Power Gating Cells

Power Gating CellsPower Gating Cells

Node 3
Switch

Node 2
Switch

Node 1
Switch

Node 4
Switch

1

23

4

Figure 4.7. MURN conceptual diagram with on-chip ring network A MURN chip comprises
shared I/O, pads, clock, and on-chip ring network, as well as multiple design nodes (IPs) from
individual researchers. Each design node can be independently power-gated. Figure from
[DR12].

52

MURN Network Packet Format
Field data opcode cmd dest id src id
Width 64 7 1 4 4
Bit 79 0

Figure 4.8. MURN network packet format MURN network packets consist of source and
destination node IDs, a 1-bit command field indicating if the packet is intended for the design
node (0) or network switch (1), an optional 7-bit design opcode, and a 64-bit data payload.

MURN Network

The on-chip network is a unidirectional ring comprising network switches that connect

the MURN I/O block and every design node on the chip. The network routes packets containing

data or commands between the design nodes. The network also handles power management,

reset, and enable/disable for each design node.

Each network switch has a unique ID. ID 0 is reserved for the I/O block, and the other

IDs are assigned to the design nodes. Figure 4.8 shows the format of MURN network packets.

Each packet contains 4-bit source and destination IDs. The command bit indicates if the packet is

intended for the design node (0) or for the ring network switch attached to the node (1). The

optional opcode field is design-dependent and can be used to send predefined commands to the

design node or network switch. Each packet can also carry up to 64 bits of data.

The network enables power management for all of the design nodes. Each design node

has its own independent power domain, which can be power-gated when the design is not in

use. Most of the nodes will be powered down most of the time, but the network switches remain

active so the ring is always intact.

I/O Block

The I/O block handles all off-chip communication and translates between internal ring

network packets and external data transmitted over four independent 8-bit data channels. The

channels are bidirectional and use a simple valid/ack protocol with a source-synchronous clock.

53

Table 4.2. MiniDroid chip pads The MURN pad ring has 250 pads arranged as two concentric
rings along the perimeter of the die. The left and right sides of the die have 62 pads each, while
the top and bottom sides have 63. Half the pads are used for power and ground.

Pads Purpose
88 Four bidirectional data channels
16 Reset, clocks, PLL
16 Spare I/O and test outputs
5 JTAG

40 Core Vdd (1.0 V)
37 Core Vss
25 I/O Vdd (1.8 V)
23 I/O Vss

250 Total

Each channel can be enabled independently. Having multiple independent channels provides

several benefits. Channels can be reserved for traffic from specific design nodes, or pooled

together to achieve higher bandwidth. Having multiple channels also increases redundancy in

the case of some hardware failures. For example, if there is a defect in the package, wire bonds,

or silicon die (common in a brand new process), defective channels can be disabled (at a cost of

lower off-chip bandwidth).

Pad Ring

The chip pads are arranged in two concentric rings along the perimeter of the die (see

Figure 4.12). The outer ring contains power and ground pads that provide power to the core logic

(Core Vdd and Core Vss) as well as the pad ring (I/O Vdd and I/O Vss). The inner ring contains

input and output pads for data signals, which are interleaved with additional, unbonded power

and ground pads to provide shielding for better signal integrity.

Table 4.2 lists the pad allocation. Half of the 250 pads are used for power and ground

(core and I/O), and the other half are used for data signals. Each of the four off-chip I/O channels

uses 11 pads in each direction: 8 data bits, 1 valid, 1 acknowledge/response, and one pad for the

source-synchronous clock. Other I/O pads are used for global clocks and reset, PLL, and JTAG.

54

Package

The chip package is a plastic ball grid array (PBGA) from BroadPak. The PBGA has

four layers for routing signals and power to the die: 1. a top-level 50-Ω impedance routing layer;

2. a Vss ground plane; 3. a Vdd power plane, split into sections to supply Core Vdd and I/O Vdd;

4. another routing layer, also used for ball attachment. The package is 15x15 mm in size.

Figure 4.9 shows the internal layout of the package. The center cavity holds a 3x3-mm

silicon die. Surrounding the die cavity are a Vss ring (shown in green), a Vdd ring (red), and wire

bond pads for individual I/O signals (yellow).

Figure 4.10 shows a detail view. The power and ground pads from the die’s outer pad

ring are wire bonded with short hops to the power and ground rings in the package. Then the I/O

signals are wire bonded from the die’s inner pad ring, over the power pads and package rings, to

the individual signal bond pads in the package. These signals are brought out to the package

balls via the package’s routing layers.

4.6.2 Catalyst CAD Flow

Catalyst [Dic12] is the MURN synthesis and physical design CAD flow. The Catalyst

flow takes a design node from RTL to GDSII, for inclusion in a MURN chip. Users provide

a design in Verilog or SystemVerilog RTL along with a set of timing and physical design

constraints.

Timing constraints include clock specifications (period, duty cycle, skew, uncertainty),

input and output port delay, operating conditions (e.g., process/voltage/temperature corners),

and any timing exceptions such as false or multicycle paths, which are especially important for

c-cores (see Section 3.6.4).

Physical constraints start with an optional floorplan. For small or simple designs, the

user can just specify an aspect ratio and target cell utilization. For more complicated designs

such as MiniDroid, the user can provide a complete floorplan with explicit macro placement,

55

Figure 4.9. MiniDroid package layout The center cavity holds a 3x3-mm silicon die. Wire
bonds connect pads on the die with either the power and ground rings in the package (shown in
red and green, respectively), or with signal pads in the package (shown in yellow). The signal
wire bonds fly over the power wire bonds. Internal package routing to external pins is shown for
some signals.

Figure 4.10. MiniDroid package layout detail Zooming in shows a more detailed view of the
signal pads and internal routing.

56

bounding boxes, and pin constraints (location, spacing, metal layers). The user also specifies a

power grid plan for each metal layer, including strap width and spacing, as well as power rings

needed around any macros such as SRAMs.

The Catalyst flow includes the following stages: synthesis, floorplan, placement, clock

tree synthesis, routing, filler cell insertion, static timing analysis (STA), metal fill, design rule

check (DRC), layout versus schematic (LVS) check, and power estimation. Formal verification

ensures the gate-level netlist is equivalent to the original RTL. At the end of the flow Catalyst

generates a standalone GDSII hard macro for the design that can be incorporated into a MURN

chip. Catalyst also produces reports on timing, area, power, and a quality of results (QoR)

summary.

Catalyst uses the following Synopsys tools and versions: Milkyway (2010.03-SP5),

Design Compiler Topographical (2010.12-SP2), Formality (2010.12-SP5), IC Compiler (2010.12-

SP2), PrimeTime (2010.12-SP2), and VCS (2010.06-4). Catalyst also uses Mentor Graphics

Calibre (2010.3 37) for metal fill, DRC, and LVS checks. The flow is based on a combination of

TCL and XML. MiniDroid relies on a custom floorplan generator written in Python.

4.6.3 MiniDroid Physical Implementation

The first MURN chip includes a 2x2-tile version of GreenDroid, called MiniDroid.

MiniDroid uses a 28-nm SLP process from GlobalFoundries. Figure 4.12 shows the chip

floorplan.

The die size is 3000x3000 µm (9.0 mm2). After subtracting space for the dual pad

ring, the usable core area is 2400x2400 µm (5.8 mm2). Each GreenDroid tile is 750x750 µm.

Each of the two lower tiles has an I/O block with connections to the MURN ring network.

Remaining space outside of the MiniDroid tile array is reserved for other design nodes and the

common infrastructure: the MURN network, off-chip I/O block, power management, and clock

management unit with PLL. Surrounding the core area are the dual pad rings and boundary

power straps.

57

Figure 4.11. Sketching a MiniDroid floorplan Using IC Compiler to sketch a rough floorplan
for MiniDroid.

The chip relies on a 28-nm standard cell library from ARM. The library includes cells

that are 9 tracks high, with a mix of cells optimized for performance, power, and area. The

library provides different options for transistor threshold voltage (Vt) and channel length. Low-Vt

cells are faster and can be used in performance-critical timing paths, at a cost of higher leakage

power. Similarly, cells with shorter channel length also increase performance and leakage,

while longer-channel cells can be used to reduce leakage on non-critical paths. The cells are

footprint-compatible, so place-and-route tools can swap them in place more easily to meet timing.

The cells have a constant height of 0.9 µm, and variable width based on drive strength and cell

complexity.

The metal stack (see Table 4.3) has 10 copper layers plus a terminating aluminum layer at

the top used for bond pads. The first metal layer, M1, is reserved for internal use by the standard

cells and macros. The lower metals M2-M6 and B1-B2 are primarily used for individual design

nodes, while the upper metals IA and IB deliver power and route global signals. The PLL uses

metal layers M1-M5.

58

MiniDroid 2x2 Tile Array

1 GreenDroid
Tile

Inner Pad Ring (I/O)

Outer Pad Ring (Power)

I$ D$

2 Links to MURN Network

Core Power Straps

C-cores

CPU

Figure 4.12. MiniDroid 28-nm chip floorplan with pad ring and 2x2 tile array The
MiniDroid die is 3000x3000 µm (9.0 mm2) in a 28-nm SLP GlobalFoundries process. Each
GreenDroid tile is 750x750 µm. The lower two tiles have connections to the MURN ring
network. Remaining space outside of the tile array is reserved for other design nodes, the MURN
network and I/O block, and the PLL.

59

Table 4.3. MiniDroid metal stack The metal stack has 10 copper layers plus a terminating
aluminum layer at the top for bond pads.

Layer Thickness Direction Primary Purpose
LB 2.1 µm N/A Bond pad metal
IB 8x H Global power and routing
IA 8x V Global power and routing
B2 2x H Local and global power and routing
B1 2x V Local and global power and routing
M6 1x H Local routing
M5 1x V Local routing
M4 1x H Local routing, SRAM internals and power rings
M3 1x V Local routing, SRAM internals and power rings
M2 1x H Local routing, standard cell power rails
M1 1x Both Reserved for standard cell internal routing

The chip relies on the ARM Artisan SRAM compiler for generating memory macros. The

compiler supports high speed and high density options, and can generate single- or dual-ported

SRAMs. The SRAMs require metal blockages on M1-M4 for internal use. Routing can occur

over the SRAMs on M5 and above. Each SRAM requires power rings on M3 and M4, and pin

connections on one side of the macro on M2-M4.

4.7 Summary

The author’s work on MiniDroid’s physical implementation helped him gain valuable

experience in chip architecture for a state-of-the-art silicon process. At the time, the 28-nm SLP

process was still under development—in fact the author even uncovered and fixed several bugs

in the CAD flows and process design kit (PDK).

The GreenDroid prototypes demonstrate that c-cores offer a new technique to convert

dark silicon into energy savings and increased parallel execution under strict power budgets.

GreenDroid validates the basic c-core approach—that it is possible to spend area to increase

energy efficiency at little or no cost to performance. In the next two chapters, we will explore

another specialized architecture that has been commercialized in a modern smartphone.

60

Acknowledgements

This chapter contains material from “GreenDroid: A Mobile Application Processor for

a Future of Dark Silicon,” by Nathan Goulding, Jack Sampson, Ganesh Venkatesh, Saturnino

Garcia, Joe Auricchio, Jonathan Babb, Michael Bedford Taylor, and Steven Swanson, which

has appeared in Hot Chips 22: A Symposium on High Performance Chips, c©2010 IEEE. The

dissertation author is a primary contributor and first author of this paper.

This chapter also contains material from “The GreenDroid Mobile Application Processor:

An Architecture for Silicon’s Dark Future,” by Nathan Goulding-Hotta, Jack Sampson, Ganesh

Venkatesh, Saturnino Garcia, Joe Auricchio, Po-Chao Huang, Manish Arora, Siddhartha Nath,

Vikram Bhatt, Jonathan Babb, Steven Swanson, and Michael Bedford Taylor, which has appeared

in IEEE Micro, c©2011 IEEE. The dissertation author is a primary contributor and first author of

this paper.

61

Chapter 5

Image Processing Unit

At Google, the dissertation author joined a broad team to design and implement an-

other specialized architecture, Pixel Visual Core [RMGH+18]. Pixel Visual Core (PVC) is

a programmable, energy-efficient accelerator for real-time image processing, computational

photography, computer vision, and machine learning applications on mobile devices. Introduced

in Google’s Pixel 2 smartphones, PVC enables Rapid and Accurate Image Super Resolution

(RAISR) ML software zoom technology [RIM17][Mil16] and High Dynamic Range (HDR+)

image processing [HSG+16] for all Android apps that use the Camera API [SR17][Sha18].

This chapter describes PVC’s main compute accelerator, the Image Processing Unit

(IPU). The IPU is a domain-specific architecture [HP17] for image processing and computer

vision. In contrast with GPUs, which synthesize new outputs, the IPU processes inputs (raw

camera sensor data or other input images) and generates modified output images.

The IPU’s most innovative features include: a large (16x16) SIMD array of ALUs in

each of 8 Stencil Processor cores; a 2D shift network within each ALU array to support the

spatial access patterns found in pixel image computations; and 2D hardware line buffers that

store intermediate results between compute kernels, reducing the number of off-chip memory

accesses. These features make it easy and efficient to perform the stencil computations needed in

the latest image processing and machine learning algorithms.

This chapter first explains the motivation for building a programmable image accelerator,

62

including an explanation of traditional Image Signal Processors and their limitations. Then we

describe the IPU architecture, programming, and execution model. Subsequently, the following

chapter details the first implementation of the IPU, in the Pixel Visual Core SoC.

5.1 IPU Motivation

Recent years have ushered in a revolution in digital cameras, particularly cameras embed-

ded in smartphones such as iPhone and Android devices. These devices overcome the physical

limitations of ultra-thin form factors and tiny optical components by using advanced computa-

tional photography. Computational photography uses software processing to sharpen images,

correct defects, and achieve better photos. In particular, computational photography helped Pixel

phones earn the top DxOMark score in 2016, 2017, and 2018 [Car16][Car17][Car18].

Traditionally, digital cameras have relied on Image Signal Processor (ISP) pipelines

for converting raw CMOS sensor data into human-viewable images. To meet strict power and

performance targets, ISPs rely on specialized hardware—much of the ISP is implemented as

a fixed-function ASIC, where the algorithms are tuned before mass production and hardened

into the device. Once hardened, however, devices can no longer take advantage of any further

improvements to the software algorithms [VBP+16]. Furthermore, most ISPs have to make

significant tradeoffs, sacrificing image quality to meet minimum throughput requirements (e.g.,

reducing resolution or quality factor to encode video at 120 frames per second). Thus a fixed-

function ISP encounters two problems: First, the fixed-function ASIC is inflexible and can’t

be updated after manufacture, and second, traditional ISPs have limited compute resources,

sacrificing image quality to meet performance targets.

