
UNIVERSITY OF CALIFORNIA, SAN DIEGO

A Practical Oracle for Sequential Code Parallelization

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Saturnino Garcia, Jr.

Committee in charge:

Professor Michael Taylor, Chair
Professor Peter Asbeck
Professor Chung-Kuan Cheng
Professor Sorin Lerner
Professor Steven Swanson

2012

Copyright

Saturnino Garcia, Jr., 2012

All rights reserved.

The dissertation of Saturnino Garcia, Jr. is approved,

and it is acceptable in quality and form for publication

on microfilm and electronically:

Chair

University of California, San Diego

2012

iii

DEDICATION

To my wife, for her endless love and support.

iv

EPIGRAPH

The greatest obstacle to discovery is not ignorance–it is the illusion of knowledge.

—Daniel J. Boorstin

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . x

Acknowledgements . xi

Vita and Publications . xiv

Abstract of the Dissertation . xvi

Chapter 1 Introduction . 1
1.1 Taxonomy of Parallelization Tools 3

1.1.1 Overview of Parallelization Stages 4
1.1.2 Existing Parallelization Tools 5

1.2 A Practical Oracle for Parallelization 7
1.3 Thesis Organization . 9

Chapter 2 The Cost of Inefficient Parallelization 12
2.1 Example Parallelization Methodology 12
2.2 User Study . 14

2.2.1 Setup . 15
2.2.2 Benchmark Analysis 16
2.2.3 Impact on Program Speedup 18
2.2.4 Time Spent On Critical Regions 20
2.2.5 Threats to Validity 22
2.2.6 Conclusions . 23

Chapter 3 System Overview . 26
3.1 Usage Model . 26
3.2 System Architecture . 30
3.3 Limitations of Kremlin and other Dynamic Analyses . . . 33

vi

Chapter 4 Planning-Aware Parallelism Discovery 35
4.1 Requirements of Planning-Aware Discovery 35
4.2 Background: Critical Path Analysis 36
4.3 Hierarchical Critical Path Analysis 38

4.3.1 Defining a Region 39
4.3.2 Calculating Critical Path with Shadow Memory . 41
4.3.3 Introducing Hierarchy into Shadow Memory . . . 44
4.3.4 Summarizing Dynamic Regions 47

4.4 Identifying Local Parallelism 48
4.4.1 Initial Approach: Parallelism Charts 49
4.4.2 Self-Parallelism 51

4.5 Evaluation . 57

Chapter 5 From Parallelism to Parallelization Plan 62
5.1 Defining Parallelism Planning 62
5.2 Estimating Parallel Execution Time 64
5.3 Identifying Parallelism Types 66
5.4 Planner Personalities . 67

5.4.1 OpenMP Planning Personality 68
5.4.2 OpenCL Planning Personality 70
5.4.3 Cilk++ Planning Personality 72
5.4.4 Developing Additional Planner Personalities . . . 73

5.5 Experimental Evaluation 74
5.5.1 Methodology . 75
5.5.2 Comparing Plan Size 76
5.5.3 Performance Comparison 77
5.5.4 Effectiveness of Region Prioritization 79
5.5.5 Influences on Plan Size 80
5.5.6 Initial GPGPU Planning Results 81

Chapter 6 Improving Kremlin’s Practicality 85
6.1 Efficient Shadow Memory Organization 86
6.2 Static Partial Evaluation of CPA 91
6.3 Evaluation . 94

6.3.1 Shadow Memory Optimization 95
6.3.2 Static Partial Evaluation of CPA 98

Chapter 7 Related Work . 100
7.1 Parallelism Discovery . 100
7.2 Parallelism Planning . 102
7.3 Performance Prediction 103
7.4 Shadow Memory Design 105
7.5 Parallel Performance Debugging Tools 106

vii

Chapter 8 Summary . 108

Bibliography . 112

viii

LIST OF FIGURES

Figure 1.1: A Taxonomy of Parallelization Tools 4

Figure 2.1: Speedup vs. Time Graphs for All Users (sift) 20

Figure 3.1: Kremlin’s Usage Model . 27
Figure 3.2: Overview of the Kremlin System Architecture 30

Figure 4.1: Localizing Parallelism . 37
Figure 4.2: HCPA Hierarchical Region Model and Summarization 40
Figure 4.3: Traditional Shadow Memory Organization 41
Figure 4.4: Calculating Parallel Time with Shadow Memory 42
Figure 4.5: Shadow Memory and Region Hierarchy 44
Figure 4.6: Level-based Sharing of Shadow Memory Tags 46
Figure 4.7: Parallelism Chart for MPEG Encoder 50
Figure 4.8: Self-Parallelism Scenarios . 54
Figure 4.9: Self-Parallelism with Pipeline Parallelism 55
Figure 4.10: Uncovering Hidden Parallelism with Self-Parallelism 56
Figure 4.11: Classification of Regions Based on Total- and Self-Parallelism . 58
Figure 4.12: Percentage of Regions Parallelized as a Function of Parallelism

and Work . 59

Figure 5.1: Shortcomings of Greedy Planning 69
Figure 5.2: Evaluating the Performance of Kremlin-based Parallelization . . 77
Figure 5.3: Effectiveness of Region Prioritization 78
Figure 5.4: Effects of Factors on Plan Size 81

Figure 6.1: Efficient Shadow Memory Organization 87
Figure 6.2: Exploring Optimization Possibilities 91

ix

LIST OF TABLES

Table 1.1: Auto-Parallelization Performance 5

Table 2.1: Speedup and Recommendation Rank of Critical Regions 17
Table 2.2: Speedup Achieved and Time Spent 19
Table 2.3: Time Spent (%) Parallelizing Critical Regions 21

Table 4.1: Region Key for MPEG Encoder Benchmark 49

Table 5.1: Evaluating Plan Size . 76
Table 5.2: Marginal Benefit of Region Prioritization 80
Table 5.3: OpenCL Planning Results . 82

Table 6.1: Shadow Memory Overheads for HCPA 86
Table 6.2: Memory Usage with Optimized Shadow Memory 95
Table 6.3: Performance Impact of Optimized Shadow Memory 97
Table 6.4: Speedup From Static Partial Evaluation of CPA 98

x

ACKNOWLEDGEMENTS

This thesis would not have been possible if not for the support of a great

many people. My advisor, Michael Taylor, provided invaluable feedback on my

research and created an environment that allowed me to blossom as a researcher.

His advice allowed me to keep the proper perspective on research and life through

the inevitable ups and downs of my studies.

Others have also provided me great guidance–both formal and informal–

during my career. In particular, I would like to thank the following people for

their advisory roles: the members of my thesis committee; my former advisor,

Alex Orailoglu; and my undergraduate advisors at Drexel University, Moshe Kam

and Kapil Dandekar.

The work presented in this thesis was a close collaboration with several

highly talented individuals. I am especially thankful to my colleague and friend,

Donghwan Jeon, with whom I enjoyed many a delightful conversation. I would

also like to acknowledge the hard work and intelligence of Chris Louie, who I

was lucky enough to mentor over several years. Of course, I would be remiss if I

did not acknowledge the valuable feedback received from my current and former

officemates as well as the members of the architecture and programming systems

groups here at UCSD.

Finally, I offer my heartfelt thanks to my family for their unwavering belief

in me. Throughout my life they have always encouraged and supported me while

I have pursued my dreams, however crazy they may have seemed.

Chapters 1, 2, 3, 4, 5, and 7 contain material from “Kremlin: Rethinking

and Rebooting gprof for the Multicore Age”, by Saturnino Garcia, Donghwan Jeon,

Chris Louie, and Michael Bedford Taylor, which appears in PLDI ’11: Proceedings

of the 32nd ACM SIGPLAN conference on Programming language design and im-

plementation. The dissertation author was the primary investigator and author of

this paper. The material in these chapters is copyright c©2011 by the Association

for Computing Machinery, Inc.(ACM). Permission to make digital or hard copies of

part or all of this work for personal or classroom use is granted without fee provided

that the copies are not made or distributed for profit or commercial advantage and

xi

that copies bear this notice and the full citation on the first page in print or the

first screen in digital media. Copyrights for components of this work owned by

others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept.,

ACM, Inc., fax +1 (212) 869-0481, or email permissions@acm.org.

Chapters 4, 5, and 7 contain material from “Kismet: parallel speedup es-

timates for serial programs”, by Donghwan Jeon, Saturnino Garcia, Chris Louie,

and Michael Bedford Taylor, which appears in OOPSLA ’11: Proceedings of the

2011 ACM international conference on Object oriented programming systems lan-

guages and applications. The dissertation author was the secondary investigator

and author of this paper. The material in these chapters is copyright c©2011 by

the Association for Computing Machinery, Inc.(ACM). Permission to make digital

or hard copies of part or all of this work for personal or classroom use is granted

without fee provided that the copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full citation on

the first page in print or the first screen in digital media. Copyrights for com-

ponents of this work owned by others than ACM must be honored. Abstracting

with credit is permitted. To copy otherwise, to republish, to post on servers, or

to redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or email

permissions@acm.org.

Chapters 4 and 5 contain material from “The Kremlin Oracle for Sequen-

tial Code Parallelization”, by Saturnino Garcia, Donghwan Jeon, Chris Louie, and

Michael Bedford Taylor, which is set to appear in IEEE Micro. The dissertation

author was the primary investigator and author of this paper. The material in this

chapter is copyright c©2012 by the Institute of Electrical and Electronics Engineers

(IEEE). Personal use of this material is permitted. Permission from IEEE must

be obtained for all other uses, in any current or future media, including reprint-

ing/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

xii

copyrighted component of this work in other works.

Chapter 4 contains material from “Bridging the Parallelization Gap: Au-

tomating Parallelism Discovery and Planning”, by Saturnino Garcia, Donghwan

Jeon, Chris Louie, Srivanthi Kota-Venkata, and Michael Bedford Taylor, which

appears in USENIX Workshop on Hot Topics in Parallelism (HotPar), 2010. The

dissertation author was the primary investigator and author of this paper.

xiii

VITA

2005 B. S. in Computer Engineering
Drexel University
Philadelphia, Pennsylvania

2005-2012 Graduate Research Assistant
University of California, San Diego

2006-2008,2011 Teaching Assistant
University of California, San Diego

2007 M. S. in Computer Science
University of California, San Diego

2011 Instructor
University of California, San Diego

2011-2012 Master Teaching Assistant
University of California, San Diego

2012 Ph. D. in Computer Science
University of California, San Diego

PUBLICATIONS

Saturnino Garcia, Donghwan Jeon, Chris Louie, Michael Bedford Taylor, “The
Kremlin Oracle for Sequential Code Parallelization”, IEEE Micro, To appear.

Donghwan Jeon, Saturnino Garcia, Chris Louie, Michael Bedford Taylor, “Kismet:
Parallel Speedup Estimates for Serial Programs”, Proceedings of ACM Conference
on Object Oriented Programming Systems Languages and Applications (OOPSLA),
October 2011.

Saturnino Garcia, Donghwan Jeon, Chris Louie, Michael Bedford Taylor, “Krem-
lin: Rethinking and Rebooting gprof for the Multicore Age”, Proceedings of ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), June 2011.

Donghwan Jeon, Saturnino Garcia, Chris Louie, Michael Bedford Taylor, “Park-
our: Parallel Speedup Estimates for Serial Programs”, USENIX Workshop on Hot
Topics in Parallelism (HotPar), May 2011.

xiv

Nathan Goulding, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia, Joe Aur-
ricchio, Po-Chao Huang, Manish Arora, Siddharth Nath, Vikram Bhatt, Jonathan
Babb, Steven Swanson, Michael Bedford Taylor, “The GreenDroid mobile applica-
tion processor: An architecture for silicons dark future”, IEEE Micro, March/April
2011.