Google’s IPU is designed to address these problems. First, the IPU is fully programmable,

so it can run new versions of algorithms via software updates. Since the IPU is programmable it

can also be applied to other problems and other domains, such as computer vision or machine

learning. Second, as we’ll show in Section 5.2, the IPU has a significant number of compute

63

Lens
Sensor

(CCD or CMOS)

ISP

Output
Image
(Display)

DRAM

Image
& Stats

AWBAEAF B
us

CPU

Image

Figure 5.1. Organization of a digital camera’s lens, sensor, and ISP Raw data captured by
the sensor stream through the ISP, with feedback paths for Auto Focus (AF), Auto Exposure
(AE), and Auto White Balance (AWB), collectively known as the 3As. Figure from [HP17].

resources that enable massive parallel computation. This accelerates computational photography

techniques that would otherwise not be feasible for interactive applications (e.g., instant sharing).

Third, as a domain-specific architecture the IPU also benefits from high energy efficiency through

specialization.

5.1.1 Image Processing and Stencil Computations

In a typical digital camera system, shown in Figure 5.1, the camera lens focuses photons

onto a CMOS sensor. The sensor produces raw data in a Bayer pattern of alternating red, green,

and blue pixels, shown in Figure 5.2(a). Newer sensors may also interleave depth information

from infrared, lasers, or embedded phase-difference detectors to assist with auto focus (e.g.,

PDAF). The data are fed into the ISP in raster scan order, in which input pixels are streamed

into memory row-wise from top-left to bottom-right, shown in Figure 5.2(b). As CMOS sensors

continue to increase in resolution, the width of each line can become quite long, requiring

additional memory for line buffers. For example, in a 12-megapixel image (4032x3024 pixels)

the ISP must buffer several complete lines, each 5 KB or more in size, before it can start

computation.

64

R G R G R G

G B G B G B

R G R G R G

G B G B G B

R G R G R G

G B G B G B

1 2 3 4 5 6

7 8 9 10 11 12

...

...

(a) (b)

Figure 5.2. Bayer pattern generated in raster scan order An example CMOS sensor Bayer
pattern of red, green, and blue pixels (a), and a depiction of row-major raster scan ordering (b).
As image sensor resolutions increase, the width of each line grows, requiring more intermediate
storage for line buffers in memory.

Figure 5.3. Image Signal Processor (ISP) pipeline example In a traditional ISP, in order
to produce a visually pleasing image the raw sensor data must pass through many compute
kernels. In between compute kernels, intermediate results are buffered in DRAM. Figure from
[YHD+19].

65

Output ImageInput Image

Gaussian
Coefficients

x

Add

3x3 Input Stencil 1 Output Pixel

Figure 5.4. Stencil computation with a 3x3-pixel support region A stencil computation
requires some number of input pixels (the support region) surrounding the target output pixel. In
this example the support region is 3x3 pixels for a 3x3 Gaussian blur to produce each output
pixel.

Figure 5.3 shows an example image processing pipeline, which consists of multiple

stages (compute kernels) that perform different passes over an image such as denoising or color

interpolation. In between each kernel the intermediate results are usually stored in DRAM, since

each frame can be quite large. For example, a single 10-bit, 12-megapixel frame requires more

than 14 MB of memory, and some of the ISP kernels read or write multiple frames (e.g., when

converting to RGB planar format). All of these memory reads and writes cost time (performance)

and energy.

Every compute kernel in the pipeline relies on outputs from a previous kernel. Computing

one output pixel usually requires reading a number of input pixels in the surrounding area. This

surrounding area is known as the support region or stencil of the computation. A stencil typically

consists of a center pixel surrounded by some number of pixels in the horizontal and/or vertical

dimensions, for example 5x5 or 1x3. Figure 5.4 shows an example. In order to compute a

3x3-pixel convolution over the entire image, the computation for each output pixel must read the

values of 9 nearby input pixels (and 9 convolution coefficients). Note there is significant reuse of

input data in both the horizontal and vertical dimensions, especially for larger stencil sizes. A

general-purpose CPU or traditional ISP can only compute one or a few output pixels at a time,

necessitating the same input data to be re-read many times from memory. The next section shows

66

Figure 5.5. Image Processing Unit architecture Pixel Visual Core’s Image Processing Unit
contains 8 compute cores, an I/O block, and an on-chip ring network (NoC). Each of the 8
cores comprises a Stencil Processor, Line Buffer Pool, and connection to the NoC. Data stream
from camera sensors or DRAM through a pipeline of compute kernels running on the Stencil
Processors, with intermediate results buffered in the Line Buffer Pools. Data stream out back to
DRAM or as MIPI output data sent to the AP for further processing.

how the Image Processing Unit’s specialized architecture takes advantage of all this data locality,

both in the IPU compute engines, which can access neighboring data in a 20x20 compute array,

and in the IPU’s hardware line buffers, which store required lines and parts of lines in between

computer kernels, avoiding extra accesses to DRAM.

5.2 IPU Architecture

This section describes the architecture of the Image Processing Unit. Figure 5.5 shows an

IPU with 8 processing cores. Each core contains a 2D compute array called a Stencil Processor,

a hardware Line Buffer Pool with 128 KB of SRAM, and access to a bidirectional on-chip ring

network (NoC).

67

Figure 5.6. IPU Stencil Processor architecture The Stencil Processor consists of a 16x16-lane
compute array (20x20 including halo lanes), Scalar Lane control processor, and a load-store unit
called the Sheet Generator (SHG).

5.2.1 Stencil Processor

At the heart of the IPU is the Stencil Processor (STP), shown in Figure 5.6. Each STP

contains a massively-parallel 20x20 SIMD array with 256 compute lanes and 144 halo lanes,

which are directed by a scalar control lane and fed data from a load-store unit called the Sheet

Generator. The STP uses a very long instruction word (VLIW) format containing three types of

instructions: scalar lane, vector compute, and vector memory (see Section 5.3.4).

68

Scalar Lane

The Scalar Lane (SCL) is a scalar control processor that directs the execution of the

main compute array and Sheet Generator. The SCL issues instructions from a dedicated 32 KB

instruction RAM, handles control flow, generates interrupts, and broadcasts shared data to the

compute array. Each cycle the SCL issues a new VLIW instruction. The SCL executes the scalar

instructions, while the vector instructions are executed in the array.

2D Compute Array

The center of the IPU’s power comes from its 2D SIMD compute array. The array is

organized as a 20x20-lane grid, split into 256 compute lanes containing ALUs, and 144 halo

lanes that are used to store the support region data for stencil computations at the boundary of

the compute lanes.

Compute Lanes

Figure 5.7 shows the STP’s single-cycle pipeline compute lane. Every compute lane

contains two 16-bit ALUs, a multiply-add (MAD) unit, a 10-entry register file, shifters for

accessing data in neighboring lanes, and access to scratchpad SRAMs shared by groups of 8

compute lanes.

The native word length is 16 bits. Each lane can compute up to two 16-bit arithmetic

operations each cycle (either independent or chained), or the ALUs can be paired together to

compute one 32-bit arithmetic operation each cycle. The IPU does not support native floating-

point arithmetic, but it does simplify fixed-point multiplication with MAD instruction extensions

that automatically scale multiplication results back to the correct radix point.

The register file contains ten 16-bit general-purpose registers. Four of these registers are

accessible directly from any other lane up to four hops away in each cardinal direction. The

register file has five read and three write ports to accommodate all of the operations that can

happen each cycle.

69

Figure 5.7. Stencil Processor compute lane Each compute lane in the STP contains two 16-bit
ALUs, a multiply-add unit, register file, SRAM, and access to the shift network. The datapath is
a single-cycle pipeline in order to reduce complexity and save energy.

70

Halo Lanes

The halo lanes do not perform computation; they are used to store input data needed for

stencil computations at the border of the compute array. The halo lanes contain only four 16-bit

registers and half the amount of scratchpad SRAM as the compute lanes. Since there are four

rows and four columns of physical halo lanes, an STP can natively compute stencils up to 5x5

pixels in size. Larger 2D stencil sizes are emulated by the compiler. 3D stencils are emulated by

storing data in each lane’s SRAM.

Shift Network

The STP array contains a 2D shift network that allows any lane to read any of the four

designated shift registers belonging to its nearby neighbors. A lane can access a neighbor’s data

up to four hops away in any direction (north, south, east, west), wrapping at the array edges.

Logically, the shift network is a torus that wraps around vertically and horizontally. Physically,

the compute and halo lanes are interleaved in the chip floorplan to avoid long hops around the

edges and to equalize the wire delay between lanes.

The shift network is a key feature of the IPU that exploits data locality to enable extremely

efficient stencil computation.

Sheet Generator

The Sheet Generator (SHG) is a load-store unit responsible for moving data between

the STP array and any Line Buffer Pool. It can also manipulate data on the fly, including

up/downsampling, striding, and transposition. The SHG gets its name from the fact that it

operates on 2D sheets of pixels, typically 16x16 or 20x20 pixels to match the physical size of

the compute array. The SHG transfers one 4x4 (32-byte) block into the array every cycle, so

the 20x20 array can be filled in 25 cycles. SHG load and store operations overlap with STP

computation, allowing the scalar lane to prefetch upcoming input data to hide some of this

latency.

71

5.2.2 Line Buffer Pool

Every Stencil Processor is paired with a Line Buffer Pool (LBP). Each LBP holds a

collection of hardware line buffers, which are essentially abstractions of 2D single-writer multi-

reader storage. The line buffers serve as data buffers between producer and consumer STPs.

They improve both latency and energy by helping to minimize costly accesses to DRAM.

Each LBP contains 128 KB of SRAM that can be used by up to eight independent line

buffers within the LBP. The LBP also has flow control logic for handling STP stalling (no space

available to write output data) and STP starving (input data not ready yet).

LBPs allow data to be accessed with (x, y) image coordinates as 2D blocks called sheets.

The LBP also handles border conditions (e.g., zero padding, repeat edge, or mirror edge), which

occur when requested data are outside of the stored image region. Each line buffer in an LBP has

a single write pointer for the producer, and eight read pointers supporting up to eight simultaneous

consumers. The compiler controls when to advance read pointers. When all of the read pointers

have moved past an address, the line buffer is allowed to reclaim the space for future writes.

5.2.3 Network-on-Chip

The IPU has a network-on-chip (NoC) for transferring data between STP and LBP cores

and the I/O block. The network is organized as a bidirectional ring. Each IPU core has a

connection to the ring. Bypass paths in the NoC allow unused core pairs to be powered down

while maintaining ring continuity.

Clockwise around the ring, the core IDs are assigned first with increasing odd numbers

and then decreasing even numbers (see Figure 5.5). This allows any number of core pairs to be

powered down, starting from the highest numbers, while maintaining a contiguous numbering

scheme from 1 to N, for N powered-on cores. For example if cores 7 and 8 are powered down,

the remaining cores are still numbered continuously from 1 to 6, simplifying code generation in

the compiler and code reuse.

72

5.2.4 I/O Block

The I/O block transfers data on and off chip via a set of direct memory access (DMA)

engines. The DMA engines can read and write to DRAM via the AXI bus, or read camera data

directly via a set of high-speed MIPI input/output interfaces (see Section 6.1.4). The I/O block is

controlled by the A53 CPU via AMBA interfaces (AXI, APB), and it communicates with image

sensors and the ISP on the main application processor through MIPI.

The IPU DMA has 16 independent channels, allowing up to 16 simultaneous data

transfers between off-chip resources and any LBP in the system, including the I/O block’s own

dedicated Line Buffer Pool, LBP0. The DMA is also used to program the STP instruction RAMs

at the beginning of program execution.

The I/O block also has its own memory management unit (MMU) to facilitate address

translation, and a 256-KB shared storage pool (SSP) to buffer DMA and MIPI packets.

5.2.5 Scalability

The IPU is a scalable multicore architecture. It is easy to scale the number of cores up

or down depending on available silicon area and desired performance. From a physical design

perspective, the cores are instantiated and placed in pairs. New core pairs can be added to the

ring by instantiating additional NoC modules. If the number of core pairs grows even further,

other network topologies could be considered, for example adding more entry points to the ring

or multiple I/O blocks.

5.3 IPU Programming

The IPU architecture is especially suited to executing pipelines of compute kernels

organized as a directed acyclic graph (DAG). Each kernel in the DAG is written in the high-level

domain-specific language Halide [hal]. The Halide program is converted into IPU machine code

via a two-step compilation process, shown in Figure 5.8 and described in this section.

73

C++, Halide

IPU Backend

Virtual ISA

vISA→pISA
Translator Physical ISA Assembler

Binary Code IPU FPGA

IPU Silicon

IPU Simulator

IPU Verilog
Simulation

User Code

Generated Code

Translation

Code Execution

Figure 5.8. IPU toolchain The IPU toolchain first compiles Halide to a virtual ISA and then to
the physical ISA for a specific instance of the IPU. Either ISA can run in the IPU architectural
simulator for functional and performance verification. The assembled binary code can run in
Verilog simulation, on the IPU FPGA, or on silicon.

74

Listing 5.1. Halide code for 3x3 blur [hal][DB18]
Func blur_3x3(Func input) {

Func blur_x , blur_y;

Var x, y, xi , yi;

// Algorithm (no defined order or storage)

blur_x(x, y) = (input(x-1, y) + input(x, y) + input(x+1, y)) / 3;

blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1)) / 3;

// Schedule (defines order of execution and implies storage)

blur_y.tile(x, y, xi , yi , 256, 32).vectorize(xi , 8).parallel(y);

blur_x.compute_at(blur_y , x).vectorize(x, 8);

return blur_y;

}

5.3.1 Halide Language

Halide is a domain-specific functional programming language designed to make it easier

to write high-performance image and array processing code [RKBA+13]. Halide code is embed-

ded in C++ using Halide’s C++ API. Code is then compiled into an object file or JIT-compiled

and run in the same process. The code can target many different architectures including CPUs

(x86, ARM, MIPS), DSPs such as Hexagon [Cod13][SLBL+14], and GPUs via frameworks such

as CUDA and OpenGL. A key feature of Halide is the separation of a kernel’s algorithm (the set

of computations to be performed on each pixel or input datum) from its schedule (how those

computations are scheduled onto available compute resources). This separation allows code to

be reused and optimized for different architectures without changing the underlying algorithm.

Listing 5.1 contains Halide code for a simple 3x3-pixel blur function. The first half of the

code describes the blur algorithm. First the input is blurred in the X dimension with blur x()

by averaging each pixel with its left and right neighbors. Then the intermediate result is blurred

in the Y dimension with blur y() by averaging each pixel with its top and bottom neighbors.