Saturnino Garcia, Donghwan Jeon, Chris Louie, Sravanthi Kota Venkata, Michael
Bedford Taylor, “Kremlin: Like gprof but for Parallelization”, Proceedings of ACM
Symposium on Principles and Practice of Parallel Programming (PPoPP), Febru-
ary 2011.

Jack Sampson, Ganesh Venkatesh, Nathan Goulding, Saturnino Garcia, Steven
Swanson, Michael Bedford Taylor, “Efficient complex operators for irregular code”,
Proceedings of the International Symposium on High-Performance Computer Ar-
chitecture (HPCA), February 2011.

Saturnino Garcia, Donghwan Jeon, Chris Louie, Sravanthi Kota Venkata, Michael
Bedford Taylor, “Bridging the Parallelization Gap: Automating Parallelism Dis-
covery and Planning”, USENIX Workshop on Hot Topics in Parallelism (HotPar),
June 2010.

Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav
Bryksin, Jose Lugo-Martinez, Steven Swanson, Michael Bedford Taylor, “Con-
servation Cores: Reducing the Energy of Mature Computations”, Proceedings of
the Fifteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), March 2010.

Sravanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta, Chris
Louie, Saturnino Garcia, Serge Belongie, Michael Bedford Taylor, “SD-VBS: The
San Diego Vision Benchmark Suite”, Proceedings of IEEE International Sympo-
sium on Workload Characteristics (IISWC) October 2009.

Saturnino Garcia, Alex Orailoglu, “Making DNA Self-Assembly Error Proof: At-
taining Small Growth Error Rates Through Embedded Information Redundancy”,
Proceedings of Design, Automation, and Test in Europe Conference & Exhibition
(DATE), April 2009.

Saturnino Garcia, Alex Orailoglu, “Online Test and Fault-Tolerance for Nanoelec-
tronic Programmable Logic Arrays”, Proceedings of the International Symposium
on Nanoelectronic Architectures (NANOARCH), June 2008.

Gustave Anderson, Leonardo Urbano, Gaurav Naik, David Dorsey, Andrew
Mroczkowski, Donovan Artz, Nicholas Morizio, Andrew Burnheimer, Kris Malfet-
tone, Dan Lapadat, Evan Sultanik, Saturnino Garcia, Max Peysakhov, William
Regli, Moshe Kam, “A Secure Wireless Agent-based Testbed”, Proceedings of IEEE
International Information Assurance Workshop (IWIA), April 2004.

xv

ABSTRACT OF THE DISSERTATION

A Practical Oracle for Sequential Code Parallelization

by

Saturnino Garcia, Jr.

Doctor of Philosophy in Computer Science

University of California, San Diego, 2012

Professor Michael Taylor, Chair

With the relatively recent switch from single- to multi-core processors, par-

allelism now plays a much larger role in maximizing program performance. This

switch calls for converting the existing serial implementations of programs into

parallel implementations in order to ensure scalable performance on future gener-

ations of processors. While automated tools to perform this conversion have been

developed, the resulting performance often significantly lags behind that of manu-

ally parallelized code. This gap in performance has led researchers to develop tools

that ease the manual parallelization process. These tools have greatly simplified

the later stages of parallelization, but they provide no assistance with one of the

primary questions faced by programmers: “Which parts of this program should I

spend time parallelizing?”.

In this dissertation we examine the design and implementation of Kremlin, a

practical oracle for the parallelization of sequential programs. Kremlin predicts the

outcomes of parallelization in order to guide the programmer towards regions of the

program that will be most fruitful for parallelization. Kremlin accomplishes this

task by extending a classic technique, critical path analysis, to make it practical for

xvi

two often-overlooked phases of parallelization: parallelism discovery and planning.

This oracle requires only unmodified serial source code, a representative set of

inputs, and simple system parameters such as the number of cores to produce a

parallelization plan that prioritizes regions by their potential parallel speedup. Our

results highlight Kremlin’s utility as a practical oracle: parallelization guided by

Kremlin results in fewer program regions being parallelized (1.57×, on average) in

order to achieve peak parallel performance.

xvii

Chapter 1

Introduction

The emergence of multi-core processors over the past decade has been a

disruptive force in software engineering. For a half century before the switch to

multi-core, software engineers benefited from a stable hardware interface that pre-

sented the abstraction of a single processing core. The single-core abstraction was

not the only abstraction available to programmers but it has been the dominant

one; abstractions for multiprocessors (e.g. simultaneous multiprocessing) have a

long history but were largely ignored by mainstream software engineers as multi-

processor systems have until recently been the exception rather than the rule.

The abstraction of a single core processor hid many of the changes made to

computer architecture during this time. This has allowed software engineers to see

exponential increases in the performance of their programs as new processors were

developed–all without any changes to their code. While multi-core processors

support the single-core abstraction, the free lunch appears to be over: software

engineers can continue to write code as they always did but the performance of this

code will no longer see exponential improvements from generation to generation.

Much of the performance available in multi-core processors is tied to the

abundance of available hardware parallelism. Computer architects continue to

look for ways to use this hardware parallelism to benefit single-thread programs

[KST10, KLW+04, TT11], but unlocking the full potential of hardware parallelism

will require the use of software parallelism.

Software parallelism comes in many forms, both within a program and

1

2

across multiple programs. Parallelism across programs requires little from pro-

grammers but is limited in its utility: in many contexts the number of concurrent,

active programs is limited, placing an upper bound on the number of cores that are

useful. This type of parallelism also does not provide scalable performance, only

attempting to minimize the performance degradation that occurs when multiple

programs are concurrently executing. Far more important for scalable performance

is the other type of parallelism, that which comes from within the program itself.

Parallel programming has a rich history, but the scarcity of multiproces-

sor systems has limited parallel programming to a small number of domains, e.g.

scientific computing. Parallel programming has gained a reputation as being ex-

tremely difficult, which is understandable given the difficulties humans have with

thinking about multiple concurrent events: humans are notoriously poor multi-

taskers. Parallel programming requires a unique set of skills, which a vast majority

of programmers have largely ignored as decades of exponential improvements in

single-threaded performance have minimized their importance. The rise of multi-

core processors has changed this equation, forcing mainstream programmers to

question how to exploit the parallelism that may be present in their existing serial

programs.

Automatic parallelizing compilers such as Polaris [BDE+02],

SUIF [HAA+96], and RawCC [LBF+98] offer a fully automated approach to pro-

gram parallelization. These approaches are obviously desirable for software engi-

neers but the performance of the code they generate often pales in comparison to

the code generated by a skilled human. These fully automated tools are hampered

by the ambiguity that arises from a lack of semantic information during static

analysis. This lack of information forces these compilers to be conservative in or-

der to maintain program correctness. Researchers have looked at the possibility

of allowing the programmers to annotate programs with semantic information but

these approaches include a large, possibly non-trivial manual component and have

not seen widespread adoption by software engineers.

Programmers who wish to obtain maximum parallel performance have little

recourse other than manual parallelization. With this situation in mind there has

3

been a push to develop tools to aid in manual parallelization. One area that has

seen notable success is this regard is the development of language extensions or

parallel libraries. OpenMP [DM98] and Cilk++ [Lei09] are two examples. Both of

these language additions make it trivial to express parallelism in many instances,

requiring the addition of only a single line of code in some cases. These approaches

have the potential to increase programmer productivity when moving from earlier,

low-level approaches such as pthreads in much the same way that moving from

assembly languages to high-level programming languages increased productivity in

the 1950’s and 60’s.

Researchers have also developed tools to help the parallel programmer de-

bug both the correctness and performance [TMC09, HLL10, AL90] of their parallel

programs. While all of these tools are of assistance to software engineers, they do

not form a complete picture of the parallelization process. These tools rely on the

basic assumption that programmers have knowledge of which parts of the program

have parallelism and should be parallelized. These are non-trivial tasks, even for

moderately-sized software projects. What are needed are tools to help the pro-

grammer with these critical but often overlooked aspects of parallelization.

In the following section, we will discuss a taxonomy of parallelization tools

that we developed to illuminate the end-to-end parallelization process and to iden-

tify weaknesses in the existing set of tools. The insights gained from creating this

taxonomy led us to the creation of Kremlin, a practical oracle for the parallel-

ization of sequential programs. This oracle predicts the outcome of parallelization,

providing guidance to the programmer during the initial phases of parallelization.

1.1 Taxonomy of Parallelization Tools

Figure 1.1 presents our taxonomy for parallelization tools. This taxonomy

contains five basic phases that are needed to convert the serial implementation of

a program into a parallel implementation.

4

1

2

3

4

5

Discovery

Planning

Enabling

Transforms

Code

Generation

Runtime

Management

Kremlin

OpenMP,

Cilk++,

etc.

SUIF,

Polaris,

RawCC,

etc.

Figure 1.1: A Taxonomy of Parallelization Tools. The taxonomy catego-
rizes parallelization tools based on which of five fundamental parallelization stages
they assist with. Automatic parallelizing compilers like Polaris [BDE+02] and
SUIF [HAA+96] attempt to perform all five without programmer assistance, while
tools like OpenMP, Cilk++ [Lei09], and X10 [SSvP07] focus on the last two. We
have developed Kremlin, a tool that focus on the first two stages.

1.1.1 Overview of Parallelization Stages

Parallelization starts with Parallelism Discovery where the program is in-

spected to determine which of its regions contains parallelism. Parallelism comes

in many forms, not all of which will be exploitable on any given system. This stage

must therefore also be capable of distinguishing between different types of paral-

lelism so as to give a more accurate picture of the program’s potential. The second

stage is that of Parallelism Planning, which is where decisions must be made re-

garding which regions of the program should be parallelized. Planning for an ideal

system is trivial: simply parallelize every region that has parallelism, prioritizing

those regions with a combination of high coverage and high parallelism. Planning

for real systems is unfortunately non-trivial. The planner must account for the

exploitability of specific types of parallelism, limitations on the amount of parallel

resources available, and overhead introduced from parallelization. The third stage

5

Table 1.1: Auto-Parallelization Performance. For the Rodinia [CBM+09]
benchmark suite, Intel’s icc compiler successfully auto-parallelized only 17% of the
program regions that were parallelized by humans despite the relative simplicity of
the benchmarks. Further analysis revealed that over half of the regions were not
auto-parallelized because of dependencies that could not be resolved statically, a
key limitation of parallelizing compilers.

Benchmark
Parallelized
(Human)

Parallelized
(icc)

Success Rate
(icc)

backprop 2 0 0%
bfs 2 0 0%
heartwall 1 0 0%
hotspot 2 1 50%
kmeans 1 0 0%
lavaMD 1 0 0%
lud 2 0 0%
nn 1 0 0%
nw 2 0 0%
pathfinder 1 0 0%
particlefilter 10 2 20%
srad 2 2 100%
streamcluster 2 0 0%
Total 29 5 17%

in our taxonomy is Enabling Transforms. This stage involves transforming the

program to exploit the parallelism that was detected in the first stage. The trans-

forms required here vary widely in their complexity; the simplest cases require only

privatizing some variable or arrays while more complex cases may require intricate

transformations such as loop skewing and interchange. The final two stages of

parallelization, Code Generation and Runtime Management, deal with generating

parallel code and providing the runtime environment in which the parallelism is

exploited with minimal overhead.

1.1.2 Existing Parallelization Tools

Fully Automated Tools As shown in Figure 1.1, automatic parallelizing com-

pilers such as Polaris [BDE+02], SUIF [HAA+96], and RawCC [LBF+98] attempt

6

to automate all stages of our taxonomy. This approach eliminates the need for

programmers to modify their programs, but it often results in performance that

pales in comparison to manual approaches.

Parallelizing compilers have the onus of ensuring correctness so they must

prove the safety of any transforms they perform, mainly using only static program

analysis. Proving correctness is not possible in many cases without the benefit

of additional runtime or semantic information to resolve ambiguities. Table 1.1

demonstrates the difficulty a state-of-the-art parallelizing compiler, icc, has in

proving the safety of even simple transformations. icc could parallelize only 17%

of the regions that were manually parallelized despite all required program trans-

formations having already been manually performed. Our analysis revealed that

over 50% of the regions failed to be parallelized because icc could not statically

resolve potential dependencies. Tournavitis et al [TWFO09] also demonstrated

the poor performance of icc on the generally high-parallelism benchmarks in

NPB [BBB+91].

Programmer-Oriented Tools The often lackluster performance of these com-

pletely automated approaches has given rise to an alternative approach, one cen-

tered around providing automated tools focusing on specific parts of the taxonomy.

As previously mentioned, tools such as OpenMP, Cilk++ [Lei09], X10 [SSvP07],

and Fast Track [KBDZ09] have greatly eased the process of indicating parallel re-

gions of the code. These tools correspond to the final two stages of our taxonomy.

Researchers have spent considerably less time on tools for the first three stages.

While some tools have been developed for automating the enabling transforms

stage [DME09, WST09], this stage is the most difficult and benefits most from

manual intervention. It is therefore of little surprise that few tools have been de-

veloped for this stage; what is surprising is the lack of tools for the first two stages,

discovery and planning.

Existing tools for parallelism discovery tend to rely either on critical path

analysis (CPA) [Kum88, HSHZ09, RVVYS10] or on dependence testing [Lar93,

ZNJ09, KKL10], both of which are poorly suited as precursors for parallelism plan-

ning. CPA is useful for quantifying the amount of parallelism within a program but

7

is overly optimistic, leading to inaccurate estimates of the potential speedup from

parallelization. CPA also looks only at the program as a whole, severely limiting

its utility in quantifying the impact of parallelizing only parts of the program. De-

pendence testing reports which regions can be executed concurrently but is closely

tied to program structure, leading latent parallelism to go unreported. Dependence

testing also does not quantify parallelism, making it difficult to estimate parallel

speedup in all but the most trivial cases.

Parallelism planning has largely been overlooked by the research commu-

nity. While automatic parallelizing compilers implicitly do planning, their plan-

ning algorithms are generally not applicable to programmer-oriented planning. As

previously discussed, planning is a non-trivial task that must take into account

many complex, interacting factors. Without automated tools for this task, pro-

grammers are often forced into an ad hoc planning methodology that reduces their

productivity and can lead to suboptimal parallel performance.

1.2 A Practical Oracle for Parallelization

Software engineers must confront the following question at the very begin-

ning of parallelization: “What parts of the program should I spend time paralleliz-

ing?”. Answering this question manually often requires years of parallel program-

ming experience in addition to a detailed understanding of the program’s code

structure and dependencies. Neither of these are easy to come by so programmers

are forced to consult one or more tools for guidance.

Programmers attempt to act as seers, interpreting the results of existing

tools to determine a plan for parallelization. Unfortunately, these tools offer mostly

vague or misleading guidance. The confusing nature of these tools’ results springs

from a number of sources. First, these tools may have incomplete knowledge of

parallelization. For example, programmers often repurpose serial profilers (e.g

gprof) for parallelization planning, despite the fact that high coverage does not

correlate with high parallelism. Second, these tools may guide programmers down

dead-end paths or fail to alert them of important opportunities. For example, pro-

8

grammers consulting critical path analysis (CPA) or dependence testing tools are

likely to waste time on serial regions or to ignore parallel regions masked by serial

implementations. Finally, these tools may lack sufficient foresight. For example,

tools that rely on greedy algorithms to select regions to parallelize may suggest a

parallelization whose benefit is later negated by another suggested parallelization.

Instead of forcing programmers to act as seers, we should aim to provide

them with a tool that acts as a parallelization oracle. We have designed Kremlin

to meet this goal, and act as a practical oracle for parallelization of sequential pro-

grams. As a parallelization oracle Kremlin predicts the extraordinarily complex

outcomes of parallelization with uncanny precision, offering its users an ordered

parallelization plan to guide them through the regions of the program they should

parallelize. Unlike other tools, Kremlin is a practical tool for parallelization: Krem-

lin makes its predictions using only serial source code, a sample input, and a simple

description of the target platform.

Kremlin builds upon critical path analysis, but introduces several novel

techniques to make CPA suitable as a basis for a practical oracle: a new type of

dynamic program analysis called hierarchical critical path analysis (HCPA); the

concept of self-parallelism; a lightweight method for approximating self-parallelism;

and the concept of a planning personality that tailors a parallelization plan to a

specific target system. These contributions will be discussed in detail throughout

the rest of this dissertation.

Kremlin has shown to be effective at reducing the number of program re-

gions that need to be parallelized, with its recommendations leading to an average

1.57× fewer parallelized regions when compared to an expert, third-party imple-

mentation. This reduction in regions comes with little-to-no impact on perfor-

mance compared to the third-party implementation, and in several cases greatly

exceeds third-party performance. Results also show that Kremlin accurately orders

region recommendations, with an average of 86.4% of the total parallel speedup

available after completing only the first half of recommendations.

9

1.3 Thesis Organization

The rest of this thesis will have the following organization. In Chapter 2 we

will examine the ineffective parallelization methodology that many programmers

employ today. This chapter will also present the results of a user study that we

performed to quantify the cost of inefficient parallelism planning. This user study

used an early prototype of Kremlin; we will discuss how the results of this study

helped shape the direction of Kremlin as a practical oracle.

In Chapter 3 we will look at Kremlin’s usage model and present a high-level

system overview. This overview will tie together Kremlin’s individual components,

which will be described in further detail in the subsequent chapters.

Chapter 4 presents the techniques we developed for planning-aware par-

allelism discovery. This chapter will first provide background on critical path

analysis (CPA), a classic technique for quantifying the amount of parallelism in

a program. We will then look at extending CPA to make it useful as part of

a practical oracle, culminating with two novel contributions: hierarchical critical

path analysis (HCPA) and self-parallelism. HCPA enables analysis of individual

regions of a program (e.g. functions and loops), analyzing all regions in only a

single pass. Self-parallelism is a new metric that quantifies the amount of par-

allelism in a program region, excluding the parallelism that comes from regions

nested below it. HCPA allows Kremlin to closely approximate self-parallelism

without the intractable requirement to store the complete program dependency

graph. The results section in this chapter will look at well self-parallelism filters

serial regions that would otherwise be considered parallel. We will also look at how

well self-parallelism correlates with the regions of a program that were parallelized

by third-party experts, showing that self-parallelism matches well with a “ground

truth” for parallelizability.

Chapter 5 describes how we can transition from parallelism discovery to

parallelism planning. This chapter will begin by describing the problem of paral-

lelism planning both formally and informally. Discussion will then move to two

critical components in predicting the result of parallelization: determining which

regions contain exploitable types of parallelism and estimating the time of regions

10

after parallelization. We will then examine how system-specific constraints can

be accounted for during planning by introducing the concept of a planning per-

sonality. Our discussion will include several proposed planning personalities and

the process of developing additional personalities. Results in this chapter will

show the effectiveness of Kremlin as a practical oracle. We will look at Kremlin’s

ability to reduce the number of regions and how that affects the speedup from

parallelization. We will also examine Kremlin’s ability to accurately prioritize its

recommendation, specifically focusing on how much speedup is attainable after

implementing a limited percentage of Kremlin’s recommendations.

One of Kremlin’s main contributions, HCPA, builds upon CPA and is simi-

larly a heavyweight dynamic analysis. This heavyweight nature imposes challenges

to the practicality of Kremlin on many systems: high runtime overhead and/or

memory overhead could limit Kremlin’s utility on all but the highest-end systems.

Chapter 6 will look at two separate approaches to limiting both of these types of

overhead in HCPA. The first techniques is a novel shadow memory architecture

that makes the common case fast and the uncommon cases space-efficient. The sec-

ond technique utilizes static program analysis to partially evaluate critical paths.

Results in this chapter show that the first technique reduces memory overhead

–while not greatly increasing runtime overhead– to the point where even standard

laptops can evaluate programs using sizable inputs. Results also show that the

second technique can significantly reduce the runtime overhead while leaving the

memory overhead unchanged.

We will discuss related work in Chapter 7 before summarizing our findings

and offering concluding remarks in Chapter 8.

Acknowledgments

Portions of this research were funded by the US National Science Foun-

dation under CAREER Award 0846152, by NSF Awards 0725357, 0846152, and

1018850, and by a gift from Advanced Micro Devices.

This chapter contain materials from “Kremlin: Rethinking and Rebooting

11

gprof for the Multicore Age”, by Saturnino Garcia, Donghwan Jeon, Chris Louie,

and Michael Bedford Taylor, which appears in PLDI ’11: Proceedings of the 32nd

ACM SIGPLAN conference on Programming language design and implementation.

The dissertation author was the primary investigator and author of this paper.

This material is copyright c©2011 by the Association for Computing Machinery,

Inc.(ACM). Permission to make digital or hard copies of part or all of this work

for personal or classroom use is granted without fee provided that the copies are

not made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page in print or the first screen in

digital media. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

to republish, to post on servers, or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Publications Dept., ACM, Inc.,

fax +1 (212) 869-0481, or email permissions@acm.org.

Chapter 2

The Cost of Inefficient

Parallelization

Our introduction described how the process of parallelization was hindered

by a lack of tools for several important stages of parallelization, namely parallelism

discovery and parallelism planning. In this chapter we will take a look at how the

parallelization methodology currently used by many programmers leads is highly

inefficient and can lead to poor parallel performance. We will also look at a user

study we performed after having developed an early prototype of Kremlin. This

user study helped us quantify the impact of inefficient parallelization methodology

and provided insight for Kremlin’s later designs.

2.1 Example Parallelization Methodology

Despite recent research into parallel programming tools, many programmers

still rely on a relatively painful methodology that employs serial profiling tools such

as gprof in order to direct their parallelization activities. The process starts with

a serial hotspot list, which ranks regions by the amount of time spent inside them.

This list effectively becomes the order that they examine the functions to improve

their performance.

It is at this point that the process gets especially onerous. The programmer

starts leafing through the code trying to puzzle through the dependencies in the

12

13

code, and the granularity at which to try to exploit it. Since the programmer

has no indication of whether a hotspot is parallelizable, they frequently give up

before they are able to recognize subtle but large parallelism opportunities, or

they spend excessive amounts of time fruitlessly modifying serial parts of the code.

Alternatively, even if parallelism does exist, it may not be large enough to yield

speedup, or when combined with lower coverage, the overall speedup may not

justify the effort. Finally, interference between nested parallel regions may prevent

speedup.

We examined the feature tracking benchmark from the San Diego Vision

Benchmark Suite (SD-VBS) [KVAJ+09] to illustrate the shortcomings of this

coverage-based approach to parallelizing programs. The programmer is typically

interested in exploiting either loop-based parallelism (e.g. with OpenMP) or task-

based parallelism (e.g. with Cilk++). These types of parallelism require examining

the loops and functions in a program so we profiled feature tracking to determine

the work coverage of its loops and functions. The resulting profile data was then

used to sort the loops and functions from largest to smallest coverage.

To demonstrate the lack of correlation between coverage and parallelizabil-

ity, we manually analyzed the top 20 hotspots in feature tracking to determine

which of them could be parallelized. Of these top 20 regions, over 50% were either

serial (3 functions, 3 loops), contained very limited parallelism (4 functions), or

required significant program restructuring to exploit the available parallelism (1

loop). The remaining regions (9 loops) were easily parallelizable, requiring only

minor code transformations such as privatization.

Our analysis suggests that relying on gprof or similar profiling tools will

lead to less than optimal results. The programmer would be required to analyze a

large number of regions that are not parallelizable. This inefficiency results from

favoring execution coverage over the other factor in parallelizability: the amount

of parallelism available.