The result is an output image that appears blurry because each input pixel has been averaged with

all of its neighbors in a 3x3 stencil. Note that the first half of the code (the algorithm) operates

implicitly on every pixel of the input, so the code can handle images of arbitrary size.

75

Listing 5.2. Halide blur code from Listing 5.1, scheduled to run on the IPU
Func blur_3x3(Func input) {

Func blur_x , blur_y;

Var x, y;

// Algorithm

blur_x(x, y) = (input(x-1, y) + input(x, y) + input(x+1, y)) / 3;

blur_y(x, y) = (blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1)) / 3;

// Schedule

if (has_ipu) {

blur_x.ipu(x, y);

blur_y.ipu(x, y);

}

return blur_y;

}

The second half of the code defines the schedule, which describes explicitly how to

schedule the inner and outer loops over an entire input image of arbitrary size. For example,

.tile() splits the input into 256x32-pixel blocks, while .vectorize() makes use of 8-wide

SIMD execution units in the target architecture (e.g., x86).

The power of Halide comes from the ability to separate the algorithm from the schedule.

The programmer can write the algorithm once, and then provide multiple schedules, each

optimized for a different target architecture such as CPU or GPU, and as we’ll see in the next

section, the IPU.

5.3.2 Halide for IPU Programming

Programming for the IPU can be as simple as adding new scheduling directives to

the Halide code. Listing 5.2 shows how the previous schedule can be replaced with .ipu()

directives. Each .ipu() directive will create a new compute kernel running on a unique Stencil

Processor. In between each STP, a line buffer in an LBP will store intermediate results, so the

pipeline can execute over the entire image without needing to access DRAM more than once.

Figure 5.9 shows the mapping of kernels onto STPs and LBPs for this example.

76

I/O Block

input

output

DRAM

DMA

Core 1
blur_x

STP1

LBP1

Core 2
blur_y

STP2

LBP2

LBP0

NoC Traffic

Figure 5.9. 3x3 blur mapped onto IPU The blur x() and blur y() kernels from Listing 5.2
are mapped onto two different STP cores, while line buffers are used to store intermediate results
between kernels. The entire image is only read once and written once to DRAM.

In addition to .ipu(), the IPU compiler supports other directives to give more precise

control of the schedule. For example, the programmer can merge kernels, schedule a kernel

onto a specific STP/LBP, or override default compiler options. The programmer can also tell

the compiler to split the input image into stripes and replicate a kernel to process the stripes in

parallel on multiple STPs, to improve performance.

The IPU compiler extends the Halide compiler by interpreting .ipu() and the other

scheduling directives to compile a program. Programs are compiled to IPU machine code in a

two-step process, first to a virtual ISA before final translation to a physical ISA, described in the

next two sections, respectively.

5.3.3 Virtual Instruction Set (vISA)

In the first compilation step, the IPU compiler translates Halide code into virtual instruc-

tion set architecture (vISA) instructions. vISA is an abstract representation of a virtual IPU.

77

Listing 5.3. vISA code for the 3x1 blur x kernel from Listing 5.2
[blur_x]

!visa

input.b16 t0 <- __input[x*1+(-1)][y*1+0][0];

input.b16 t1 <- __input[x*1+0][y*1+0][0];

input.b16 t2 <- __input[x*1+1][y*1+0][0];

add.b16 t3 <- t0 , t1;

add.b16 t4 <- t3 , t2;

div.b16 t5 <- t4 , 3;

output.b16 __blur_x[x*1+0][y*1+0][0] <- t5;

terminate;

The virtual IPU has an unbounded two-dimensional compute array, unlimited memory loca-

tions, and unlimited virtual registers allocated in static single assignment (SSA) form [RWZ88].

Later, vISA code is lowered to a physical ISA for a real machine with finite dimensions (see

Section 5.3.4).

A vISA kernel describes the sequence of operations needed to generate a single output

pixel at abstract location (x,y), given any number of input pixels inside the input stencil. The

input and output pixels are referenced with image coordinates, specified as offsets from (x,y).

For example, to generate pixel (x,y) in a 3x1 blur, the kernel will read inputs (x-1,y), (x,y), and

(x+1,y). In vISA the maximum stencil size is unlimited—inputs can come from neighbors at any

distance.

Listing 5.3 contains vISA code for the blur x() kernel from Listing 5.2. The three

input instructions read the left, current, and right neighbor pixels into virtual temporary registers.

These three values are averaged with add and divide instructions to compute the output pixel.

Each instruction is annotated with its bit width (e.g., .b16 for 16-bit operations). Although

not needed in this example, pixel coordinates can also include a multiplicative scaling factor to

support upsampling and downsampling.

vISA code also supports extended arithmetic operations that may not exist in a particular

implementation of the IPU, like modulo or floating-point operations. These operations can be

emulated using physical instructions during the lowering phase to the physical ISA.

78

5.3.4 Physical Instruction Set (pISA)

The next compilation step lowers vISA code to physical ISA (pISA) instructions for a

specific implementation of the IPU. As new versions of the IPU are designed, the pISA instruction

set can evolve as instructions are added or removed, or as opcode behaviors are modified.

Separating vISA and pISA allows code to be reused across multiple hardware generations that

support different feature sets.

During translation the compiler maps vISA code into pISA using a number of parameters

about the IPU’s physical implementation. These parameters include STP array dimensions, halo

size, the number of registers and local SRAM sizes, number of STP cores, number and size of

LBPs, and any preferred mapping of kernels to STPs and LBPs. Virtual registers are allocated

from the limited physical register set, and abstract memory locations are mapped into physical

SRAM locations with real addresses.

Whereas vISA describes the operations for a single output pixel, without needing to

consider actual image dimensions, pISA describes precisely how an entire image of a specific

size will be processed. pISA divides the input image into sheets that are NxN pixels, matching

the size of the STP compute array. For example, for a 16x16 compute array, a 12-megapixel

image (4032x3024 pixels) will be split into 47,628 sheets (252x189). This means the innermost

pISA loop will execute 47,628 times.

The Image Processing Unit’s pISA code consists of very long instruction word (VLIW)

instructions. Figure 5.10 shows the 119-bit instruction format. Each pISA VLIW contains

instructions for the scalar and vector lanes, where the vector lanes can execute vector math and

vector memory instructions. The 16-bit general-purpose immediate value can be used by the

scalar and vector lanes. The 10-bit special-purpose memory immediate is used by the vector

lanes for vector memory instructions with absolute addresses or fixed values that are known at

compile time, such as local memory addresses or neighbor offsets when reading stencil data

from the shift network.

79

VLIW
Field padding scalar vector math vector memory immediate mem. imm.
Width 9 43 38 12 16 10
Bit 127 0

Scalar Instruction
Field mode opcode0 opcode1 dst0 dst1 src0 src1 src2 src3 bcast0
Width 3 6 6 4 4 4 4 4 4 4
Bit 118 76

Vector Math Instruction
Field mode opcode0 opcode1 dst0 dst1 src0 src1 src2 src3
Width 2 6 6 4 4 4 4 4 4
Bit 75 38

Vector Memory Instruction
Field opcode dst0 src0
Width 4 4 4
Bit 37 26

Figure 5.10. pISA VLIW instruction format Each pISA instruction is a 119-bit VLIW with
scalar, vector math, and vector memory instructions, as well as two fields for immediate values.
The VLIW instructions are zero-padded to 128 bits outside of the IPU instruction RAMs.

80

Listing 5.4. An example pISA instruction
set.b16 bcast0 <- 4096 | add.b16 st1 <- st1 , st2 |

or.b16&sub.b16 t2 , t0 <- t4 , t3 , t5 , bcast0 | rdnxyi.b16 s1 <- s3 , 4;

The VLIW instructions are zero-padded to 128 bits outside of the STP instruction RAMs.

The padding provides some space to extend the VLIW format in future generations. However,

this padding is stripped when loading a program into the instruction RAMs to reduce the total

SRAM and wires required on chip.

The pISA instruction set includes standard arithmetic operations (e.g., add, subtract),

bitwise operations (and, or, not, xor, shift left/right), and comparators (e.g., seq, slt). There

are also specialty instructions including max/min, absolute value, count leading zeros, and an

8-cycle iterative integer divide. Each lane also has a multiply-add (MAD) unit that can do a

single 16×16-bit multiply plus 32-bit add/subtract per cycle. The MAD instructions support an

optional fractional shift at the output to set the radix in fixed-point computations.

The scalar lane supports a superset of the vector math instructions and also has dedicated

instructions for flow control (branch, stall, interrupt), load/store to the scalar lane’s own local

memory, and sheet load/store to move data with the Sheet Generator between the vector array

and a line buffer.

The vector lanes include vector memory instructions for reading pixel values from

neighboring lanes via the shift network, and load/store instructions for accessing the local

scratchpad memory within a lane group. These accesses can be either eight parallel load/store

ops to the same line (with offsets automatically determined based on position within the group),

or one divergent load/store op to the memory of any single lane within the lane group. There is

also a read status instruction that returns a lane’s physical (x, y) position in the array, needed by

some algorithms.

Listing 5.4 shows one example pISA instruction. Each instruction consists of four parts,

separated by | characters. The first part describes the 16-bit value, if any, to broadcast to every

81

lane in the vector array. The broadcast value can be any scalar register or (shown here) a 16-bit

immediate value. The next three parts are assembly instructions for the scalar, vector math,

and vector memory instructions in the VLIW. This example has a simple addition in the scalar

lane, two independent 16-bit operations (or and sub) that will execute in all 256 vector compute

lanes, and a vector memory operation rdnxyi. The rdnxyi operation reads a neighboring lane’s

register up to four hops away in any cardinal direction, and will execute in all 400 compute and

halo lanes to move data around via the shift network.

5.4 Execution Model

In Pixel Visual Core, the IPU is tightly coupled with an ARM Cortex-A53 general-

purpose CPU (see Chapter 6 for more details). This CPU runs the lightweight operating system

Embedded Linux (eLinux) [eli]. On top of eLinux there is an IPU system software stack including

driver, scheduler, and resource manager, known collectively as the IPU Runtime. This section

describes how the IPU Runtime starts executing after Pixel Visual Core first boots during Pixel

phone power-on, and then describes how individual jobs execute from the Runtime.

5.4.1 PVC and IPU Runtime Boot Sequence

1. The phone powers on.

2. During Android boot, the application processor (AP) transfers a ramdisk image file from

flash memory into PVC’s DRAM via PCIe.

3. The A53 boot ROM unpacks the ramdisk and creates a temporary file system (tmpfs) in

PVC’s DRAM.

4. The A53 finishes booting eLinux and starts the IPU Runtime service.

5. The A53 goes to sleep, suspending to PVC’s DRAM in a low-power suspend mode.

6. Android finishes booting.

82

5.4.2 PVC and IPU Runtime Job Execution Sequence

After booting, PVC is ready to accept requests from the AP. The sequence is as follows:

1. The user launches an Android app that uses the camera (e.g., Instagram).

2. The AP wakes up the A53, which readies the IPU Runtime by switching it from suspend to

standby mode. Standby uses higher power than suspend but allows a much faster transition

to active mode.

3. The user pushes the camera shutter button, launching an image capture request via the

Android Camera API, which interrupts the A53.

4. The A53 switches the Runtime into active mode.

5. For each set of compute kernels needed by the app:

(a) The Runtime configures the IPU by setting control and status registers (CSRs),

programming the STP instruction RAMs, configuring each LBP, and configuring the

DMA engines for each input and output data stream.

(b) The Runtime initiates IPU execution by writing one final CSR.

(c) Data streams through the IPU’s STPs and LBPs, with input data coming from DRAM

or one of the camera’s MIPI input channels (see Section 6.1.4). Output data can also

be written to DRAM or a MIPI output channel.

(d) When finished with the computation, the IPU raises an interrupt on the A53.

6. When the last set of kernels has finished executing, the Runtime alerts the AP that the final

result is ready in PVC’s DRAM or is streaming out over MIPI.

7. The AP transfers the final image into its own DRAM over PCIe, and provides it to the

Android app.

8. Once the user exits the app, the A53 and Runtime return to suspend mode to save power.

83

5.5 Summary

This chapter presented the Image Processing Unit, a domain-specific architecture for

image and vision processing in mobile devices. The IPU hardware is designed to exploit the

two- and three-dimensional data locality common to image processing algorithms, through large

SIMD compute arrays and hardware line buffers. The intra-array shift network facilitates data

sharing between neighboring pixels. These features make it easy and efficient to perform the

stencil computations needed in the latest image processing and machine learning algorithms.

Acknowledgements

This chapter contains material from “Pixel Visual Core: Google’s Fully Programmable

Image, Vision and AI Processor for Mobile Devices,” by Jason Redgrave, Albert Meixner, Nathan

Goulding-Hotta, Artem Vasilyev, and Ofer Shacham, which has appeared in Hot Chips 30: A

Symposium on High Performance Chips, c©2018 IEEE. The dissertation author is a primary

contributor and third author of this paper.

84

Chapter 6

Pixel Visual Core

This chapter presents the first implementation of the Image Processing Unit in silicon,

Google’s Pixel Visual Core. This chapter first describes the PVC SoC architecture, which

comprises an 8-core IPU accelerator along with control processor, on-chip interconnect, I/O

interfaces, and stacked DRAM dies in one package. This is followed by a discussion of the

SoC’s physical implementation in a 28-nm TSMC process, and then power and performance

evaluation for key workloads.

Pixel Visual Core provides raw performance of up to 3.1 Tera-ops/second (1.7 Tera-

ops/sec arithmetic) on 16-bit integer data. Designed for the mobile domain, where power is very

limited, the only way to get Tera-ops/second performance is to optimize performance per watt,

also known as operations per picojoule (Ops/pJ). This is because:

Power = Energy/Second = Ops/Second × Energy/Op

With a fixed power budget, the only way to increase performance (Ops/Second) is to decrease

Energy/Op [Sha11].

The 28-nm PVC achieves about 0.84 pJ/Op, or 1.5 pJ/Op including only arithmetic

operations without data movement. Despite a three-generation process gap, the 28-nm PVC

runs key HDR+ kernels 3-6× faster and with 7-16× less energy than a 10-nm general-purpose

application processor with DSP.

85

LPDDR4
32b PHY

MIPI in

ARM A53
950 MHz

I:32 KB, D:32 KB
Thermal
sensors

 MIPI out

UART GPIOI2C SPI

MIPI out

PCIe 3.0 x4

AXI4

MIPI in
IPU (8 cores)

Image Processing
Unit

426 MHz

DRAM
256 MB

DRAM
256 MB

Application
ProcessorCam

Cam

MIPI inCam

Figure 6.1. Pixel Visual Core SoC architecture Pixel Visual Core contains an 8-core Image
Processing Unit (IPU), ARM Cortex-A53 CPU, DDR memory and PCIe controllers, high-speed
MIPI camera interfaces (3x input, 2x output), and low-speed I/O (I2C, SPI, UART, GPIO).