While useful, tools that quantify parallelism are alone not quite enough.

Rather, parallelization also requires planning tools that help process this informa-

tion and apply both parallel programming system and machine constraints. With

14

the ability to positively identify the existence of parallelism, and also to priori-

tize regions, users can invest their time more productively, attacking the correct

portions of the program.

2.2 User Study

Our own experience with parallelization led us to conclude that current

parallelization methodologies–like the one described earlier–are inefficient and can

result in poor parallel implementations. This qualitative assessment led us to

create an early version of Kremlin that used critical path analysis to quantify the

parallelism in every function and loop in the program. This parallelism info was

then used to roughly estimate the ideal performance of parallelizing a function or

loop and was therefore subsequently used for rudimentary parallelism planning.

We used this early version of Kremlin in a user study that was designed to

quantify the impact of parallelism discovery and planning on the parallelization

process1. More specifically, the user study was designed to answer the following

two research questions:

1. Would Kremlin users be able to achieve significant speedups sooner than the

non-Kremlin users?

2. Would Kremlin users spend more time focusing on regions with the largest

potential speedup than non-Kremlin users?

In order to answer these questions, we set out to measure both the order in

which the participants attempted parallelization and the outcome of their efforts.

User study participants included seven graduate students in a parallel architecture

course at the University of California, San Diego.

1This user study was approved by the UC San Diego Institutional Review Board, Project
#100056.

15

2.2.1 Setup

The user study was spread over three class assignments, with each assign-

ment asking them to parallelize one benchmark from SD-VBS using Cilk++. Users

were given access to a supercomputing cluster at the San Diego Supercomputer

Center where they would have access to AMD computing nodes with up to 32

cores. To ensure a uniform work environment, they were provided with a Makefile

system with a small number of commands to control compilation, execution, and

debugging of their parallel programs. The result of all commands were logged so

that we could accurately retrace the steps they took. After each run of their pro-

gram, a snapshot of their code was saved so that we could recreate the changes

they made as they worked on the assignments.

Both of our research questions relied on knowledge of the time spent on

various tasks; accurate accounting of time was therefore of the utmost importance.

For each command the participants ran, users were asked to enter in the amount of

time they had spent actively working on the assignment since they last reported.

Using this data, we could determine how long they spent on each task. It is well-

known that self-reported data can be inaccurate so we did not rely solely on this

data for recreating the time spent on each task. We instead bolstered the self-

reported data by incorporating some automatic data that was available from the

logging we did with each command. This hybrid approach is similar to the one

described in [HBZ+05]. To further increase our understanding of their efforts, we

also prompted users to optionally describe their work activities since their last

reported time.

The study was split across three class assignments. The first assignment

acted as a primer for parallel programming using Cilk++ and for using the paral-

lel programming environment we created. The students were given an hour-long

demonstration of how to use our programming environment as well an introduc-

tion to using Cilk++ for parallelization. The students were also given a tutorial

on effectively using Kremlin before their first required use of the tool.

We split students into two groups, groups A and B, for the final two as-

signments: one with access to the early Kremlin prototype and another without

16

access. The group without access to Kremlin was the control group that allowed

us to factor out the variation in difficulty of parallelizing across the different pro-

grams. The control group switched between the assignments two and three: group

A was the control for assignment two while group B was the control for the assign-

ment 3. Both groups were given access to gprof as a tool to help them plan for

which regions to parallelize.

We formed the two groups in the following way. At the end of the first

assignment we analyzed the users’ logged data for the amount of time spent and

the speedup achieved. We used this data to compute a performance-to-work ratio,

which we used to rank each student’s performance. We used this ranking to split

the students into two groups of roughly equal skill.

2.2.2 Benchmark Analysis

Before looking at the results of the user study, we will analyze each of the

three benchmarks in detail to identify the regions that were the most critical in

achieving the best parallel implementation.

We parallelized the programs to get a reference version with the best

speedup, and noted which functions and loops were required to be parallelized

in this optimal implementation. We refer to these regions as the “critical” re-

gions. The benchmarks were of limited size, allowing us to be confident that we

had achieved the best speedup possible. After gathering the results, we checked

the students’ implementations for any possible speedups that we missed in the

reference implementation but did not find any.

Table 2.1 details the regions that were found to be critical for each program.

Also given in this table is the speedup that could be achieved by parallelizing this

region and any that are listed above it for that program. This number formed a

bound on what we believe to be the best speedup attainable using only parallel

programming transformations.

Disparity Disparity was the first benchmark that was assigned and was also

the simplest to understand, containing less than 500 lines of code. Based on our

17

Table 2.1: Speedup and Recommendation Rank of Critical Regions. Crit-
ical regions were those regions found to be essential in obtaining maximum parallel
performance. These regions were not the only ones that benefited from parallel-
ization but parallelizing other regions in addition to these would not lead to higher
speedups. Also shown are the order in which these regions were recommended by
the early Kremlin prototype and gprof (based on both self- and total-time).

Recommendation Rank

Benchmark Function Speedup Kremlin
gprof

self-time
gprof

total-time
disparity getDisparity 3.5 1 14 2

tracking
script tracking 1.3 1 NA 1

calcPyrLKTrack 1.2 5 14 4
calcGoodFeature 2.1 4,10 17 10

sift

imsmooth 4.1 1,2 1 4
sift 6.4 3 2 2

fSetArray 8.4 5 4 6
diffss 10.1 4 3 5

analysis we found that parallelizing a single function, getDisparity, was enough

to achieve the best speedup available. getDisparity consisted of a loop where the

image disparity was found at many different levels. The disparity in each iteration

could be calculated independently of the other iterations and thus most of the work

in the loop could be done in parallel. However, at the end of each iteration, the

current disparity value was checked against the best value so far. The loop could

be parallelized with modest effort by privatizing the intermediate disparity arrays

and distributing the comparison into another (sequential) loop afterwards.

Scale-Invariant Feature Transform (SIFT) Our analysis determined the

four most important regions in the SIFT program to be imsmooth, sift,

fSetArray, and diffss. The imsmooth function contained two loops which were

easily parallelized with the cilk for primitive but which could achieve a speedup

of over 4×. The fSetArray and diffss functions had a similar format and diffi-

culty but only one of the loops was important for performance. The sift function,

although offering ample potential speedup was much harder to parallelize.

18

Feature Tracking For the feature tracking algorithm, we identified three crit-

ical functions: script tracking, calcPyrLKTrack, and calcGoodFeature. The

for loop in the script tracking function processed each frame based on the pre-

vious frame’s output. Thus, it had a strong sequential component. However,

each image is preprocessed before the features are located. This preprocessing

step could be done in parallel for all images since it does not depend on previ-

ous images. Refactoring the code such that the preprocessing occurred before the

main for loop therefore offered a significant potential speedup (1.36×). Identifying

and refactoring the main for loop was a non-trivial task with only three students

successfully accomplishing this task.

The loop in the calcPyrLKTrack function offered similar speedup potential

but involved much easier code transformations. To successfully parallelize this

loop, several variables needed to be privatized. All but one of the students was

able to successfully parallelize this region.

Finally, the calcGoodFeature function also offered a significant potential

speedup–albeit much smaller than script tracking or calcPyrLKTrack. This

function was trivially parallelizable, requiring the addition of only two cilk for

keywords to the loops in the function.

2.2.3 Impact on Program Speedup

One of the questions we wished to answer was if access to Kremlin would

effect the speedups obtained by the user. We might expect access to the tools to

have one or both of the following effects:

1. Improved performance at the end of the parallelizing process.

2. Decreased time required to obtain the largest possible speedup.

To test whether the final performance improved as a result of using Kremlin,

we tabulated the final speedup time for all users and calculated the average value

for Kremlin users and the average for non-Kremlin users. Table 2.2 shows this

result. While the Kremlin users had slightly better performance than non-users

19

Table 2.2: Speedup Achieved and Time Spent. Kremlin did not have a strong
impact on the final speedup obtained by the participants: tracking was nearly
the same (1.8 with Kremlin, 1.7 without), while sift had a significant difference
(7.2 with, 9.2 without) due mostly to the lack of effort (and subsequent poor
performance) of user 139. The lack of difference can also be explained by the
limited complexity of the benchmarks compared with the time given to parallelize
them.

tracking sift
User Speedup Time Speedup Time
139 1.6 235 2.4 88
280 2.3 1195 7.8 279
579 1.2 176 6.9 274
911 1.6 405 11.5 375
143 2.2 602 7.4 184
249 1.6 528 11.4 401
371 1.4 737 8.7 297

Kremlin 1.8 622.3 7.2 254
non-Kremlin 1.7 502.7 9.2 294

Average 1.7 554 8.0 271.1

for tracking, the difference (1.8 vs 1.7) was not significant considering the small

sample size. In sift, the average for Kremlin users is well below that of the non-

users (7.2 vs 9.2) but performance of user 139 was clearly an outlier that skewed

the average. The average excluding this user rises to 8.8, but the difference is still

too small lead to conclusive results.

To determine if Kremlin was able to decrease the time required to obtain

the maximum speedup, we looked at each users speedup as a function of the

amount of time they worked. If Kremlin did make an impact, we would expect

the slope of Kremlin users to be larger than that of non-Kremlin users. Figure 2.1

shows the speedup vs time graphs for each of the users on the sift benchmark.

Also indicated in this figure is the time spent parallelizing critical regions (light

gray), time spent on non-critical regions (dark gray) and time spent on sequential

optimization (white). The top 4 users (139, 280, 579, and 911) were Kremlin

users. While there is no clear trend on the slopes of Kremlin vs non-Kremlin, it

20

0
4
8

12
Kremlin Users Non-Kremlin Users

User 139

User 280

User 579

User 911

User 143

User 249

User 371

50 100 150 200 250 300 350 400

Time Spent (Minutes)

Sp
e

e
d

up

0
4
8

12

0
4
8

12

0
4
8

12

0
4
8

12

0
4
8

12

0
4
8

12

50 100 150 200 250 300 350 400

Figure 2.1: Speedup vs Time Graphs (sift). The graphs show the speedup
obtained by each user as a function of the amount of time spent. Also shown
is a breakdown of the periods of time spent on different types of regions; light
gray indicates time spent in critical regions, dark gray indicates time spent in
non-critical regions, and while indicates time spent doing serial optimization. The
graphs indicate that Kremlin users spent much more of their time parallelizing
critical regions than the non-Kremlin users.

is clear to see that the times were spent very differently between the two groups.

Kremlin users had much more time in the critical regions (gray) than the others.

Unfortunately the time spent in the regions does not seem to indicate the end

success of the parallelization efforts or we would have seen a clearly steeper slope

for Kremlin users.

2.2.4 Time Spent On Critical Regions

The other question which we wished to answer with the user study was

whether Kremlin would direct users to spend more time working on parallelizing

regions that offered the most speedup (i.e. the critical regions). To answer this

question, we looked at the amount of time spent working on each function and

calculated the percentage of this time that was spent working on critical regions.

21

Table 2.3: Time Spent (%) Parallelizing Critical Regions. The average time
spent working on parallelizing “critical” regions greatly differed between Kremlin
and non-Kremlin users. The Kremlin group spent an average of 83.9% (group A)
and 83.6% (group B) of their time working in critical regions on the tracking and
sift benchmarks, respective. This number dropped to 48.6% and 51.8% for the
group without access to Kremlin.

% Time Spent (Avg.)
Benchmark Critical Region Group A Group B
disparity getDisparity 18.5 21.2

tracking

script tracking 55.4 23.9
calcPyrLKTrack 26.7 18.5
calcGoodFeature 1.7 6.1

Total 83.9 48.7

sift

imsmooth 12.0 29.4
sift 30.3 41.5

fSetArray 2.4 3.2
diffss 7.0 13.5
Total 51.9 87.7

Based on the quality of Kremlin’s recommendations in Table 2.1 and its ability to

predict speedup we know that Kremlin users had a good idea of what were the

critical regions. We can therefore hypothesize that Kremlin users will show a clear

advantage in the percentage of time spent working on critical regions.

Table 2.3 overviews the percentage of time each group spent working on

each of the “critical” regions as well as the total time spent across all of these

regions. To control for the variation caused by the time users worked on serial

optimization rather than parallelization, we did not include the time spent doing

serial optimization in the total time spent. Across both assignments, non-Kremlin

users spent approximately 50% of their time working on the critical regions (48.7%

and 51.9% for tracking and sift, respectively). In contrast, Kremlin users spent

roughly 85% of their time working on these critical regions (83.9% and 87.7% for

tracking and sift). This clearly shows that Kremlin was able to focus users on the

regions that mattered most and is strong evidence for our hypothesis.

22

2.2.5 Threats to Validity

Having discussed the results of our user study, we will now examine how we

addressed threats to the validity of our findings. In particular, we were concerned

with threats to three types of validity: construct validity, internal validity, and

external validity. Construct validity concerns whether our hypotheses are the best

explanation of the results. Internal validity concerns whether the independent

variables are responsible for the changes in the dependent variables. External

validity concerns whether our results apply to a broader population than those

involved in the study.

Construct Validity We faced one major threat to construct validity in this

study. We needed to ensure that the speedup measured was the speedup obtained

from parallelization and not from some other optimization. In the first two as-

signments we did not advise the participants against doing serial optimization and

therefore several students achieved significant program speedup from serial opti-

mization. In the third assignment we instructed the students to focus on parallel

optimization as their grades would depend on that aspect of their speedup. How-

ever, as there was common code shared among the three programs used, some

students used their old serial optimization on the final assignment. We controlled

for this in two ways: we factored out the sequential time when calculating the

percentage of time spent in critical regions; and we clearly labeled time spent on

activities other than parallelization in the individual speedup vs. time graphs.

Internal Validity One possible threat to the internal validity of our study was

misuse of the planner. Based on written reports and logged data, we found that

some students did not use the tool as we had intended. In general, we found several

major ways in which they deviated. First, because there was some code reuse

between assignments, some students spent time re-implementing the same changes

they had made in previous assignments. Often this meant that they optimized

regions that were either not recommended or were only weakly recommended by

the Kremlin. Another common way in which they deviated was by favoring gprof

23

results over Kremlin. gprof orders functions by the time spent inside of them. This

was often misleading though as either the parallelism was too low in these functions

or the parallelism was too fine-grained and did not offer significant performance

gains. Finally, some students seemed to favor parallelizing on a first come, first

serve basis. As a result, some students tried parallelizing functions that were

called from the main function because those were the first they encountered. As a

result of these deviations, we could not successfully test our initial hypothesis that

Kremlin users would achieve significant speedups faster than non-Kremlin users.

External Validity One threat to the external validity of our study was the com-

plexity of the programs that were parallelized in the study. These programs had a

relatively small amount of code (less than 1000 lines of code) spread across 10-15

source files. A significant portion of the files had the same basic structure: two

DOALL loops with one level of nesting each. Furthermore, several of these files

were common files that were reused across the three assignments. This worked to

limit the areas in which the students had to look for parallelism opportunities. The

eight days given for each assignment was ample time for them to identify the major

opportunities for exploiting parallelism. As a result of the limited complexity of

these programs and the time they had to work on them, we did not expect Kremlin

users to have significantly better performance than non-Kremlin users. However,

we expect that Kremlin will have a more noticeable impact on more complex ap-

plications as its ability to focus users on the most critical regions becomes more

important. Other threats to external validity include the limited parallel program-

ming background of the participants and the lack of more sophisticated parallel

performance measurement tools to help determine bottlenecks in performance.

2.2.6 Conclusions

While we were unable to show that the early Kremlin prototype was able

to reduce the time needed to parallelize a program, our results indicate that users

benefited from have a parallelism planner. To understand the strengths and weak-

nesses of early Kremlin prototype, we asked for qualitative feedback from the

24

users in the form of a survey of short answers. The combination of quantitative

and qualitative feedback was able to provide us valuable insight that we would

carry forward into Kremlin’s later designs.

We noticed that despite having a planner, study participants often chose

to ignore its advice. Students indicated that they were often unable to quickly

determine the “trick” to successfully parallelizing a recommended region; when

a recommendation looked too difficult to quickly parallelize, they simply moved

on to a region that they thought we be easier. This initial confusion about how

to parallelism was likely a direct result of a lack of guidance about the type of

parallelism available in a region. The type of transformations needed to exploit

parallelism is often directly tied to the type of parallelism. For example, DOALL

parallelism in loops commonly require privatization of variables to eliminate false

dependencies and loop fission to remove serial parts of a loop.

Student participants had access to parallelism charts to help determine the

type of parallelism but student surveys indicated that they did not find them very

useful overall. The deficiencies found in parallelism charts led us to re-examine

our parallelism metrics, prompting the eventual creation of the new self-parallelism

metric and techniques to help identify the type of parallelism. We will discuss the

strengths and weaknesses of parallelism charts in Section 4.4.1, contrasting them

with the self-parallelism metric described in Section 4.4.2. Section 5.3 discusses

how later versions of Kremlin can identify the type of parallelism in a region.

We also noticed that students would occasionally continue working on a

region even after obtaining the maximum possible speedup for that region. This

likely resulted from the confusion caused by the rudimentary speedup estimates

in the early Kremlin prototype. We addressed this shortfall partially through

the creation of the self-parallelism metric and an improved parallel time estima-

tion model, but also through the introduction of planning personalities. Planning

personalities allow for tailor the planner to the specifics of a target machine and

greatly enhance the quality of plans. Section 5.2 discusses our more advanced

model of parallel execution time while Section 5.4 discusses planning personalities

and describes several we have created.

25

Acknowledgments

Portions of this research were funded by the US National Science Foun-

dation under CAREER Award 0846152, by NSF Awards 0725357, 0846152, and

1018850, and by a gift from Advanced Micro Devices.

This chapter contain materials from “Kremlin: Rethinking and Rebooting

gprof for the Multicore Age”, by Saturnino Garcia, Donghwan Jeon, Christopher

Louie, and Michael Bedford Taylor, which appears in PLDI ’11: Proceedings of

the 32nd ACM SIGPLAN conference on Programming language design and imple-

mentation. The dissertation author was the primary investigator and author of

this paper. This material is copyright c©2011 by the Association for Computing

Machinery, Inc.(ACM). Permission to make digital or hard copies of part or all of

this work for personal or classroom use is granted without fee provided that the

copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page in print or the first

screen in digital media. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy oth-

erwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept.,

ACM, Inc., fax +1 (212) 869-0481, or email permissions@acm.org.

Chapter 3

System Overview

Kremlin is designed to be a practical oracle for sequential code parallel-

ization. To be considered practical, Kremlin must be both simple to use and

accurate, guiding programmers to the most important parts of the program with

as little manual intervention as possible.

In this chapter we will look at Kremlin’s basic usage model and the un-

derlying system architecture that supports this model. Kremlin’s system architec-

ture introduces several new techniques, including hierarchical critical path analysis

(HCPA), self-parallelism, and planning personalities. These techniques will be in-

troduced in this chapter to provide insight into their interrelations, but detailed

descriptions of these techniques and their implementations will be delayed until

subsequent chapters.

3.1 Usage Model

Kremlin’s user interface presents a simple three step usage model for ob-

taining a parallelization plan. Kremlin’s usage model takes inspiration from gprof,

with simplicity and clarity of results paramount. Figure 3.1 demonstrates this us-

age model. Kremlin starts with unmodified, serial source code and produces an

instrumented binary. The user then runs this binary with its normal inputs to pro-

duce a dynamic parallelism profile. This profile is used by Kremlin’s parallelism

planner, along with a specified planning personality (OpenMP in the example), to

26

27

$> make CC=kremlin-cc

$> ./srad 100 0.5 502 458 image.pgm

$> kremlin srad --model=openmp --num cores=4

Cores 1 2 4 8 16 32 64

Speedup 1 2 4 8 15.89 31.58 62.35

(est.)

File (lines) Cov. (%) Self-P Iters. TimeRed.(%)

1 srad.c (262-296) 70.25 458.0 458.0 52.69

2 srad.c (306-325) 24.25 458.0 458.0 24.20

3 srad.c (247-251) 5.29 502.0 502.0 3.96

4 srad.c (226-227) 0.09 229916.0 229916.0 0.07

5 srad.c (342-343) 0.04 229916.0 229916.0 0.03

...

Figure 3.1: Kremlin’s Usage Model Kremlin’s three-step usage model is inspired
by gprof [GKM82]: first the program is compiled with kremlin-cc, then the
program is executed with its normal inputs, and finally the parallelization planner
is run with the desired planning options. The planner allows the user to specify
system-specific constraints (e.g. OpenMP on an 4-core processor); the planner
orders regions according to decreasing expected parallelization benefit, allowing
software engineers to first target the most important regions.

produce the parallelization plan. This parallelization plan ultimately helps answer

the question, “Which parts of this program should I spend time parallelizing?” by

listing the regions that should be parallelized, in the order that they should be

parallelized.

Figure 3.1 shows the parallelization plan for the srad benchmark [CBM+09]

as it would be displayed to the user. The plan presents an ordered list of regions

for the programmer to parallelize. A region can be any single-entry sequence

of instructions but Kremlin’s recommendations focus on functions and loops as

they are the most relevant during manual parallelization. The details of region

formation will be discussed further in Section 4.3.1.

Components of Kremlin’s Parallelization Plan Kremlin outputs several

key pieces of data for each of its recommended regions: region location, coverage,

self-parallelism, number of subregions, and the reduction in execution time if the

28

region is parallelized. Region location allows the user to quickly identify which

region is being recommended (both filename and line numbers). Coverage refers

to the percentage of serial execution time spent within a region. Self-parallelism is

a new metric we have formulated to represent the amount of parallelism in a region,

exclusive of any parallelism contained within nested regions. Together the coverage

and self-parallelism fundamentally limit the impact of parallelizing a region in

accordance with Amdahl’s Law. In other words, speedup from parallelizing a

specific region is governed by the following inequality:

speedup ≤ 1

(1− C(R))− C(R)
SP (R)

(3.1)

where C(R) and SP (R) are the coverage and self-parallelism of the region R,

respectively. The time reduction given for each region provides an estimation of

the impact on the whole program execution time from parallelizing the specified

region. This estimation takes into account the equation above as well as other

system-specific parallelization overheads and limitations, as we will discuss further

in Section 5.2.

The number of subregions indicates how many regions are directly contained

within the recommended region. This value is helpful when compared to the self-

parallelism. Self-parallelism excludes any parallelism that comes from within sub-

regions, and therefore measures the amount of parallelism available from executing

subregions in parallel. When the number of subregions matches the self-parallelism,

it is an indication that all subregions can be executed in parallel. Conversely, when

the number of subregions greatly exceeds self-parallelism, it is an indication that

few (if any) subregions can be executed in parallel. Parallelization tends to be

much easier in the former case than in the latter so the ratio of self-parallelism to

the number of subregions can quickly give the programmer a sense of the difficulty

in parallelizing a region. Sections 4.4.2 and 5.3 will provide more insight into the

relationship between these ratios and their impact on parallelization.

Acting on Kremlin’s Recommendations Once the programmer has Krem-

lin’s parallelization plan, the basic usage model is that they visit these regions

29

of code in the specified order and determine how to expose the underlying par-

allelism that was detected by Kremlin. Kremlin orders the parallelization plan

in decreasing order of estimated time reduction, which takes into account factors

such as self-parallelism, coverage, and parallelization overhead. The plan contains

only those regions that are expected to meet a minimum speedup threshold; the

programmer can expect to obtain nearly all the performance benefits possible if

they parallelize all the regions in the list.