6.1 Chip Architecture

Pixel Visual Core is a system-on-chip (SoC). The heart of the SoC is the Image Processing

Unit. The rest of the SoC is dedicated to keeping the IPU busy, feeding it input data and control

signals, and interacting with the rest of the system including the Pixel phone’s main application

processor and cameras.

Figure 6.1 shows a block diagram of the SoC. At the center is an 8-core IPU, connected

to the SoC’s main interconnect, an AXI bus. Also sharing the bus are a general-purpose control

processor (ARM Cortex-A53 CPU), high-speed I/O interfaces (DDR and PCIe), and several

low-speed I/O interfaces (I2C, SPI, UART, GPIO). Separate from the AXI bus are five high-speed

MIPI input and output interfaces. The following sections describe each of these components in

more detail.

6.1.1 Image Processing Unit

As described in Chapter 5, the IPU architecture is scalable in the number and size of

Stencil Processors and Line Buffer Pools. In Pixel Visual Core, the IPU has 8 STP/LBP cores

86

plus one LBP in the I/O block. The STP array size is 16x16 (20x20 including halo lanes), and

the LBPs each have 128 KB of SRAM. The IPU’s max clock rate is 426 MHz. With 8 cores,

PVC’s IPU has more than 4,096 ALUs and more than 1 MB of on-chip SRAM.

6.1.2 Control Processor

As described in Section 5.4, the Pixel Visual Core SoC has a control processor that

manages jobs on the IPU and executes the IPU Runtime software. This control processor is

a 32-bit general-purpose ARM Cortex-A53 CPU supporting the ARMv7 instruction set with

NEON extensions [ARM]. It has separate 32-KB L1 instruction and data caches and a shared

128-KB L2 cache. At maximum speed it runs at 950 MHz, but can be clocked lower to save

power.

6.1.3 Interconnect

The SoC’s on-chip interconnect follows ARM’s Advanced Microcontroller Bus Archi-

tecture (AMBA) standard. There is a high speed Advanced eXtensible Interface (AXI) bus for

sending data quickly between IPU, CPU, PCIe, and memory. There is also a low speed Advanced

Peripheral Bus (APB) used to program the IPU via control and status registers (CSRs). The AXI

bus runs at 600 MHz, and the APB runs at 250 MHz.

6.1.4 I/O Interfaces

The Pixel Visual Core SoC supports many different high-speed and low-speed interfaces,

described here.

MIPI

Most mobile phones including Pixel use the Mobile Industry Processor Interface (MIPI)

Camera Serial Interface 2 (CSI-2) standard [MIP] for sending data from camera sensors to host

devices. MIPI supports high speed data transfer of many different image resolutions, data formats

(e.g., planar or interleaved RGB), padding, blanking, and bit widths.

87

A significant challenge of MIPI is that there is no mechanism for back-pressure or flow

control. The consumer must be able to keep up with processing producer data, or else drop

frames or reduce the bit rate by lowering the resolution or frame rate. This means timing and

performance analysis are crucial on these critical paths.

Pixel Visual Core supports five MIPI CSI-2 D-PHY interfaces: 3 input channels for re-

ceiving data from the front and rear cameras, and 2 output channels for sending data downstream

to the application processor. Each channel runs at 156.25 MHz and supports up to 10.0 Gbps

(4 lanes at 2.5 Gbps per lane).

In Pixel 2, Pixel Visual Core is a “bump in the wire” between camera sensors and

application processor. This allows the IPU to process camera data immediately as it streams in

instead of going through memory, reducing latency. PVC also has a MIPI bypass path that can

be used when IPU processing is not needed.

PCIe

Pixel Visual Core includes a Peripheral Component Interconnect Express (PCIe) interface

for sending data to and from the application processor and the phone’s main memory. The

interface is PCIe Gen 3 and supports 4 lanes up to 4 GB/s. PCIe is the primary interface for

sending jobs from the application processor to Pixel Visual Core. PCIe is also used to transmit

input and output data for offline (non-MIPI) jobs.

LPDDR

Pixel Visual Core includes off-chip but in-package DRAM (see Section 6.1.5). This

is managed by a Low-Power Double Data Rate (LPDDR) memory controller. The LPDDR4

controller has a 32-bit PHY and supports up to 9.6 GB/s.

Low-speed I/O

In addition to the high-speed interfaces described above, PVC supports several low-speed

I/O interfaces. These include Inter-Integrated Circuit (I2C), Serial Peripheral Interface (SPI),

88

Universal Asynchronous Receiver-Transmitter (UART), and general-purpose I/O (GPIO) pins.

Some uses of these interfaces are used for communication with the PMIC and temperature

sensors, debugging, logging, and accessing an interactive terminal shell in eLinux on the A53

CPU.

6.1.5 DRAM

The Pixel Visual Core package includes 512 MB of dedicated LPDDR4 DRAM memory.

Physically the memory consists of two 256-MB dies in the package (see Section 6.2.3). Keeping

this memory inside the package reduces memory latency and increases bandwidth. Since PVC

has its own dedicated memory there is no contention with the main application processor.

The size of the DRAM was chosen based on PVC’s primary application, HDR+ image

processing. HDR+ requires buffering up to 10 still images before starting computation. With

a 12-megapixel sensor (4032x3024 pixels) and 10-bit sensor data expanded into PVC’s native

16-bit word size, a minimum of 233 MB is needed for storing the input data. Also stored in

DRAM are intermediate results and final outputs, as well as memory needed for eLinux, the

IPU Runtime, and application software. Limited physical memory, with no backing-store/paging

mechanism, increases the burden on software engineers, who must allocate memory buffers very

conservatively and vigilantly squash memory leaks.

6.2 Physical Implementation

This section describes the physical implementation of Pixel Visual Core, including

process technology, details about the 28-nm SoC die, and the combination of SoC plus DRAM

in a single system-in-package.

6.2.1 Process Technology

Pixel Visual Core is manufactured using a TSMC 28-nm HPC (High Performance

Compact) process with 10 metal layers [TSMa]. The process uses High-k Metal Gate (HKMG)

89

transistors. High-k refers to the transistor gate insulator, which uses a material with a higher

dielectric constant than silicon dioxide in order to reduce gate current leakage. Metal gate refers

to the gate material, which has much better conductivity and also reduces leakage compared to

traditional polysilicon.

6.2.2 SoC Die

The Pixel Visual Core’s SoC die is 43.2 mm2 (6.0x7.2 mm). Figure 6.2 shows a photo-

micrograph. More than half of the die is dedicated to the 8-core IPU and its I/O block. The

remainder of the silicon serves only for system control and to get data into and out of the IPU.

A key point is that almost all of the non-IPU silicon serves no purpose except data movement.

Most of this overhead comes from the fact that PVC is a standalone accelerator, and needs its

own PCIe, DDR, and MIPI controllers to interact with the rest of the system. Integrating an IPU

directly into an application processor die would reduce area, power, and performance overheads.

6.2.3 System-in-Package

Pixel Visual Core is built as a system-in-package (SiP), shown in X-ray in Figure 6.3. A

SiP consists of multiple dies stacked vertically or tiled horizontally and connected together by a

single substrate in one package. The Pixel Visual Core SiP contains three vertically stacked dies

in one 81.6 mm2 package: two 256-MB DRAM memory dies on top of the main SoC die.

The SoC die uses flip chip technology to connect to the package substrate. In a flip chip,

the chip pads are located on the top-level metal above the rest of the chip. Solder bumps are

deposited onto the pads and the entire chip is flipped over and soldered directly to the top of the

package substrate.

In contrast with flip chip, the memory dies are wire bonded to the substrate. Space

between the dies is filled with epoxy to stabilize the structure mechanically and redistribute heat.

If the heat is not distributed evenly, the dies and the substrate can expand and contract at different

rates. This can lead to mechanical and thermal stress that can cause pads to fracture.

90

IPU
Core 2

IPU
Core 1

IPU
Core 4

IPU
Core 3

IPU
Core 6

IPU
Core 5

IPU
Core 8

IPU
Core 7

PCIe

MIPIA53
LP

D
D

R
4

IPU IO Block

Figure 6.2. Pixel Visual Core photomicrograph The die photo highlights the 8-core Image
Processing Unit, ARM Cortex-A53 CPU, LPDDR4 memory controller, PCIe Gen 3 controller,
and high-speed MIPI camera interfaces. The die is 43.2 mm2 (6.0x7.2 mm) in a 28-nm process.

91

DRAM PVC SoCWIRE BONDS

BGA BUMPS

Figure 6.3. X-ray radiograph of the Pixel Visual Core system-in-package The package
contains two wire-bonded DRAM dies stacked above the flip chip SoC.

Figure 6.4. Pixel Visual Core BGA package Photo taken with Pixel Visual Core of course!

92

Pixel Visual Core resides in a ball grid array (BGA) package, shown in Figure 6.4. The

BGA has 482 balls arranged in a grid: 23x21, minus one for the notch shown in the top-right

corner that indicates pin 1.

6.3 Evaluation

We evaluate Pixel Visual Core by measuring its raw compute power and performance.

We also evaluate PVC’s power and performance compared to a recent Snapdragon SoC on HDR+

processing kernels.

6.3.1 Maximum Performance

Pixel Visual Core’s IPU is capable of executing two 16-bit arithmetic operations and one

16-bit memory/move/shift operation per lane, per STP core, every cycle. This means PVC can

achieve up to 1.74 Tera-ops/second for pure arithmetic operations, or up to 3.11 Tera-ops/second

including memory and lane shift operations:

Arithmetic only (256 compute lanes):

1.74 Tops/sec = 426 MHz × 8 cores × (256 compute lanes/core × 2 ALUs/lane)

Arithmetic + memory/shifting (256 compute + 144 halo lanes):

3.11 Tops/sec = 426 MHz × 8 cores × (256×2 compute + 400×1 halo)

Pixel Visual Core brings Tera-ops/second performance to mobile devices in under 5 W.

6.3.2 HDR+ Benchmarks

In the Pixel 2 phone, Pixel Visual Core’s primary application is accelerating the High

Dynamic Range (HDR+) image processing pipeline. We use this pipeline as a benchmark for

evaluation. Table 6.1 presents power and performance results for the three main HDR+ compute

kernels running on PVC compared to an 8-core Snapdragon 835 application processor [Qua17].

The 10-nm Snapdragon 835 contains eight ARM Kryo 280 cores (four running at 2.4 GHz and

four at 1.9 GHz) and a Hexagon 682 DSP coprocessor with HVX extensions [SLBL+14].

93

Figure 6.5. Pixel Visual Core experimental setup The breakout board exposes internal power
rails for Snapdragon (with separate rails for the 2.4-GHz and 1.9-GHz CPU cores, DSP, DDR
controller, DRAM, many others) and Pixel Visual Core (SoC with DDR controller, DRAM,
others). Power, voltage, and current data are captured at 30 kHz and transferred to a host PC
over USB. The Pixel 2 phone is intentionally covered in this pre-release photo.

Table 6.1. Pixel Visual Core power and performance results for HDR+ kernels Comparison
of Pixel Visual Core vs. Snapdragon 835 for the three main compute kernels of HDR+. Pixel
Visual Core is 7-16× more energy-efficient despite a three-generation process gap.

Kernel Snapdragon 835
(10 nm)

Pixel Visual Core
(28 nm)

Pixel Visual Core
vs. Snapdragon

Time
(ms)

Power
(mW)

Time
(ms)

Power
(mW) Time Energy

Align 175 6909 62 2792 2.8× 6.9×
Merge 432 9970 154 3945 2.8× 7.1×
Finish 630 7672 108 2676 5.8× 16.7×

94

For both architectures we used the same algorithms written in Halide, but the scheduling

was optimized for each target. The HDR+ kernels are processing a 12-megapixel image burst

comprising five input frames. Measured Snapdragon power includes just the eight CPU cores

and DSP (no DRAM, DDR controller, or MIPI), while PVC results conservatively include the

entire IPU SoC (which includes its own DDR controller). For all kernels PVC is 2.8-5.8× faster

and uses 6.9-16.7× less energy, despite being three process generations older and running at

one-fifth the clock frequency. It should be noted that after 3-4 shots the Snapdragon slows down

due to thermal throttling, while PVC can sustain 100s of shots with no throttling.

6.4 Summary

Pixel Visual Core’s performance and energy efficiency further demonstrate the benefits

of specialized architectures, adopted by industry in a commercial accelerator. PVC’s Image Pro-

cessing Unit is a programmable accelerator, which allows it to support ever-evolving algorithms

and even new domains. The IPU is most efficient when applied to its target domain (image and

vision processing), but it is general-purpose enough to also handle future workloads.

Acknowledgements

This chapter contains material from “Pixel Visual Core: Google’s Fully Programmable

Image, Vision and AI Processor for Mobile Devices,” by Jason Redgrave, Albert Meixner, Nathan

Goulding-Hotta, Artem Vasilyev, and Ofer Shacham, which has appeared in Hot Chips 30: A

Symposium on High Performance Chips, c©2018 IEEE. The dissertation author is a primary

contributor and third author of this paper.

95

Chapter 7

Related Work

This chapter presents an overview of related work in dark silicon research and specialized

accelerators. More and more accelerators are appearing in chips across many domains, especially

in mobile phones, datacenters, and emerging ambient computing. The recent explosion in

accelerator research makes an exhaustive survey infeasible, but this chapter attempts to at least

capture a review of highlights.

7.1 Dark Silicon Research

Although we didn’t coin the term dark silicon ourselves, we were among the first to use it

in the architecture research community because it so perfectly described the consequences of the

utilization wall [GSV+10]. In fact, the term dark silicon was coined while our first conservation

cores paper [VSG+10] was undergoing review for ASPLOS in 2009, and we had many prior

submissions and grant proposals that discussed the dark silicon problem dating back to 2006.

Our research was used as an input to the ITRS 2007 roadmap, which ARM CTO Mike Muller

cited as his inspiration for the term, first used publicly at ARM’s annual technical conference in

2009 [Mer09]. Our ASPLOS paper also had the first analysis of dark silicon’s effect on multicore

architectures.

Before dark silicon, many architects focused primarily on performance and silicon area,

but that focus has shifted to power and energy as being first-order design constraints. To address

96

these new concerns, researchers have explored novel techniques at the level of transistors,

circuits, microarchitectural pipelines, and entire cores, as well as considering dedicated vs.

reconfigurable logic, and developing new models, languages, and design tools to help with

scaling and automation.