Kremlin’s parallelism discovery builds upon critical path analysis, which

quantifies the raw amount of parallelism available by analyzing only the true data

and control dependencies in the program. Because Kremlin looks only at true de-

pendencies, it can reduce many complex forms of parallelism into raw parallelism.

This allows Kremlin to uncover parallelism of nearly all forms, including: loop-

based parallelism such as DOACROSS and DOALL; pipeline parallelism between

loops and functions; instruction level parallelism; and thread and task-level paral-

lelism. Any of these forms of parallelism may be present in any given benchmark

but the planner selects only those types that the planner deems profitable.

Exposing the parallelism detected by Kremlin may require user transforma-

tions such as: privatization; loop restructuring, fusion and interchange; insertion

of OpenMP, Cilk++, or similar constructs; and refactoring of code and data struc-

tures to eliminate false sharing and contention. These transformations range in

difficulty from trivial to difficult; some may require less than an hour of work while

others may require many hours. As we will show in the Chapter 5, Kremlin is able

to significantly reduce the number of regions that must be parallelized, thereby

significantly reducing the total effort needed to parallelize the program.

Kremlin also provides a mechanism whereby the user can specify a set of

regions that are too difficult to parallelize and rerun the planner, which recom-

putes the optimal plan excluding those regions. This exclusion list feature was not

utilized while generating the results presented throughout the rest of this disser-

tation.

30

c
rit

ic
a

l p
a

th
in

st
ru

m
e

nt
a

tio
n

re
g

io
n

in
st

ru
m

e
nt

a
tio

n

Static Instrumentation
Kremlin
Planner

Source
Code

Planning
Constraints

Region tree

A

B
C

KremLib

Instrumented
Binary

Parallelism
Profile

A: <sp,w>
B: <sp,w>
C: <sp,w>
 ...

exec
w/ inputs

Parallelism
Plan

Sample
Program

Input

Figure 3.2: Overview of Kremlin System Architecture. Starting with a pro-
gram’s source code, Kremlin statically instruments the code to insert the proper
profiling code and extract the region structure (i.e. region graph) from the pro-
gram. Running the instrumented binary with a sample input produces a paral-
lelism profile for each of the program regions. Combined with the region graph,
the parallelism profile is used by the parallelism planner to provide the user with
a specific list of regions to parallelize (the parallelization plan).

3.2 System Architecture

Figure 3.2 shows Kremlin’s internal system architecture. Kremlin consists

of several distinct phases: static instrumentation, linking and execution, and plan-

ning. In this section we will briefly overview each of these stages to provide an

understanding of the interaction between them; more detailed descriptions of these

stages will come in the following chapters.

Static Instrumentation Kremlin’s parallelism discovery stage uses a new type

of analysis known as hierarchical critical path analysis (HCPA). HCPA requires

that critical path analysis be performed separately on all regions of the program.

To meet this requirement, Kremlin introduces two instrumentation stages: critical

path instrumentation and region instrumentation. The first sets up the profiling

31

infrastructure required to quantify parallelism via critical path analysis while the

second helps uncover the program’s structure and localize parallelism results to

specific regions.

Both stages of the discovery phase utilize LLVM’s [LA04] static instru-

mentation infrastructure. Static instrumentation has two important benefits over

dynamic instrumentation. First, it allows for a deeper analysis of the program

since the full program source is available. In our experience, tasks such as identify-

ing induction variables, reduction variables, and region boundaries are challenging

in dynamic infrastructures such as Valgrind [NS07] but are easy when performed

statically. Second, by statically inserting instrumentation, Kremlin can heavily

optimize the code to produce a more efficient instrumented binary. This helps

to lower the overhead associated with the heavyweight analysis infrastructure re-

quired for measuring the amount of parallelism in every region of the program.

Kremlin performs this optimization after instrumentation occurs so that it does

not taint the analysis.

During critical path and region instrumentation, Kremlin inserts calls to

instrumentation functions that calculate the critical paths of the program and

track region entries and exits. These instrumentation functions are implemented

inside the KremLib library. Section 4.3 provides more details on Kremlin’s hi-

erarchical critical path analysis. These functions maintain data structures which

track dynamic control and data dependencies as the instrumented binary executes.

Since the analysis is hierarchical, it simultaneously tracks these values across many

nested regions. Section 4.3.2 provides further details on how Kremlin calculates

critical paths at runtime, and Section 4.3.3 describes how we do this across many

regions at the same time.

Linking and Execution Kremlin next links in the KremLib instrumentation

library to produce the instrumented binary. When run, the instrumented binary

also produces a parallelism profile output file–in addition to its normal outputs–

that contains parallelism information for each dynamic instance of a program re-

gion. This information includes each region’s total amount of work as well as its

self-parallelism, a metric describing the amount of parallelism in that region, ex-

32

cluding any that came from subregions. Section 4.4.2 discusses self-parallelism in

more detail.

The resulting parallelism profile contains results for an unbounded number

of dynamic regions; without compression, this profile could easily contain terabytes

of data. Kremlin uses a summarizing technique that represents the set of program

regions as a tree, collapsing all dynamic regions with the same context into a single

node in the tree. This technique not only greatly reduces the size of the profile, it

provides context-sensitive results that can improve the quality of a parallel imple-

mentation. Kremlin’s summarized region tree also provides a means for combining

the results from multiple runs of the program, each with different inputs. This

feature can help mitigate the chief limitation that Kremlin shares with all dy-

namic analyses: its dependence on specific inputs. Section 4.3.4 describes this

summarizing technique in more detail.

Kremlin Planner With the parallelism profile and summarized region tree pro-

duced by the discovery phase, Kremlin can begin to create an effective plan to

utilize the parallelism in the program. As we have seen, Kremlin crafts an or-

dered plan for the programmer that describes which regions should be parallelized.

Kremlin uses planning personalities that incorporate both target- (e.g. OpenMP)

and machine-specific parameters (e.g. the number of cores) in order to improve

accuracy. Section 5.4 describes several planning personalities that we have created.

Kremlin models the execution time after parallelization using a combina-

tion of factors that are both target-independent–such as the coverage and self-

parallelism–and target-dependent–such as the number of cores available and the

type of parallelism that is exploitable. The estimated execution time can be used

to compare the potential benefit of competing parallelization plans. Section 5.2

discusses this parallel execution time model.

33

3.3 Limitations of Kremlin and other Dynamic

Analyses

Kremlin utilizes dynamic program analysis and therefore comes with the

same inherent limitations associated with these types of analyses. Dynamic in-

formation depends on the input and therefore does not necessarily predict the

program’s execution with other inputs. This does not imply that behavior will

vary widely across different inputs, but it also does not preclude behavior from

varying. It is therefore critical for the user to choose inputs wisely, preferably

utilizing multiple inputs and merging their results. Kremlin supports aggregating

data from multiple runs, providing a means for users to increase their confidence

in its results.

Kremlin extends critical path analysis (CPA). CPA-based tools also cannot

predict the amount of parallelism available in alternative algorithms. CPA instead

can be used to identify highly-serial regions of the program that could potentially

benefit a change in algorithm; the programmer could use this information to guide

their search for more parallel algorithms.

Unnecessary dependencies that are still true dependencies can limit CPA-

based tools. These dependencies commonly manifest themselves through induction

and reduction variables; Kremlin recognizes these common dependencies and au-

tomatically breaks them in order to mask their effects.

Acknowledgments

Portions of this research were funded by the US National Science Foun-

dation under CAREER Award 0846152, by NSF Awards 0725357, 0846152, and

1018850, and by a gift from Advanced Micro Devices.

This chapter contain materials from “Kremlin: Rethinking and Rebooting

gprof for the Multicore Age”, by Saturnino Garcia, Donghwan Jeon, Christopher

Louie, and Michael Bedford Taylor, which appears in PLDI ’11: Proceedings of

the 32nd ACM SIGPLAN conference on Programming language design and imple-

34

mentation. The dissertation author was the primary investigator and author of

this paper. This material is copyright c©2011 by the Association for Computing

Machinery, Inc.(ACM). Permission to make digital or hard copies of part or all of

this work for personal or classroom use is granted without fee provided that the

copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page in print or the first

screen in digital media. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy oth-

erwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept.,

ACM, Inc., fax +1 (212) 869-0481, or email permissions@acm.org.

Chapter 4

Planning-Aware Parallelism

Discovery

The design of a practical oracle requires that both parallelism discovery and

planning work in harmony to provide effective guidance during manual parallel-

ization. In other words, parallelism discovery must become planning-aware. Krem-

lin extends critical path analysis to make it suitable for planning-aware parallelism

discovery, introducing two main techniques to achieve this goal: hierarchical criti-

cal path analysis (HCPA), and lightweight approximation of a new metric known

as self-parallelism.

In this chapter we will examine the design and implementation of both

HCPA and self-parallelism. While these techniques are described in terms of their

relevance as components of a practical oracle, they are joint work with several

collaborators and also serve as the common framework for other systems. These

other systems are outside of the scope of this thesis but the interested reader may

refer to the work of Jeon et al [JGLT11] for details of how they serve as the basis

for parallel performance prediction.

4.1 Requirements of Planning-Aware Discovery

Planning-aware parallelism discovery needs to produce results that are ap-

propriate for use during parallelism planning. Planning places two major require-

35

36

ments on parallelism discovery. First, it requires that the amount of parallelism

be quantified. Without quantification, the planner cannot estimate the impact of

parallelization and therefore cannot effectively compare different plans. Second, it

requires localized parallelism information. Without this localized information, the

planner cannot model the process of iterative improvement that manual parallel-

ization entails.

As we discussed in the introduction, existing parallelism discovery tools

rely on one of two techniques: critical path analysis (CPA) or dependence testing.

These two techniques differ in their goals—CPA to quantify parallelism, depen-

dence testing to identify independent parts of the program—but they share a com-

mon shortcoming: their results are poorly suited for use during parallelism plan-

ning. Despite this joint shortcoming, CPA is better suited as a basis for planning-

aware discovery than dependence testing because CPA can quantify parallelism.

Kremlin’s key contributions to parallelism discovery, HCPA and self-parallelism,

help overcome CPA’s chief limitation: its lack of localized parallelism information.

4.2 Background: Critical Path Analysis

One promising approach for quantifying parallelism is to use a critical path

analysis [Kum88], or CPA. CPA is a dynamic analysis that finds the string of

dependencies that forms a lower bound on the execution time (the critical path)

of a piece of code. The critical path in turn creates an approximate upper bound

on the parallelism available, with the ideal parallel implementation performing all

non-critical operations in parallel with the critical path operations. The work and

critical path define the average amount of parallelism available –which we refer to

as the total-parallelism–according to the following equation:

p =
work

lengthcp
(4.1)

The basic premise behind parallelism discovery tools that employ critical

path analysis [Kum88, KMC72, AS92, KBI+09] is to evaluate the application’s

potential for parallelization under relatively optimistic assumptions based on ob-

37

for (i=win . . rows−win) {
for (j=win . . co l s−win) {

currLambda = lambda [i] [j] ;

. . .

for (k =0. . nFeatures) {
i f (f e a t u r e s [2] [k] < currLambda) {

. . .

f e a t u r e s [0] [k] = j ;

f e a t u r e s [1] [k] = i ;

f e a t u r e s [2] [k] = currLambda ;

}
}

}
}

Figure 4.1: Localizing Parallelism. In this nested loop from the fillFeatures
function in feature tracking, only the innermost loop (over induction variable k) is
parallel. Traditional CPA would erroneously report parallelism in the outer loops
because they contain the innermost.

servation of the program’s dynamic execution. Most parallelizing compilers, in

contrast, must take relatively pessimistic views because they are responsible for

guaranteeing correctness. For example, parallelizing compilers may not be able to

prove that two pointers do not alias, while a critical path analysis will at least

report that it did not observe such dependencies in the actual execution of the

program. The basic idea is to elevate to the user awareness of the at least cir-

cumstantial evidence of parallelism in the program, so that users can apply their

understanding of the real application constraints (as opposed to what is encoded

in program source) and refactor to exploit the parallelism.

Unfortunately, traditional critical path analysis has not found widespread

use as a parallelism quantification tool for parallel programmers because it has one

important limitation: it cannot localize the parallelism to a particular level of the

38

nested hierarchy of a program’s regions. This limitation is illustrated by a code

snippet from the feature tracking benchmark from the San Diego Vision Benchmark

Suite [KVAJ+09], shown in Figure 4.1. In this example, only the innermost loop

is parallel. Traditional CPA would only detect that parallelism exists somewhere

among the three loops, not just the innermost.

This fundamental limitation of CPA manifests itself in a way that makes

CPA’s results impractical for planning. Because CPA cannot localize parallelism,

it overestimates the amount of parallelism in various parts of the program. For

example, CPA would report significant amounts of parallelism in the outer loops

in Figure 4.1 when there is none. This makes planning inaccurate as it appears as

though parallelizing the outer loops (e.g. by adding an OpenMP pragma before

the loop) will be profitable when it will not. As we will see, even if we modify

CPA to look at each region individually (instead of the program as a whole), the

lack of localized parallelism information will still mislead the planner.

4.3 Hierarchical Critical Path Analysis

Traditional critical path analysis suffers from a lack of knowledge about the

structure of the program. This lack of knowledge leads to confusion about the

source of parallelism detected in the program. Parallelism discovery needs to first

be aware of the structure of the program and the relationships between various

parts of the program before it can identify the exact sources of parallelism in a

program.

Kremlin introduces a new form of analysis, hierarchical critical path analysis

(HCPA), that profiles the parallelism in every region of the program and uncovers

the structure of the program. HCPA provides the basis for efficiently approximat-

ing self-parallelism, a new metric we have defined to quantify localized parallelism.

HCPA is a region-based analysis–which we will define in the proceeding subsection–

and it is also hierarchical, taking advantage of the program hierarchy not only to

localize parallelism but also to analyze multiple regions efficiently.

In this section we will discuss the design and basic implementation of HCPA,

39

starting with the basics of performing CPA with shadow memory before moving on

to discuss the changes required to perform HCPA with shadow memory. However,

before we begin further discussion we will first define what a region is and why the

choice of regions is critical to our analysis.

4.3.1 Defining a Region

We use the concept of a region to denote a piece of code whose parallelism

is to be measured from the time that region is entered until the time it is exited.

Regions must obey a proper nesting structure: regions must not partially over-

lap, but they may nest or be siblings with the same parent region. This nesting

structure gives rise to a dynamic region tree which shows the relationship between

parent and children regions in the dynamic execution of the program. We can

leverage this nesting structure to localize the amount of parallelism in each region,

using a new metric called self-parallelism.

Although more arbitrary delineations of regions are possible, HCPA defines

several types of regions: functions, loops, loop bodies, and self-work sequences.

Function and loop regions correspond well to program constructs with which the

programmer is familiar. These two types of regions have the added benefit of

being the source of most parallelism in the program: task-based parallelism is often

focused on functions while the myriad of loop-based parallelism types obviously

originates from loops. These two region types also play a central role in most

existing manual parallelization systems, further underscoring their importance for

parallelism discovery and planning.

The remaining types of HCPA regions were developed as a method for

enhancing Kremlin’s ability to classify different forms of parallelism. Loop body

regions for a child region for each iteration of a loop region, allowing us to identify

loop-level parallelism. Self-work sequence regions force instruction level parallelism

(ILP) to childless regions, clearly delineating ILP from other forms of parallelism.

Figure 4.2 shows an example of how HCPA transforms code into a hierar-

chy of dynamic regions. The code in Figure 4.2a becomes the region tree shown

in 4.2b, representing the relations between the function, loop, and loop body re-

40

for (i=1 to N) {
f oo (1) ; // c a l l s i t e A

f oo (N) ; // c a l l s i t e B

}

void f oo (int s i z e) {
for (i=1 to s i z e) {

. . .

// loop body

. . .

}
}

(a) Sample Code Fragment

...
1

1 1 N

N

loop(i)

loop iters

fooA fooB

loop(j)

(b) Dynamic Region Tree

loop(i)

loop iters

loop(j)

fooA fooB

loop iters

(c) Summarized Region Profile

Figure 4.2: HCPA’s Hierarchical Region Model and Summarization. At
runtime the code in (a) forms the region tree shown in (b) based on HCPA’s
function, loop, loop body, and sequence regions. HCPA will calculate the CPA
recursively for each dynamic region. Dynamic regions sharing the same context
will be summarized into a single node, resulting in the tree shown in (c). Loop body
regions are collapsed into a single node while separate calls to foo have separate
nodes to indicate differing contexts. This context-based approach can lead to
more efficient parallelization as different contexts can contain different amounts of
parallelism..

gions in the code. This dynamic region tree is later compacted into a summarized,

context-sensitive form to reduce log size output and provide more precise paral-

lelism profiling. This summarizing technique will be discussed in more detail in

Section 4.3.4.

41

0x00COFFEE{ {

...

+

Segment Table Tag Tables

...

...

...

Figure 4.3: Traditional Shadow Memory Organization. The memory address
is used as an index into a two-level page table that contains the metadata associated
with that address. To support 64-bit addresses, a three-level table may be used.
This multi-level architecture is similar to that of a page table, and allows only
active subsets of the memory address space to have allocated shadow memory
tags.

4.3.2 Calculating Critical Path with Shadow Memory

Critical path analysis calculates parallelism by quantifying both the amount

of work done and the minimum time needed to do that work (i.e. the length of

the critical path). The ratio of work to critical path length indicates the av-

erage number of instructions that can be executed in parallel in the ideal case.

Kremlin efficiently determines both of these values through the use of shadow

memory [NS07, ZBA10a].

Figure 4.3 shows a traditional shadow memory layout. Shadow memory

provides metadata storage for each memory location, allowing each address to be

“tagged”. This metadata has been used for a wide range of dynamic program anal-

yses, with applications ranging from memory analysis [SN05, BZ11] to computer

security [CZYH06, QWL+06, XBS06].

Kremlin employs shadow memory to help calculate the “parallel time” of

each dynamic instruction, the earliest time the result of that instruction will be

available. This parallel time depends on the set of instructions required to produce

the operands for the instruction as well as the time needed to perform the instruc-

tion. Parallel time takes into account only true data and control dependencies,

42

addr(a) addr(b) addr(c)

M
A
X

cost(op) = 1

5

5

6
3

+

...

Figure 4.4: Calculating Parallel Time with Shadow Memory. In this exam-
ple the operation c = a + b triggers a shadow memory update. Shadow memory
stores the “parallel time” for each address. To calculate the parallel time of the
value being written (c), the times for the operands (a and b) must be read from
shadow memory, compared (max), and added to the cost of the operation before
storing the result back in shadow memory. Kremlin introduces several optimiza-
tions to minimize the overhead associated with using shadow memory.

taking advantage of the single static assignment form of LLVM’s intermediate rep-

resentation to eliminate false dependencies such as anti- and output dependencies.

Kremlin stores the parallel time into shadow memory, tagging the address

associated with the value being written by the instruction. This organization leads

to a simple four step process for each instruction, as shown in Figure 4.4. Kremlin

can easily capture the length of the critical path by tracking the largest parallel

time that is stored, as this corresponds to the instruction that required the longest

chain on dependencies to compute (i.e. the critical path).

Kremlin utilizes an array of techniques to reduce both the runtime and

memory overhead associated with employing shadow memory. While we will hold

off discussion of some of these techniques until later, one bears mentioning at

this point: shadow register tables for local variables. Shadow memory generally

requires a multi-level structure similar to that of a page table so that only ac-

tively used parts of the address space are shadowed, as shown in Figure 4.3. This

layout sacrifices performance for space efficiency, requiring multiple pointer deref-

erences to access the metadata for a specific address. While local variables have

a corresponding stack address, the load-store architecture implicit in the LLVM

intermediate representation means that most operations are performed on registers

rather than memory locations. Kremlin analyzes each function for the number of

43

used registers and allocates a shadow register table that stores tags associated with

these registers. The shadow register file is optimized for speed by being directly

addressable, greatly reducing the time to access local variables.

Resolving False and Easy-to-Break Dependencies A major challenge for

any critical path analysis infrastructure is to mitigate the effects of false and easy-

to-break dependencies. Many of these false dependencies, such as unnecessary

reuse of a variable, are eliminated by the use of SSA form in LLVM’s IR. However,

the easy-to-break dependencies associated with induction and reduction variables

are more challenging. These types of dependencies can create the false impres-

sion that a parallel region is actually serial. The induction variable for a loop

can create the false impression of inter-iteration dependencies and therefore mask

available parallelism. Similarly, reduction variables appear to require serial exe-

cution when the exact ordering of operations on these variables is not important.

Kremlin breaks these dependencies by statically identifying induction and reduc-

tion variables and utilizing a special shadow memory update rule that ignores the

dependency on their old value.

Managing Control Dependencies Kremlin performs static control depen-

dence analysis to identify which values a basic block is control dependent upon.

Unfortunately, static analysis cannot fully resolve all control dependencies. This

shortcoming is demonstrated in the following code snippet:

i f (x == 0) { r o t a t e (img) ; }

If the condition is true, then the comparison of x will be a control dependence for

all instructions executed in rotate. Because rotate may occur in other contexts

where this control dependency does not exist, the dependence on x must be resolved

dynamically.

Kremlin handles control dependencies through the use of a control depen-

dence stack similar to one proposed in [XZ07]. Kremlin pushes a dependency onto

the control stack at the beginning of a control dependent region, popping it off

when exiting that region. The times stored in the control stack can only increase:

44

int main () {
f oo () ;

bar () ;

. . .

}

void f oo () {
. . .

}

void bar () {
for (i =0 . .10)

x++;

foo () ;

}

(a) Code Snippet.

main

foo

foo

bar

for(i)
shadow
memory

shadow
memory

shadow
memory

(b) Corresponding Region Tree.

Figure 4.5: Shadow Memory and Region Hierarchy. Each node in (b) is
a dynamic region that requires a unique set of shadow tags. Each region’s tags
must be isolated when simultaneously profiling multiple regions in order to avoid
incorrect profiling results.

the parallel time for a control dependency is dependent on all active control de-

pendencies so the times must strictly increase. Kremlin leverages this property,

incorporating control dependencies by checking only the top of the stack.

4.3.3 Introducing Hierarchy into Shadow Memory

Traditional critical path analysis is a flat analysis: only a single region

of the program is examined, typically the main function. Kremlin’s hierarchical

analysis requires that we examine all dynamic regions of the program. The näıve

method of running the program once for each region is impractical as even trivially

small programs can contain an exorbitant number of regions because of loops. The

45

alternative approach, examining all regions in a single run of the program, presents

an interesting problem of resource isolation.

Much like separate executing processes maintain a separate address space,

each dynamic region requires a separate shadow memory address space. Fig-

ure 4.5b demonstrates this idea using the dynamic region tree obtained from the

code in Figure 4.5a. When entering a region, all previous work and dependencies

should be invisible to the newly created region while remaining visible in the ap-

propriate ancestor regions. This situation clearly calls for separate tags for each

region.

To implement shadow memory for the evolving set of dynamically nested

regions as the program runs, each location in the shadow memory and register

tables is associated with a vector of parallel times rather a single time. This vector

expands when a region is entered and shrinks when a region is exited.