The authors of [EBA+11] and [EBSA+12] model the limits of multicore scaling by

combining device scaling, single-core scaling, and multicore scaling together to measure the

speedup potential for a set of parallel workloads. Their work agrees with our findings that

multicore scaling is limited by power in the dark silicon regime.

Focusing on server workloads, [HFFA11] and [Har12] argue that in the dark silicon

regime traditional multicore CPUs won’t scale beyond the low hundreds of cores, and instead

propose building specialized CMPs with large and diverse arrays of heterogeneous cores.

Others model the effects of dark silicon in the “uncore” components of a chip, including

shared cache and on-chip interconnect [CZZ+15], 3D CMPs [AOFJM17], and DRAM [PRH+17].

[LHWB12] presents the Accelerator Store, a scalable architectural component to minimize area

by sharing SRAM memories in systems with many (tens to hundreds) of accelerators.

The authors of [HRSS11] and [WS13] examine dark silicon from the perspective of ther-

mal design power (TDP), and they model tradeoffs between using area for application-specific

accelerators vs. reconfigurable logic. For diverse workloads they suggest that reconfigurable

logic supporting multiple accelerators can be more beneficial, especially when the accelerators

have lower workload coverage individually. Some other examples of reconfigurable architec-

tures include Plasticine [PZK+17], a spatially-reconfigurable architecture designed to execute

applications composed of parallel patterns, and work on other coarse-grained reconfigurable

architectures (CGRAs) such as [PFM+08], [PPM09], and [PPM12].

Computational sprinting [RLC+12] [RES+13] is a dim silicon approach that exploits the

thermal capacitance of materials to allow silicon to operate in bursts above the chip’s steady-state

thermal limit. By “racing to idle” [AA14], sprinting can improve both performance and energy

efficiency by idling “uncore” components more frequently.

97

Near-threshold voltage (NTV) computing, another dim silicon approach, offers extreme

energy efficiency by lowering the operating voltage to just above Vt [PSD+12]. NTV computing

makes up for the performance penalties with additional parallelism, scalable within limits

modeled in [PDS+13].

Other researchers approach the dark silicon problem at the device level. Work on tunnel

field-effect transistors (TFETs) [MMK+09] proposes a technique with heterogeneous device

types, using a combination of energy-efficient cores built from TFETs in addition to traditional

CMOS cores for the performance-critical phases of applications [SKS+11] [SKS+13]. This

heterogeneous approach combines both dark (fewer cores, higher voltage) and dim (more cores,

lower voltage) silicon techniques.

As discussed in Chapter 2, specialized solutions to the dark silicon problem will require

imposing levels of scaling to generate the necessary numbers of accelerators. Some research

aims to enable better automation through the use of new languages and design tools. Spatial

[KFP+18] is a domain-specific language and compiler for higher-level descriptions of application

accelerators. The language provides hardware-centric abstractions to improve programmer

productivity and design performance, targeting FPGAs and CGRAs. Darkroom [HBD+14]

compiles high-level image processing code to Verilog RTL for ASIC and FPGA hardware.

High-level synthesis (HLS) is a broad category of tools that seek to raise the abstraction

level required to create accelerators. [Bab01] is early work targeting gate-reconfigurable archi-

tectures. SPARK [GDGN03] transforms behavioral descriptions in C into synthesizable VHDL.

[MLAK16] is a more recent example that targets FPGAs. [NSP+16] provides a recent survey of

academic and commercial HLS tools.

All of these among many others are excellent work looking at different aspects of the

dark silicon problem and potential solutions. Many of these works propose specialization as

critical to continued performance scaling in the dark silicon regime.

98

7.2 Mobile Phone/SoC Accelerators

The rise of all-in-one smartphones such as iPhone and Android devices has bolstered a

recent explosion in specialized accelerators for mobile SoCs [SB15]. Today’s mobile application

processor SoCs couple multicore CPUs with GPUs and dozens of specialized accelerators.

These accelerators offload functions such as graphics, digital signal processing, multimedia

encode/decode, cryptography, security, image signal processing, machine learning, I/O, and

more (for recent commercial examples see [Qua19][App19][Sam19][Hua19]).

Several researchers have created architectural simulators and tools to model accelerators

on SoCs. Aladdin [SRWB14] is a pre-RTL accelerator simulator that speeds up SoC development

by enabling larger, faster design space explorations for new accelerators in an SoC. Gables [HJ19]

extends the Roofline model [WWP09] for accelerators on mobile SoCs, allowing architects to

apportion work concurrently among different accelerators and calculate an SoC performance

upper bound. [RYK18] presents an industry perspective of the challenges facing mobile computer

architecture, and includes “ten commandments” for mobile processor design [RYK19].

Early mobile hardware accelerators include Digital Signal Processors (DSPs) that speed

up complex data processing tasks using less energy than a general-purpose processor. Examples

include Tensilica’s fixed-function audio, voice, and vision DSPs, as well as its customizable

Xtensa cores [WKMR01], which let architects extend their processors with application-specific

instructions. Qualcomm’s Hexagon DSPs [Cod13] have been increasing in core quantity and

capabilities, including the recent addition of vector instruction extensions HVX [Cod15] and

Hexagon Tensor Accelerator.

Machine learning accelerators abound. Domain-specific neural network accelerators

can achieve more than two orders of magnitude improvements over CPUs and GPUs in terms

of performance and energy efficiency [GYP+19]. Just a few examples include the work in

[CDS+14], [DFC+15], [HLM+16], and [RWA+16], as well as the recently-announced successor

to PVC, Pixel Neural Core [Rak19]. Another example is Celerity [AAHA+17][RZA+19], which

99

includes a tiered accelerator fabric (TAF) with three key architectural tiers: a general-purpose tier

with OS-capable cores; a massively-parallel tier made of scalable programmable arrays of small,

tightly coupled cores; and a specialization tier of highly specialized algorithmic accelerators built

from HLS for specific computations, in particular convolutional neural networks [DXT+18].

Google’s Titan M [Xin18] security chip, a mobile version of Titan [JRR+18], is a

companion to the Pixel 3 application processor that provides a silicon root of trust. The chip is

hardened against software and hardware attacks through mechanisms such as on-chip voltage,

temperature, and glitch detectors, and physical defenses that make physical tampering difficult

and detectable.

Although not necessarily designed for mobile phones (yet!), FPGA-based accelerators

are used in multitudinous domains, including: neural network accelerators such as FastWave

[HJN+19] and the work in [ZSZ+17], [SGK17], and [ZLS+15]; simultaneous localization

and mapping (SLAM) [GAK19] [BB17]; 3D registration and mapping [BBK18]; approximate

computing [LRY+16]; non-volatile memory (NVM) controllers [DGGS13] [CDC+10]; and

many others.

The work discussed in this chapter just scratches the surface of the rich body of accelerator

research in our community. In addition to mobile, there are countless accelerators targeting

other domains. Datacenter accelerators include ASIC Clouds [MKGT16] such as Google’s

TPU [JYP+17] and Microsoft’s FPGA-based accelerators [PCC+14][CCP+16][FOP+18]. An

emerging class of ambient/always-on/edge computing includes accelerators such as Google’s

Edge TPU [Rhe18] and the Movidius Myriad 2 Vision Processing Unit [MBR+14], among

others. We live in a golden age of specialized accelerator design!

100

Chapter 8

Synthesis and Conclusion

This final chapter presents a high-level synthesis1 of the ideas and specialized architec-

tures discussed in the dissertation. This dissertation presented the origins of the dark silicon

problem, from the end of Dennard scaling to our predictions for future (now current) commercial

processors in industry. Our principal prediction was an increase in the amount of silicon die

area reserved for specialized accelerators that would take over more and more computation on

complex SoCs. Growing the number of specialized accelerators requires tackling the challenges

of massive complexity and scaling, where automation is key. Some of this automation can

come from high-level synthesis tools, such as the conservation core toolchain. We presented

conservation cores and applied them to the domain of mobile processing with GreenDroid. The

author took the experience gained in this work and applied it in industry at Google, helping a

team design and build the Pixel Visual Core accelerator. This chapter concludes with a discussion

on trends in specialized hardware, including accelerators optimized for different metrics and

targeting various domains (mobile, datacenter, ambient computing).

In Chapter 2 we showed how rising leakage currents led to the end of Dennard scaling,

the stalled reduction of transistor threshold and supply voltages, and the exponential growth

of dark silicon. The dark silicon problem forces architects into a new design regime, in which

silicon area is considered cheap relative to power, which has become an expensive first-order

design constraint. We recast the dark silicon problem as an opportunity to usher in a new era

1Pun very much intended.

101

in specialized computing. Our early research predicted that dark silicon would result in the

acceleration2 of work on accelerators in research and commercial processors, which has come

true.

When the dissertation author first started at UCSD, it was just four days before Ap-

ple launched its now-ubiquitous iPhone. The first iPhone was powered by a relatively simple

Samsung SoC with a 32-bit RISC ARMv6 processor in 90-nm technology. Since then smart-

phones including iPhone and Android devices have become the dominant computing platform

of the world. Today’s application processors contain complex heterogeneous superscalar and

out-of-order multicore CPUs with integrated GPUs and dozens of other accelerators.

The author’s first accelerator research included the design of conservation cores. Conser-

vation cores lie near one end of the efficiency spectrum for specialized hardware shown previously

in Figure 2.2. Besides the obvious benefit of energy efficiency, one of the key strengths of the

c-cores approach is automation. Designing hardware accelerators by hand is a labor-intensive and

error-prone process. Hand-written accelerators must be architected, implemented, and verified

individually.

High-level synthesis can alleviate some of these problems. HLS tools seek to raise the

level of abstraction required to create accelerators. HLS research has a long and rich history,

which has culminated in the availability of several commercial tools, such as Mentor Graphics’s

Catapult C or Synopsys’s Synphony ([NSP+16] provides a recent survey of academic and

commercial tools).

Because traditional HLS tools seek to infer parallel execution from serial code, they have

many of the same limitations that parallelizing compilers suffer from—namely, the difficulties

of analyzing pointers in free-form code, extracting memory parallelism, and extracting and

formulating efficient parallel schedules for the operations in critical loops. Without successful

parallelization, the code is unlikely to run much faster in specialized silicon than it would on a

general-purpose processor core.

2Also intended.

102

To address the parallelization challenges, most high-level synthesis tools place limits

on the input language (for example, no pointers, no dynamic memory allocation, and no goto

statements) and rely on user-transformed code or programmer annotations and pragmas to guide

the tool to generate designs with good results. These tools’ expected usage model is that the

user will shepherd code through the tools, modifying the code and performing trial-and-error

transformations to attain the expected quality of results. Typically, operating system and I/O

code are considered unsynthesizable, and either the HLS tool ignores this code or the user must

comment it out—further limiting the amount of code that can be converted into special-purpose

hardware easily.

GreenDroid targets a system with millions of lines of difficult-to-parallelize code, in-

cluding the Linux kernel, so its focus is different: the c-core HLS toolchain must automatically

reduce the energy of large bodies of nonparallelizable code without user intervention. The

code base is too large to afford manual intervention. Our toolchain doesn’t need user pragmas

for effective transformation or require any source code modifications to remove unsupported

constructs. It supports code that has I/O and system calls, so even parts of the operating system

can be translated. Through automation, the conservation cores approach provides the extreme

level of scaling necessary under the severe constraints of the dark silicon regime.

At Google, the dissertation author joined a broad team to design and implement another

specialized architecture, the Image Processing Unit and Pixel Visual Core. Compared to con-

servation cores, PVC is a more traditional parallel accelerator, providing massive parallelism

with minimal overhead. The first generation of the IPU has 4,096 ALUs contained in eight

256-lane SIMD Stencil Processor cores. It achieves 3.1 Tera-ops/second performance within a

5-watt power budget through energy-efficient innovations that include a 2D shift network that

enables efficient access to neighboring data for stencil computations, and 2D hardware line

buffers that drastically reduce required DRAM accesses, lowering total energy and latency. As

shown in Section 6.3, the 28-nm Pixel Visual Core is 7-16× more energy-efficient than a 10-nm

Snapdragon SoC, despite a three-generation process gap.

103

Pixel Visual Core and conservation cores are complementary, since they target different

kinds of code. PVC accelerates image processing and machine learning algorithms with plenty

of parallelism and particular data access patterns. Jobs are fairly coarse-grained, allowing the

CPU to offload large tasks to the off-chip accelerator, which has its own dedicated DRAM and

control processor. C-cores, on the other hand, target irregular code that is hard to parallelize, i.e.,

all the leftovers. Because c-core jobs are fine-grained and require more frequent communication

and data-sharing with a general-purpose host, c-cores are more closely coupled with a CPU,

sharing the CPU’s L1 data cache. Along with other specialized accelerators, Pixel Visual Core’s

IPU would be a great addition to GreenDroid alongside the Android c-cores.

Pixel Visual Core and conservation cores are optimized for similar, though slightly

different, metrics. In the mobile domain, where power is very limited, the only way to get Tera-

operations/second performance is to optimize performance per watt, also known as operations

per picojoule (Ops/pJ). This is because:

Power = Energy/Second = Ops/Second × Energy/Op

With a fixed power budget, the only way to increase performance (Ops/Second) is to decrease

Energy/Op. Whereas Pixel Visual Core is optimized for performance per watt, conservation

cores are optimized for a related metric, energy-delay product (EDP):

EDP = Energy × Delay = Energy × Seconds/Op = Power/Op

Optimizing for EDP differs from Energy/Op in that any decrease in Energy/Op yields immediate

improvements in performance, while under EDP some performance degradation is acceptable if

the c-cores can compensate with still-lower energy.

Depending on the domain and application, specialized accelerators can be designed to

optimize for different metrics, for example performance per watt, total cost of ownership, latency,

or ultra-low power. Accelerators can also be built to serve a specific functional purpose, such as

demonstrating AI supremacy in the cloud [JYP+17] or bringing it to your hand [Rak19].

Datacenter accelerators approach specialization from another point of view. ASIC Clouds

[MKGT16] may optimize for the total cost of ownership (TCO) of a system. TCO includes

104

upfront development and capital costs like silicon NRE, as well as ongoing maintenance costs

including electricity, cooling, and capital interest payments. Although specialized accelerators

may have a higher upfront development cost, they can reduce TCO because they decrease the

need for so many general-purpose processors and the electricity to feed and cool them. Google’s

TPU [JYP+17] is a good example of this. Other accelerators like Microsoft’s FPGA-based

datacenter accelerators strive for minimum latency [PCC+14][CCP+16][FOP+18].

Ambient and edge computing promise more privacy and potentially better performance,

since more data can remain local instead of being sent over a network to servers in the cloud. But

always-on ambient computing must be even more conscious of power limitations because most

of this computing runs on battery-powered devices [PCD+01]. Ambient computing accelerators

must optimize for ultra-low energy to enable always-on processing and new features like personal

assistants and on-device voice transcription [IS19].

Computing technology is no stranger to rapid disruption. Just as ARM displaced Intel in

processor volume with the rise of smartphones and ubiquitous computing, another displacement

may be just around the bend. There is a surge in open-source hardware, CAD tools, and

even instruction sets—in particular RISC-V makes it very easy to add custom instructions to a

processor, royalty free (watch out ARM!).

Computer architecture is all about levels of abstraction. In a processor, the instruction

set is a contract that promises to execute specific operations without needing to provide details

of the underlying implementation. In an ASIC standard cell library, the cells are mini black

boxes that abstract CMOS transistors away into simple logic gates. With CAD synthesis tools,

an RTL hardware description language can hide the details of the translation into standard cells.

And the RTL itself can be generated from higher-level languages and a good HLS tool. With a

“sufficiently high enough” HLS tool, the vision of going from natural language descriptions of

algorithms to push-button systems of specialized accelerators is not so far away.

105

Appendix A

Acronyms

ALU Arithmetic Logic Unit
AMBA Advanced Microcontroller Bus Architecture (ARM)
AP Application Processor
APB Advanced Peripheral Bus (ARM)
API Application Programming Interface
AXI Advanced eXtensible Interface (ARM)
BGA Ball Grid Array
CFG Control Flow Graph
CMOS Complementary Metal Oxide Semiconductor
CMP Chip Multiprocessor
CNN Convolutional Neural Network
CoDA Coprocessor-Dominated Architecture
CPU Central Processing Unit
CSI-2 Camera Serial Interface 2 (MIPI)
CSR Control and Status Register
DAG Directed Acyclic Graph
DFG Data Flow Graph
DMA Direct Memory Access
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
GPIO General Purpose I/O
GPU Graphics Processing Unit
HDR+ High Dynamic Range algorithm [HSG+16]
HKMG High-k Metal Gate
HLS High-Level Synthesis
I2C Inter-Integrated Circuit
IPU Image Processing Unit
IRDS International Roadmap for Devices and Systems
ISP Image Signal Processor
ITRS International Technology Roadmap for Semiconductors

106

JTAG Joint Test Action Group (debug standard)
LBP Line Buffer Pool (IPU)
LPDDR Low-Power Double Data Rate DRAM
MAD Multiply-Add Unit
MIPI Mobile Industry Processor Interface
MMU Memory Management Unit
NoC Network-on-Chip
OCN On-Chip Network
PCIe Peripheral Component Interconnect Express
PDK Process Design Kit
pISA Physical Instruction Set Architecture (IPU)
PLL Phase-Locked Loop
PMIC Power Management Integrated Circuit
PVC Pixel Visual Core
PVT Process, Voltage, and Temperature corner
RTL Register Transfer Level
SCL Scalar Lane (IPU)
SDP Selective Depipelining (c-cores)
SHG Sheet Generator (IPU)
SIMD Single Instruction Multiple Data
SiP System-in-Package
SoC System-on-Chip
SPI Serial Peripheral Interface
STP Stencil Processor (IPU)
TSMC Taiwan Semiconductor Manufacturing Company
UART Universal Asynchronous Receiver-Transmitter
vISA Virtual Instruction Set Architecture (IPU)
VLIW Very Long Instruction Word
Vt Transistor Threshold Voltage
WTF Wow, Thesis Finished!

107

Bibliography

[AA14] Susanne Albers and Antonios Antoniadis. Race to idle: New algorithms for speed
scaling with a sleep state. ACM Trans. Algorithms, 10(2), February 2014.

[AAHA+17] Tutu Ajayi, Khalid Al-Hawaj, Aporva Amarnath, Steve Dai, Scott Davidson,
Paul Gao, Gai Liu, Atieh Lotfi, Julian Puscar, Anuj Rao, Austin Rovinski, Loai
Salem, Ningxiao Sun, Christopher Torng, Luis Vega, Bandhav Veluri, Xiaoyang
Wang, Shaolin Xie, Chun Zhao, Ritchie Zhao, Christopher Batten, Ronald G.
Dreslinski, Ian Galton, Rajesh K. Gupta, Patrick P. Mercier, Mani Srivastava,
Michael Bedford Taylor, and Zhiru Zhang. Celerity: An open source RISC-V
tiered accelerator fabric. In IEEE Hot Chips 29 Symposium (HCS), Aug 2017.

[Amd67] Gene M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, AFIPS ’67 (Spring), pages 483–485, New York, NY,
USA, 1967. ACM.

[AOFJM17] Arghavan Asad, Ozcan Ozturk, Mahmood Fathy, and Mohammad Reza Jahed-
Motlagh. Optimization-based power and thermal management for dark silicon
aware 3D chip multiprocessors using heterogeneous cache hierarchy. Micropro-
cessors and Microsystems, 51:76–98, April 2017.

[App19] Apple. Apple A13 Bionic. https://en.wikipedia.org/wiki/Apple A13, 2019.

[ARM] ARM. ARM Cortex-A53. https://developer.arm.com/products/processors/
cortex-a/cortex-a53.

[AS01] Shail Aditya and Michael S. Schlansker. ShiftQ: A bufferred interconnect for
custom loop accelerators. In Proceedings of the 2001 International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, CASES ’01, pages
158–167, New York, NY, USA, 2001. Association for Computing Machinery.

[ASGH+11] M. Arora, J. Sampson, N. Goulding-Hotta, J. Babb, G. Venkatesh, M. B. Taylor,
and S. Swanson. Reducing the energy cost of irregular code bases in soft pro-
cessor systems. In 2011 IEEE 19th Annual International Symposium on Field-
Programmable Custom Computing Machines, pages 210–213, May 2011.

108

https://en.wikipedia.org/wiki/Apple_A13
https://developer.arm.com/products/processors/cortex-a/cortex-a53
https://developer.arm.com/products/processors/cortex-a/cortex-a53

[Bab01] Jonathan William Babb. High Level Compilation for Gate Reconfigurable Archi-
tectures. PhD thesis, Massachusetts Institute of Technology, 2001.

[BB17] K. Boikos and C. Bouganis. A high-performance system-on-chip architecture
for direct tracking for SLAM. In 2017 27th International Conference on Field
Programmable Logic and Applications (FPL), pages 1–7, Sep. 2017.

[BBK18] M. Barrow, S. M. Burns, and R. Kastner. A FPGA accelerator for real-time
3D non-rigid registration using tree reweighted message passing and dynamic
Markov random field generation. In 2018 28th International Conference on Field
Programmable Logic and Applications (FPL), pages 335–342, Aug 2018.

[BGHZ+12] Vikram Bhatt, Nathan Goulding-Hotta, Qiaoshi Zheng, Jack Sampson, Steven
Swanson, and Michael Bedford Taylor. SiChrome: Mobile web browsing in
hardware to save energy. In DaSi: First Dark Silicon Workshop, ISCA, June 2012.

[Bry09] Vladyslav Sergeevich Bryksin. ASIC life extension through hardware patch
interfaces. Master’s thesis, University of California San Diego, 2009.

[BVCG04] Mihai Budiu, Girish Venkataramani, Tiberiu Chelcea, and Seth Copen Goldstein.
Spatial computation. In Proceedings of the Eleventh International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XI, pages 14–26, New York, NY, USA, 2004. ACM.

[Car16] David Cardinal. Pixel smartphone camera review: At the top. https://www.
dxomark.com/pixel-smartphone-camera-review-at-the-top, Oct 2016.

[Car17] David Cardinal. Google Pixel 2 reviewed: Sets new record for
overall smartphone camera quality. https://www.dxomark.com/
google-pixel-2-reviewed-sets-new-record-smartphone-camera-quality, Oct 2017.

[Car18] David Cardinal. Google Pixel 3 camera review: The best Pixel yet. https:
//www.dxomark.com/google-pixel3-camera-review, Dec 2018.

[CCP+16] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman,
S. Heil, M. Humphrey, P. Kaur, J. Kim, D. Lo, T. Massengill, K. Ovtcharov,
M. Papamichael, L. Woods, S. Lanka, D. Chiou, and D. Burger. A cloud-scale ac-
celeration architecture. In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 1–13, Oct 2016.

[CDC+10] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, and S. Swanson.
Moneta: A high-performance storage array architecture for next-generation, non-
volatile memories. In 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 385–395, Dec 2010.

[CDS+14] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. DianNao: A small-footprint high-throughput accelerator

109

https://www.dxomark.com/pixel-smartphone-camera-review-at-the-top
https://www.dxomark.com/pixel-smartphone-camera-review-at-the-top
https://www.dxomark.com/google-pixel-2-reviewed-sets-new-record-smartphone-camera-quality
https://www.dxomark.com/google-pixel-2-reviewed-sets-new-record-smartphone-camera-quality
https://www.dxomark.com/google-pixel3-camera-review
https://www.dxomark.com/google-pixel3-camera-review

for ubiquitous machine-learning. In Proceedings of the 19th International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’14, pages 269–284, New York, NY, USA, 2014. Association
for Computing Machinery.

[CGG+12] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and Glenn
Reinman. Architecture support for accelerator-rich CMPs. In Proceedings of
the 49th Annual Design Automation Conference, DAC ’12, pages 843–849, New
York, NY, USA, 2012. Association for Computing Machinery.

[Che] Stephen Checkoway. UCSD dissertation LaTeX class file. https://github.com/
stevecheckoway/ucsddissertation.

[CHM08] N. Clark, A. Hormati, and S. Mahlke. VEAL: Virtualized Execution Accelerator
for Loops. In 35th Annual International Symposium on Computer Architecture
(ISCA), pages 389–400, June 2008.

[CMHM10] Eric S. Chung, Peter A. Milder, James C. Hoe, and Ken Mai. Single-chip hetero-
geneous computing: Does the future include custom logic, FPGAs, and GPGPUs?
In Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO ’43, pages 225–236, USA, 2010. IEEE Computer
Society.

[Cod13] L. Codrescu. Qualcomm Hexagon DSP: An architecture optimized for mobile
multimedia and communications. In IEEE Hot Chips 25 Symposium (HCS), Aug
2013.

[Cod15] L. Codrescu. Architecture of the Hexagon 680 DSP for mobile imaging and
computer vision. In 2015 IEEE Hot Chips 27 Symposium (HCS), pages 1–26, Aug
2015.

[CZZ+15] H. Cheng, J. Zhan, J. Zhao, Y. Xie, J. Sampson, and M. J. Irwin. Core vs. uncore:
The heart of darkness. In 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–6, June 2015.

[DB18] Andrea Di Blas. Keynote: Google Pixel Visual Core: A portable domain-specific
processor for computational photography and machine learning. In 2018 IEEE
International Conference on Application-specific Systems, Architectures and Pro-
cessors (ASAP), July 2018.

[DFC+15] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,
Xiaobing Feng, Yunji Chen, and Olivier Temam. ShiDianNao: Shifting vision
processing closer to the sensor. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture, ISCA ’15, pages 92–104, New York, NY,
USA, 2015. Association for Computing Machinery.

110

https://github.com/stevecheckoway/ucsddissertation
https://github.com/stevecheckoway/ucsddissertation

[DGGS13] A. De, M. Gokhale, R. Gupta, and S. Swanson. Minerva: Accelerating data
analysis in next-generation SSDs. In 2013 IEEE 21st Annual International
Symposium on Field-Programmable Custom Computing Machines, pages 9–16,
April 2013.

[DGR+74] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc.
Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE
Journal of Solid-State Circuits, 9(5):256–268, Oct 1974.

[Dic12] Rigo Dicochea. 28SLP Catalyst Project User Documentation. Technical report,
UCSC and GlobalFoundries, 2012.

[DR12] Rigo Dicochea and Jose Renau. Multi-University Research Network. Technical
report, UCSC and GlobalFoundries, 2012.

[DWB+10] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge. Near-
threshold computing: Reclaiming Moore’s law through energy efficient integrated
circuits. Proceedings of the IEEE, 98(2):253–266, Feb 2010.

[DXT+18] S. Davidson, S. Xie, C. Torng, K. Al-Hawai, A. Rovinski, T. Ajayi, L. Vega,
C. Zhao, R. Zhao, S. Dai, A. Amarnath, B. Veluri, P. Gao, A. Rao, G. Liu, R. K.
Gupta, Z. Zhang, R. Dreslinski, C. Batten, and M. B. Taylor. The Celerity open-
source 511-core RISC-V tiered accelerator fabric: Fast architectures and design
methodologies for fast chips. IEEE Micro, 38(2):30–41, Mar 2018.

[EBA+11] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. Dark
silicon and the end of multicore scaling. In 38th Annual International Symposium
on Computer Architecture (ISCA), pages 365–376, June 2011.

[EBSA+12] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. Power limitations and dark silicon challenge the future of
multicore. ACM Trans. Comput. Syst., 30(3), August 2012.

[eli] Embedded Linux. https://www.elinux.org.

[FKDM09] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke. Bridging the computation gap
between programmable processors and hardwired accelerators. In 2009 IEEE 15th
International Symposium on High Performance Computer Architecture, pages
313–322, Feb 2009.

[FOP+18] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo, S. Alka-
lay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel, A. Sapek, G. Weisz,
L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caulfield, E. S. Chung, and D. Burger.
A configurable cloud-scale DNN processor for real-time AI. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA), pages
1–14, June 2018.

111

https://www.elinux.org

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349,
July 1987.

[GAK19] Q. Gautier, A. Althoff, and R. Kastner. FPGA architectures for real-time dense
SLAM. In 2019 IEEE 30th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), volume 2160-052X, pages 83–90,
July 2019.

[Gar18] Gartner. Gartner says worldwide sales of smartphones returned to growth in
first quarter of 2018. https://www.gartner.com/en/newsroom/press-releases/2018-
05-29-gartner-says-worldwide-sales-of-smartphones-returned-to-growth-in-first-
quarter-of-2018, May 2018.

[GDGN03] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. SPARK: A high-level synthesis
framework for applying parallelizing compiler transformations. In 16th Interna-
tional Conference on VLSI Design, pages 461–466, Jan 2003.

[GHSV+11] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio, P. Huang,
M. Arora, S. Nath, V. Bhatt, J. Babb, S. Swanson, and M. B. Taylor. The
GreenDroid mobile application processor: An architecture for silicon’s dark
future. IEEE Micro, 31(2):86–95, March 2011.

[GHSZ+12] N. Goulding-Hotta, J. Sampson, Q. Zheng, V. Bhatt, J. Auricchio, S. Swanson,
and M. B. Taylor. GreenDroid: An architecture for the dark silicon age. In 17th
Asia and South Pacific Design Automation Conference, pages 100–105, Jan 2012.

[Gooa] Google. Android platform architecture. https://developer.android.com/guide/
platform.

[Goob] Google. Android Runtime (ART) and Dalvik. https://source.android.com/devices/
tech/dalvik/index.html.

[Gra] GrammaTech. CodeSurfer. http://www.grammatech.com/products/codesurfer.

[GSV+10] N. Goulding, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio, J. Babb, M. B.
Taylor, and S. Swanson. GreenDroid: A mobile application processor for a future
of dark silicon. In IEEE Hot Chips 22 Symposium (HCS), Aug 2010.

[GYP+19] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis.
TANGRAM: Optimized coarse-grained dataflow for scalable NN accelerators.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’19, pages
807–820, New York, NY, USA, 2019. Association for Computing Machinery.

[hal] Halide: A language for fast, portable computation on images and tensors. http:
//halide-lang.org.

112

https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://source.android.com/devices/tech/dalvik/index.html
https://source.android.com/devices/tech/dalvik/index.html
http://www.grammatech.com/products/codesurfer
http://halide-lang.org
http://halide-lang.org

[HAP+05] M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and K. Bernstein. Scaling,
power, and the future of CMOS. In IEEE International Electron Devices Meeting
(IEDM), pages 7–15, Dec 2005.

[Har12] Nikos Hardavellas. The rise and fall of dark silicon. USENIX ;login:, 37:7–17,
April 2012.

[HBD+14] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy
Cohen, Steven Bell, Artem Vasilyev, Mark Horowitz, and Pat Hanrahan. Dark-
room: Compiling high-level image processing code into hardware pipelines. ACM
Trans. Graph., 33(4), 2014.

[HFFA11] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward dark silicon in
servers. IEEE Micro, 31(4):6–15, July 2011.

[HJ19] M. Hill and V. Janapa Reddi. Gables: A roofline model for mobile SoCs. In
2019 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 317–330, Feb 2019.

[HJN+19] S. Hussain, M. Javaheripi, P. Neekhara, R. Kastner, and F. Koushanfar. FastWave:
Accelerating autoregressive convolutional neural networks on FPGA. In 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
1–8, Nov 2019.

[HLM+16] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally.
EIE: Efficient Inference Engine on compressed deep neural network. In 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA), pages 243–254, June 2016.

[HP17] John L. Hennessy and David A. Patterson. Computer Architecture, Sixth Edition:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 6th edition, 2017.

[HQW+10] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov,
Benjamin C. Lee, Stephen Richardson, Christos Kozyrakis, and Mark Horowitz.
Understanding sources of inefficiency in general-purpose chips. In 37th Annual
International Symposium on Computer Architecture (ISCA), pages 37–47, New
York, NY, USA, 2010. Association for Computing Machinery.

[HRSS11] W. Huang, K. Rajamani, M. R. Stan, and K. Skadron. Scaling with design
constraints: Predicting the future of big chips. IEEE Micro, 31(4):16–29, July
2011.

[HSG+16] Samuel W. Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew Adams, Jonathan T.
Barron, Florian Kainz, Jiawen Chen, and Marc Levoy. Burst photography for high
dynamic range and low-light imaging on mobile cameras. ACM Trans. Graph.,
35(6):192:1–192:12, November 2016.

113

[Hua19] Huawei. Huawei Kirin 990 series, rethink evolution. https://consumer.huawei.
com/en/campaign/kirin-990-series, 2019.

[ird17] International Roadmap for Devices and Systems. https://irds.ieee.org, 2017.

[IS19] Itay Inbar and Nir Shemy. The on-device machine learning behind Recorder. https:
//ai.googleblog.com/2019/12/the-on-device-machine-learning-behind.html, Dec
2019.

[itr09] International Technology Roadmap for Semiconductors. http://www.itrs2.net/
itrs-reports.html, 2009.

[Jia13] Fei Jia. The Arsenal tool chain for the GreenDroid mobile application processor.
Master’s thesis, University of California San Diego, 2013.

[JRR+18] Scott Johnson, Dominic Rizzo, Parthasarathy Ranganathan, Jon McCune, and
Richard Ho. Titan: enabling a transparent silicon root of trust for cloud. In IEEE
Hot Chips 30 Symposium (HCS), Aug 2018.

[JYP+17] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark, J. Coriell,
M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gul-
land, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz,
A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacK-
ean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni,
K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Stein-
berg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon. In-datacenter performance
analysis of a Tensor Processing Unit. In 44th Annual International Symposium on
Computer Architecture (ISCA), pages 1–12, June 2017.

[KAS+02] V. Kathail, S. Aditya, R. Schreiber, B. Ramakrishna Rau, D. C. Cronquist, and
M. Sivaraman. PICO: Automatically designing custom computers. Computer,
35(9):39–47, Sep. 2002.

[KFP+18] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Had-
jis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis,
and Kunle Olukotun. Spatial: A language and compiler for application acceler-
ators. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2018, pages 296–311, New York,
NY, USA, 2018. Association for Computing Machinery.

[KLG14] Sudipta Kundu, Sorin Lerner, and Rajesh K. Gupta. High-Level Verification:
Methods and Tools for Verification of System-Level Designs. Springer, New York,
2014.

114

https://consumer.huawei.com/en/campaign/kirin-990-series
https://consumer.huawei.com/en/campaign/kirin-990-series
https://irds.ieee.org
https://ai.googleblog.com/2019/12/the-on-device-machine-learning-behind.html
https://ai.googleblog.com/2019/12/the-on-device-machine-learning-behind.html
http://www.itrs2.net/itrs-reports.html
http://www.itrs2.net/itrs-reports.html

[KTMW03] J. S. Kim, M. B. Taylor, J. Miller, and D. Wentzlaff. Energy characterization
of a tiled architecture processor with on-chip networks. In Proceedings of the
International Symposium on Low Power Electronics and Design (ISLPED), pages
424–427, Aug 2003.

[LA04] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis transformation. In International Symposium on Code Generation and
Optimization (CGO), pages 75–86, March 2004.

[LHWB12] Michael J. Lyons, Mark Hempstead, Gu-Yeon Wei, and David Brooks. The
accelerator store: A shared memory framework for accelerator-based systems.
ACM Trans. Archit. Code Optim., 8(4), January 2012.

[LRY+16] A. Lotfi, A. Rahimi, A. Yazdanbakhsh, H. Esmaeilzadeh, and R. K. Gupta. Grater:
An approximation workflow for exploiting data-level parallelism in FPGA acceler-
ation. In 2016 Design, Automation Test in Europe Conference Exhibition (DATE),
pages 1279–1284, March 2016.

[Mar10] Jose E. Lugo Martinez. Strategies for sharing a floating point unit between SPEs.
Master’s thesis, University of California San Diego, 2010.

[MBR+14] D. Moloney, B. Barry, R. Richmond, F. Connor, C. Brick, and D. Donohoe.
Myriad 2: Eye of the computational vision storm. In 2014 IEEE Hot Chips 26
Symposium (HCS), pages 1–18, Aug 2014.

[MCC+06] Mahim Mishra, Timothy J. Callahan, Tiberiu Chelcea, Girish Venkataramani,
Seth C. Goldstein, and Mihai Budiu. Tartan: Evaluating spatial computation for
whole program execution. In Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASP-
LOS XII, pages 163–174, New York, NY, USA, 2006. Association for Computing
Machinery.

[Mer09] Rick Merritt. ARM CTO: power surge could create ‘dark silicon’. https://www.
eetimes.com/document.asp?doc id=1172049, Oct 2009.

[Mil16] Peyman Milanfar. Enhance! RAISR sharp images with machine learning. https://
ai.googleblog.com/2016/11/enhance-raisr-sharp-images-with-machine.html, Nov
2016.

[MIP] MIPI Alliance. MIPI Camera Serial Interface 2 (MIPI CSI-2). https://mipi.org/
specifications/csi-2.

[MKGT16] I. Magaki, M. Khazraee, L. V. Gutierrez, and M. B. Taylor. ASIC Clouds:
Specializing the datacenter. In 43rd Annual International Symposium on Computer
Architecture (ISCA), pages 178–190, June 2016.

115

https://www.eetimes.com/document.asp?doc_id=1172049
https://www.eetimes.com/document.asp?doc_id=1172049
https://ai.googleblog.com/2016/11/enhance-raisr-sharp-images-with-machine.html
https://ai.googleblog.com/2016/11/enhance-raisr-sharp-images-with-machine.html
https://mipi.org/specifications/csi-2
https://mipi.org/specifications/csi-2

[MLAK16] J. Matai, D. Lee, A. Althoff, and R. Kastner. Composable, parameterizable
templates for high-level synthesis. In 2016 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 744–749, March 2016.

[MMK+09] S. Mookerjea, D. Mohata, R. Krishnan, J. Singh, A. Vallett, A. Ali, T. Mayer,
V. Narayanan, D. Schlom, A. Liu, and S. Datta. Experimental demonstration
of 100nm channel length In0.53Ga0.47As-based vertical inter-band tunnel field
effect transistors (TFETs) for ultra low-power logic and SRAM applications. In
2009 IEEE International Electron Devices Meeting (IEDM), pages 1–3, Dec 2009.

[Moo65] Gordon E. Moore. Cramming more components onto integrated circuits. Elec-
tronics, 38(8), April 1965.

[NSP+16] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao,
S. Brown, F. Ferrandi, J. Anderson, and K. Bertels. A survey and evaluation of
FPGA high-level synthesis tools. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 35(10):1591–1604, Oct 2016.

[ope] OpenIMPACT. http://impact.crhc.illinois.edu.

[PCC+14] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck,
S. Heil, A. Hormati, J. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith,
J. Thong, P. Y. Xiao, and D. Burger. A reconfigurable fabric for accelerating large-
scale datacenter services. In 41st Annual International Symposium on Computer
Architecture (ISCA), pages 13–24, June 2014.

[PCD+01] D. Panigrahi, C. Chiasserini, S. Dey, R. Rao, A. Raghunathan, and K. Lahiri.
Battery life estimation of mobile embedded systems. In Fourteenth International
Conference on VLSI Design, pages 57–63, Jan 2001.

[PDS+13] N. Pinckney, R. G. Dreslinski, K. Sewell, D. Fick, T. Mudge, D. Sylvester, and
D. Blaauw. Limits of parallelism and boosting in dim silicon. IEEE Micro,
33(5):30–37, Sep. 2013.

[PFM+08] Hyunchul Park, Kevin Fan, Scott A. Mahlke, Taewook Oh, Heeseok Kim, and
Hong-seok Kim. Edge-centric modulo scheduling for coarse-grained reconfig-
urable architectures. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, PACT ’08, pages 166–176,
New York, NY, USA, 2008. ACM.

[PPM09] Yongjun Park, Hyunchul Park, and Scott Mahlke. CGRA Express: Accelerating
execution using dynamic operation fusion. In Proceedings of the 2009 Inter-
national Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, CASES ’09, pages 271–280, New York, NY, USA, 2009. Association for
Computing Machinery.

116

http://impact.crhc.illinois.edu

[PPM12] Y. Park, J. J. K. Park, and S. Mahlke. Efficient performance scaling of fu-
ture CGRAs for mobile applications. In International Conference on Field-
Programmable Technology, pages 335–342, Dec 2012.

[PRH+17] A. Pedram, S. Richardson, M. Horowitz, S. Galal, and S. Kvatinsky. Dark memory
and accelerator-rich system optimization in the dark silicon era. IEEE Design &
Test, 34(2):39–50, April 2017.

[PSD+12] N. Pinckney, K. Sewell, R. G. Dreslinski, D. Fick, T. Mudge, D. Sylvester, and
D. Blaauw. Assessing the performance limits of parallelized near-threshold
computing. In DAC Design Automation Conference 2012, pages 1143–1148, June
2012.

[PZK+17] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis, A. Pe-
dram, C. Kozyrakis, and K. Olukotun. Plasticine: A reconfigurable architecture
for parallel patterns. In 44th Annual International Symposium on Computer
Architecture (ISCA), pages 389–402, June 2017.

[Qua17] Qualcomm. Snapdragon 835 mobile platform. https://www.qualcomm.com/
products/snapdragon-835-mobile-platform, 2017.

[Qua19] Qualcomm. Snapdragon 855 mobile platform. https://www.qualcomm.com/
products/snapdragon-855-mobile-platform, 2019.

[Rak19] Brian Rakowski. Pixel 4 is here to help. https://blog.google/products/pixel/pixel-4,
Oct 2019.

[RES+13] A. Raghavan, L. Emurian, L. Shao, M. Papaefthymiou, K. P. Pipe, T. F. Wenisch,
and M. M. K. Martin. Utilizing dark silicon to save energy with computational
sprinting. IEEE Micro, 33(5):20–28, Sep. 2013.

[Rhe18] Injong Rhee. Bringing intelligence to the edge with Cloud IoT. https://www.blog.
google/products/google-cloud/bringing-intelligence-to-the-edge-with-cloud-iot,
Jul 2018.

[Ric11] Scott Ricketts. Efficient cache-coherent migration for heterogeneous coprocessors
in dark silicon limited technology. Master’s thesis, University of California San
Diego, 2011.

[RIM17] Y. Romano, J. Isidoro, and P. Milanfar. RAISR: Rapid and Accurate Image Super
Resolution. IEEE Transactions on Computational Imaging, 3(1):110–125, March
2017.

[RKBA+13] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. Halide: A language and compiler for optimiz-
ing parallelism, locality, and recomputation in image processing pipelines. In
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language

117

https://www.qualcomm.com/products/snapdragon-835-mobile-platform
https://www.qualcomm.com/products/snapdragon-835-mobile-platform
https://www.qualcomm.com/products/snapdragon-855-mobile-platform
https://www.qualcomm.com/products/snapdragon-855-mobile-platform
https://blog.google/products/pixel/pixel-4
https://www.blog.google/products/google-cloud/bringing-intelligence-to-the-edge-with-cloud-iot
https://www.blog.google/products/google-cloud/bringing-intelligence-to-the-edge-with-cloud-iot

Design and Implementation, PLDI ’13, pages 519–530, New York, NY, USA,
2013. ACM.

[RLC+12] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou, K. P. Pipe, T. F.
Wenisch, and M. M. K. Martin. Computational sprinting. In IEEE 18th Interna-
tional Symposium on High-Performance Computer Architecture (HPCA), pages
1–12, Feb 2012.

[RMGH+18] J. Redgrave, A. Meixner, N. Goulding-Hotta, A. Vasilyev, and O. Shacham. The
Pixel Visual Core: Google’s fully programmable image, vision and AI processor
for mobile devices. In IEEE Hot Chips 30 Symposium (HCS), Aug 2018.

[RNR+11] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weissmann. Power
management architecture of the 2nd generation Intel core microarchitecture, for-
merly codenamed Sandy Bridge. In IEEE Hot Chips 23 Symposium (HCS), Aug
2011.

[RWA+16] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernandez-
Lobato, G. Wei, and D. Brooks. Minerva: Enabling low-power, highly-accurate
deep neural network accelerators. In 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), pages 267–278, June 2016.

[RWZ88] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and
redundant computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’88, pages 12–27,
New York, NY, USA, 1988. ACM.

[RYK18] V. J. Reddi, H. Yoon, and A. Knies. Two billion devices and counting: An industry
perspective on the state of mobile computer architecture. IEEE Micro, 38(1):6–21,
January 2018.

[RYK19] Vijay Janapa Reddi, Hongil Yoon, and Allan Knies. Google’s ten commandments
for mobile computing. In Infrastructure and Methodology for SoC Performance
& Power Modeling Workshop, ASPLOS, April 2019.

[RZA+19] A. Rovinski, C. Zhao, K. Al-Hawaj, P. Gao, S. Xie, C. Torng, S. Davidson,
A. Amarnath, L. Vega, B. Veluri, A. Rao, T. Ajayi, J. Puscar, S. Dai, R. Zhao,
D. Richmond, Z. Zhang, I. Galton, C. Batten, M. B. Taylor, and R. G. Dreslinski.
Evaluating Celerity: A 16-nm 695 giga-RISC-V instructions/s manycore processor
with synthesizable PLL. IEEE Solid-State Circuits Letters, 2(12):289–292, Dec
2019.

[SAB+06] N. Singh, A. Agarwal, L.K. Bera, T.Y. Liow, R. Yang, S.C. Rustagi, C.H. Tung,
R. Kumar, G.Q. Lo, N. Balasubramanian, and D.-L. Kwong. High-performance
fully depleted silicon nanowire (diameter≤5 nm) gate-all-around CMOS devices.
IEEE Electron Device Letters, 27(5):383–386, May 2006.

118

[SAGH+11] J. Sampson, M. Arora, N. Goulding-Hotta, G. Venkatesh, J. Babb, V. Bhatt,
S. Swanson, and M. B. Taylor. An evaluation of selective depipelining for FPGA-
based energy-reducing irregular code coprocessors. In 2011 21st International
Conference on Field Programmable Logic and Applications, pages 24–29, Sept
2011.

[Sam19] Samsung. Exynos 9825 processor: Specs, features. https://www.samsung.com/
semiconductor/minisite/exynos/products/mobileprocessor/exynos-9825, 2019.

[SAR+00] R. Schreiber, S. Aditya, B. Ramakrishna Rau, V. Kathail, S. Mahlke, S. Abraham,
and G. Snider. High-level synthesis of nonprogrammable hardware accelerators.
In Proceedings of the IEEE International Conference on Application-Specific
Systems, Architectures, and Processors, pages 113–124, July 2000.

[SB15] Y. S. Shao and D. Brooks. Research Infrastructures for Hardware Accelerators.
Morgan & Claypool, 2015.

[SGK17] M. Samragh, M. Ghasemzadeh, and F. Koushanfar. Customizing neural networks
for efficient FPGA implementation. In 2017 IEEE 25th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pages
85–92, April 2017.

[Sha11] Ofer Shacham. Chip Multiprocessor Generator: Automatic Generation of Custom
and Heterogeneous Compute Platforms. PhD thesis, Stanford University, 2011.

[Sha18] Ofer Shacham. Use Pixel 2 for better photos in Instagram,
WhatsApp and Snapchat. https://www.blog.google/products/pixel/
use-pixel-2-better-photos-instagram-whatsapp-and-snapchat, Feb 2018.

[SKS+11] K. Swaminathan, E. Kultursay, V. Saripalli, V. Narayanan, M. Kandemir, and
S. Datta. Improving energy efficiency of multi-threaded applications using hetero-
geneous CMOS-TFET multicores. In IEEE/ACM International Symposium on
Low Power Electronics and Design, pages 247–252, Aug 2011.

[SKS+13] K. Swaminathan, E. Kultursay, V. Saripalli, V. Narayanan, M. T. Kandemir, and
S. Datta. Steep-slope devices: From dark to dim silicon. IEEE Micro, 33(5):50–59,
Sep. 2013.

[SLBL+14] M. Saint-Laurent, P. Bassett, K. Lin, Y. Wang, S. Le, X. Chen, M. Alradaideh,
T. Wernimont, K. Ayyar, D. Bui, D. Galbi, A. Lester, and W. Anderson. 10.1 A
28nm DSP powered by an on-chip LDO for high-performance and energy-efficient
mobile applications. In 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), pages 176–177, Feb 2014.

[SMSO03] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. WaveScalar. In Proceed-
ings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-36, pages 291–302, Dec 2003.

119

https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-9825
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-9825
https://www.blog.google/products/pixel/use-pixel-2-better-photos-instagram-whatsapp-and-snapchat
https://www.blog.google/products/pixel/use-pixel-2-better-photos-instagram-whatsapp-and-snapchat

[SNH+03] K. Sankaralingam, R. Nagarajan, Haiming Liu, Changkyu Kim, Jaehyuk Huh,
D. Burger, S. W. Keckler, and C. R. Moore. Exploiting ILP, TLP, and DLP with
the polymorphous TRIPS architecture. In 30th Annual International Symposium
on Computer Architecture (ISCA), pages 422–433, June 2003.

[SR17] Ofer Shacham and Masumi Reynders. Pixel Visual Core: image process-
ing and machine learning on Pixel 2. https://www.blog.google/products/pixel/
pixel-visual-core-image-processing-and-machine-learning-pixel-2, Oct 2017.

[SRWB14] Y. S. Shao, B. Reagen, G. Wei, and D. Brooks. Aladdin: A pre-RTL, power-
performance accelerator simulator enabling large design space exploration of
customized architectures. In 41st Annual International Symposium on Computer
Architecture (ISCA), pages 97–108, June 2014.

[SRWB15] Y. S. Shao, B. Reagen, G. Wei, and D. Brooks. The Aladdin approach to accelerator
design and modeling. IEEE Micro, 35(3):58–70, May 2015.

[SVGH+11] J. Sampson, G. Venkatesh, N. Goulding-Hotta, S. Garcia, S. Swanson, and M. B.
Taylor. Efficient complex operators for irregular codes. In IEEE 17th International
Symposium on High-Performance Computer Architecture (HPCA), pages 491–502,
Feb 2011.

[TAB+] Chinh Tran, Chijioke Anyanwu, Sanjai Balakrishnan, Anshul Bhargava, James
Jiang, and Radhika Thekkath. The MIPS32 24KE core family: High-performance
RISC cores with DSP enhancements. https://www.mips.com.

[Tay12] M. B. Taylor. Is dark silicon useful? Harnessing the four horsemen of the
coming dark silicon apocalypse. In Design Automation Conference (DAC), pages
1131–1136, June 2012.

[Tay13] M. B. Taylor. A landscape of the new dark silicon design regime. IEEE Micro,
33(5):8–19, Sep. 2013.

[TLM+04] Michael B. Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt, Ben
Greenwald, Henry Hoffmann, Paul Johnson, Jason Kim, James Psota, Arvind
Saraf, Nathan Shnidman, Volker Strumpen, Matt Frank, Saman Amarasinghe, and
Anant Agarwal. Evaluation of the Raw microprocessor: An exposed-wire-delay
architecture for ILP and streams. In 31st Annual International Symposium on
Computer Architecture (ISCA), pages 2–13, June 2004.

[TMAJ08] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and Norman P.
Jouppi. CACTI 5.1 Technical Report. https://www.hpl.hp.com/techreports/2008/
HPL-2008-20.pdf, 2008.

[TSMa] TSMC. TSMC 28nm Technology. https://www.tsmc.com/english/
dedicatedFoundry/technology/28nm.htm.

120

https://www.blog.google/products/pixel/pixel-visual-core-image-processing-and-machine-learning-pixel-2
https://www.blog.google/products/pixel/pixel-visual-core-image-processing-and-machine-learning-pixel-2
https://www.mips.com
https://www.hpl.hp.com/techreports/2008/HPL-2008-20.pdf
https://www.hpl.hp.com/techreports/2008/HPL-2008-20.pdf
https://www.tsmc.com/english/dedicatedFoundry/technology/28nm.htm
https://www.tsmc.com/english/dedicatedFoundry/technology/28nm.htm

[TSMb] TSMC. TSMC 45nm Technology. https://www.synopsys.com/dw/emllselector.
php?f=TSMC&n=45&s=wMoRVw.

[VBP+16] A. Vasilyev, N. Bhagdikar, A. Pedram, S. Richardson, S. Kvatinsky, and
M. Horowitz. Evaluating programmable architectures for imaging and vision
applications. In 2016 49th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 1–13, Oct 2016.

[VSG+10] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav
Bryksin, Jose Lugo-Martinez, Steven Swanson, and Michael Bedford Taylor. Con-
servation Cores: Reducing the energy of mature computations. In Proceedings of
the Fifteenth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XV, pages 205–218, New York, NY,
USA, 2010. ACM.

[VSGH+11] Ganesh Venkatesh, Jack Sampson, Nathan Goulding-Hotta, Sravanthi Kota
Venkata, Michael Bedford Taylor, and Steven Swanson. QsCores: Trading dark
silicon for scalable energy efficiency with quasi-specific cores. In Proceedings
of the 44th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-44, pages 163–174, New York, NY, USA, 2011. ACM.

[VSL08] F. Vahid, G. Stitt, and R. Lysecky. Warp processing: Dynamic translation of
binaries to FPGA circuits. Computer, 41(7):40–46, July 2008.

[WKMR01] A. Wang, E. Killian, D. Maydan, and C. Rowen. Hardware/software instruction
set configurability for system-on-chip processors. In Proceedings of the 38th
Design Automation Conference, pages 184–188, June 2001.

[WS13] L. Wang and K. Skadron. Implications of the power wall: Dim cores and reconfig-
urable logic. IEEE Micro, 33(5):40–48, Sep. 2013.

[WWP09] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An in-
sightful visual performance model for multicore architectures. Commun. ACM,
52(4):65–76, April 2009.

[Xin18] Xiaowen Xin. Titan M makes Pixel 3 our most secure phone yet. https://www.blog.
google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet, Oct
2018.

[YGBT09] S. Yehia, S. Girbal, H. Berry, and O. Temam. Reconciling specialization and
flexibility through compound circuits. In 2009 IEEE 15th International Symposium
on High Performance Computer Architecture, pages 277–288, Feb 2009.

[YHD+19] Lucie Yahiaoui, Jonathan Horgan, Brian Deegan, Senthil Yogamani, Ciaran
Hughes, and Patrick Denny. Overview and empirical analysis of ISP param-
eter tuning for visual perception in autonomous driving. Journal of Imaging,
5(10):78, 2019.

121

https://www.synopsys.com/dw/emllselector.php?f=TSMC&n=45&s=wMoRVw
https://www.synopsys.com/dw/emllselector.php?f=TSMC&n=45&s=wMoRVw
https://www.blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet
https://www.blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet

[YW18] Daniel Yang and Stacy Wegner. Samsung Galaxy S9 teardown. https://www.
techinsights.com/blog/samsung-galaxy-s9-teardown, Mar 2018.

[ZGHR+14] Qiaoshi Zheng, Nathan Goulding-Hotta, Scott Ricketts, Steven Swanson,
Michael Bedford Taylor, and Jack Sampson. Exploring energy scalability in
coprocessor-dominated architectures for dark silicon. ACM Trans. Embed. Com-
put. Syst., 13(4s):130:1–130:24, April 2014.

[ZLS+15] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.
Optimizing FPGA-based accelerator design for deep convolutional neural net-
works. In Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’15, pages 161–170, New York, NY,
USA, 2015. Association for Computing Machinery.

[ZSZ+17] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin, Mani
Srivastava, Rajesh Gupta, and Zhiru Zhang. Accelerating binarized convolutional
neural networks with software-programmable FPGAs. In Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
FPGA ’17, pages 15–24, New York, NY, USA, 2017. Association for Computing
Machinery.

122

https://www.techinsights.com/blog/samsung-galaxy-s9-teardown
https://www.techinsights.com/blog/samsung-galaxy-s9-teardown

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	The Rise of Dark Silicon
	The Utilization Wall
	CMOS Scaling Theory
	The End of Dennard Scaling
	The Utilization Wall

	Dark Silicon
	The Dark Silicon Problem
	Dark Silicon Solutions

	Specialization as a Candle in the Dark
	Benefits of Specialization
	Challenges of Specialization
	Predictions Come True: Industry Trends

	Summary

	Conservation Cores
	System Overview
	C-core Architecture
	Baseline C-core Architecture
	Improvements to C-cores

	Integration with CPU
	Shared L1 Data Cache
	Control Interface

	Programming and Execution Model
	Patching Support
	Toolchain for Automatic C-core Generation
	C-core Selection
	Compiler Toolchain
	C-core Simulation
	ASIC Synthesis
	Power Estimation

	Summary

	GreenDroid
	Application Processors
	Android's Suitability to C-cores
	GreenDroid Architecture
	System Architecture
	Tile Architecture

	Generating C-cores for Android
	Placed-and-Routed GreenDroid Tile
	GreenDroid in 28 nm: MiniDroid
	Chip Architecture
	Catalyst CAD Flow
	MiniDroid Physical Implementation

	Summary

	Image Processing Unit
	IPU Motivation
	Image Processing and Stencil Computations

	IPU Architecture
	Stencil Processor
	Line Buffer Pool
	Network-on-Chip
	I/O Block
	Scalability

	IPU Programming
	Halide Language
	Halide for IPU Programming
	Virtual Instruction Set (vISA)
	Physical Instruction Set (pISA)

	Execution Model
	PVC and IPU Runtime Boot Sequence
	PVC and IPU Runtime Job Execution Sequence

	Summary

	Pixel Visual Core
	Chip Architecture
	Image Processing Unit
	Control Processor
	Interconnect
	I/O Interfaces
	DRAM

	Physical Implementation
	Process Technology
	SoC Die
	System-in-Package

	Evaluation
	Maximum Performance
	HDR+ Benchmarks

	Summary

	Related Work
	Dark Silicon Research
	Mobile Phone/SoC Accelerators

	Synthesis and Conclusion
	Acronyms
	Bibliography