An efficient representation for the vector of parallel times is critical for

reasonable profiling performance. Two factors conspire to make an efficient rep-

resentation difficult to achieve. First, only a (possibly small) subset of all active

shadow memory locations will be used by a region. It therefore does not make

sense to allocate a new spot in the set when we enter a region: most of them will

simply not be used and the time needed to allocate would be large. Second, nest-

ing of loops can lead to frequent entering and exiting of regions. The implication

is that upon exiting a region, we cannot tolerate lengthy data cleanup times that

would be associated with allocating or deallocating the values in the set that are

specific to a region.

The key insight for efficient shadow address space management is that there

is at most one active region in any given level in the region tree. Kremlin takes ad-

vantage of this hierarchical property to minimize the memory overhead associated

with multiple shadow address spaces. As shown in Figure 4.6, all regions in each

level of the region tree are mapped to a single tag. In other words, every region in

a level shares the same shadow address space.

Sharing of shadow address spaces could potentially lead to one region pol-

luting the address space of another. It is possible to clean the “dirty” tags after

46

A

B C

D E

Level 0

Level 1

Level 2

Tag
Vector

Version
Vector

Region Tree
Figure 4.6: Level-based Sharing of Shadow Memory Tags. The hierarchical
nature of regions ensures that any level in the region tree will have at most one
active region. Kremlin uses this property to enable reuse of physical shadow mem-
ory space between multiple regions of the same level. This reuse requires that tags
be validated to ensure that stale metadata is not used (e.g. not using region B’s
metadata for region C). Each tag has an version associated with it to determine
the region in which it is valid.

exiting a region but this is likely to incur a significant performance penalty. This

penalty is especially onerous for regions that are entered and exited rapidly, such

as deeply nested loops.

We can avoid the cleaning costs of the näıve scheme by instead using a

version-based approach. Kremlin assigns a unique ID to every dynamic region;

this ID is then stored along with each tag (i.e. parallel time) whenever shadow

memory is updated. Kremlin compares the ID of the current region with the stored

ID whenever reading a tag; if the version matches the value is valid, otherwise it

is invalidated by overwriting it with the value of 0. This process is analogous to

an operating system’s use of process IDs to isolate the memory of each process.

The downside of this version-based approach is that is requires a significant

amount of space for tracking versions, essentially doubling the memory overhead

associated with profiling. We have developed several techniques that mitigate this

overhead, which we will discuss in Chapter 6.

47

4.3.4 Summarizing Dynamic Regions

The number of dynamic regions quickly grows as nested loops with many

iterations are executed. This large amount of regions poses practical challenges

not only in the size of the profile output but also in the runtime of algorithms that

need to analyze this data.

The initial version of Kremlin used a dictionary-based compression algo-

rithm to reduce the profile size. However, this type of compression performs poorly

on programs with loop iterations that vary in their work or critical path length

as was often the case for irregular programs such as those found in SpecInt. This

approach also failed to utilize context-sensitivity, which we will see can be critical

in producing a plan that will lead to the highest possible parallel speedup.

Summarizing Technique Kremlin combines all dynamic regions that have the

same region context into a single summarized region. Figure 4.2 depicts how the

runtime region tree (4.2b) becomes a summarized region profile (4.2c). In this

method, all loop body regions (i.e. iterations) collapse to a single node, greatly

reducing the number of regions. Each node calculates weighted averages for paral-

lelism, work, and other profiled data across all dynamic regions corresponding to

that node.

Kremlin maintains a current pointer that tracks the summary node that

corresponds to the current dynamic region. When a new region is entered it up-

dates the current pointer to one of its children node based on statically assigned

callsite ID information. If there is no corresponding node, it creates a new sum-

mary node and updates the current pointer. When a region exits, the region’s

profiled information is added to the current node and the pointer returns to the

parent node. This process is similar to the call context tree described in [ABL97]

but modified for Kremlin’s region hierarchy.

Using Context Sensitivity to Improve Planning The example summarized

region profile shown in Figure 4.2c contains two nodes for the same function (foo)

from what appears to be the same context. This corresponds to two separate calls

48

from the same loop. While this increases the number of nodes in the summarized

profile, it allows Kremlin to uncover new parallelism opportunities.

To understand the merit of context-sensitive representation, consider the

code in Figure 4.2a. When the loop in function foo is parallel and N is large, the

parallelism of this loop significantly differs between callsites A and B. Callsite A’s

loop will always have a self-parallelism of 1, providing no benefit to parallelism

and likely causing slowdown due to synchronization overhead. Callsite B’s loop

will have a self-parallelism of N and would likely be a good candidate for parallel

refactoring. Kremlin can capitalize on the split contexts, incorporating the speedup

from callsite B into its estimates while ignoring callsite A. If all nodes corresponding

to the same static region have similar parallelism stats, they can be merged into a

single node by the planner.

Using Context Sensitivity to Ease Aggregation As with any tool based on

dynamic analysis, Kremlin’s results depend on the inputs used. This limitation

can be partially avoided by running with multiple times with distinct inputs and

comparing results. Kremlin’s region summarizing technique provides a convenient

way to aggregate results from multiple runs into a single combined report.

The ability to aggregate results arises from HCPA’s use of unique identi-

fiers for each program callsite. Kremlin stores these unique IDs in the summarized

region so it is trivial to map regions in one summarized profile to corresponding

regions in a separate profile. This mapping can be utilized to combine the results

of multiple profiles into a single profile. When a region is found in multiple pro-

files, the results from the corresponding regions in each profile can be averaged to

produce the result in the combined profile.

4.4 Identifying Local Parallelism

The parallelism trace outputted by HCPA contains all the information nec-

essary to determine the parallelism of each dynamically executed region as well

as to recreate the dynamic region structure of the program (i.e the region tree).

However, further analysis is needed to localize the parallelism to specific regions

49

Table 4.1: Region Key for MPEG Encoder Benchmark. Regions listed here
appear in the parallelism chart shown in Figure 4.7.

Region Source Lines Function
A motion.c 208-220 ptmotion estimation
B motion.c 211-220 ptmotion estimation
C putpic.c 376-612 ptputpict
D putseq.c 257-518 putseq
E putseq.c 94-125 thread work
F quantize.c 105-137 ptquant
G transfrm.c 176-233 pttransform
H transfrm.c 249-305 ptitransform

of the program. This is because the nesting structure of regions causes parallelism

from a region to percolate up to its ancestor regions. This percolation of paral-

lelism between nested regions makes it difficult to understand if a high parallelism

score indicates that a region, its children, or both have parallelism.

As we discussed at the beginning of this chapter, isolation of parallelism is

critical to effective planning. In this section we will discuss two approaches that

we developed to identify local parallelism. The first approach was used in our user

study and provided a visualization of the program structure and total parallelism

of each region. This approach relied on the user to manually infer the amount of

parallelism based on the visualization and total parallelism. The second approach

resulted from insights gained from our user study and our own experiences with the

first approach. This newer approach provides an automated method for identifying

local parallelism, specifically in the form of a new metric called self-parallelism.

4.4.1 Initial Approach: Parallelism Charts

Our initial approach to localizing parallelism involved creating parallelism

charts like the one shown in Figure 4.7. A parallelism chart plots the total par-

allelism of dynamic regions (y-axis) over the course of the program’s execution

(x-axis). Parent regions encompass children in the parallelism chart (e.g. region A

is a parent of region B), providing the user with an opportunity to see the relation-

50

0%

Percent of Serial Execution Time from Cycle 0 to 89,477,402

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

2
4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768
G G G

F
F F

E

E

E

H H H

A
A

C C

D

B
B B B B B B B

B
B B B B B B

B

mpeg_enc

Figure 4.7: Parallelism Chart for MPEG encoder. Our initial approach
to localizing parallelism was the creation of parallelism charts. These charts plot
the total (or ideal) parallelism of dynamic program regions (y-axis) as the program
executes (x-axis). They allow the inference of the amount of parallelized in specific
cases such as with highly parallel regions. The chart shown here shown here for
the MPEG Encoder benchmark from the ALP Benchmark Suite [SLA+07], with
accompanying region key in Table 4.1. The chart implies a potential speedup of
8× for Region A based on the relationship between its 8 subregions’ parallelism
and its parallelism. Unfortunately it is poor at inferring the localized parallelism
in more complex cases such as Region E.

ships between regions in the hierarchy. This chart inspection method works well in

specific situations, allowing the user to infer the amount of parallelism specific to

a region. For example, region A’s contains roughly 8× the amount of parallelism

than that of it’s 8 children, implying that 8-way parallelism exists in region A.

There are several major drawbacks of this parallelism charts approach.

First, this approach does not scale well to larger programs with many more re-

gions. This limitation could be slightly mitigated by making the charts interactive

and allowing users to “zoom in” to specific parts of the program but this may still

not work for extremely long running regions with many subregions. Second, par-

51

allelism charts work well for inferring the amount of parallelism in highly parallel

regions (e.g. region A) but can lead to confusion for more complicated expres-

sions of parallelism. This limitation is evident in region E in Figure 4.7, which

has a significant amount of parallelism but which contains only 4 subregions—3 of

which have much higher levels of parallelism. The parallelism chart does not give

an indication of how much parallelism is available in region E alone. Finally, the

parallelism charts still relies on expert interpretation to understand the program’s

parallelism. While the charts present the parallelism in a more compact and intu-

itive way, they are not fundamentally different than the manual approach of having

a programmer look through the program to identify potential parallelism.

Our experience with parallelism charts led us to the understanding that any

successful approach to identifying the true amount of parallelism in a region would

need two key characteristics. First, it would need to be completely automated to

avoid requiring expert knowledge to interpret results. Second, it would need to

be presented in a simplified form that was not ambiguous and handled complex

parallelism expressions (e.g. pipeline parallelism) in addition to simple cases (e.g.

doall loops). These requirements led us to the development of self-parallelism as a

key metric for quantifying localized parallelism.

4.4.2 Self-Parallelism

Self-Parallelism is a new metric that we developed to quantify the amount

of parallelism in a region, exclusive of the parallelism in that region’s subregions.

Self-parallelism can also be thought of as the ideal speedup that is possible from

parallelizing a region without modifying its subregions. For example, the self-

parallelism of a loop with independent iterations is equal to the number of loop

iterations (i.e. subregions); in the ideal case, parallelizing that loop would result

in a speedup equal to the number of iterations because all iterations are executed

concurrently rather than in sequence.

Self-parallelism is conceptually similar to self-time in gprof and similar

profilers. Self-time starts with the total time of a region and factors out time in

subregions. Self-parallelism starts with the total parallelism of a region and factors

52

out the parallelism in subregions.

Self-parallelism differs from self-time in that is non-trivial to calculate. Self-

time benefits from the additive nature of time, requiring only a simple subtraction

to factor out a subregion’s contributions. Conversely, self-parallelism relies on

the more complex relationship between the parallelism of region and subregion,

requiring more than simple arithmetic operators to determine the true value.

We can conceptually view the process of determining self-parallelism as the

process of “dividing out” the parallelism from subregions but only in the simplest

cases would division result in the exact value. The exact value of self-parallelism

can only be determined if we have the whole dependency graph available to inspect

and unravel, which unfortunately is too large to store for any non-trivial program.

To make the task of determining self-parallelism tractable, we need a way to ap-

proximate this value using easy to summarize values such as the total amount of

parallelism in each region and the relationships between regions.

Approximating Self-Parallelism We leverage a key observation to help us

approximate self-parallelism: parallelism arises from work that is off of the critical

path. This observation provides the insight for another key observation: work

outside of the critical path will result in parallelism in all ancestor regions. This

second observation is the basis for our approximation equation; by eliminating the

non-critical path work of all a region’s children, we can suppress the expression of

that parallelism in the region itself. Eliminating non-critical path work of subregion

can be achieved by simply replacing the work of each subregion, which includes

both critical path and non-critical path work, with the critical path length of the

subregion. All that is needed for our approximation of self-parallelism is tracking

the critical path length of every dynamic region and a knowledge of the program’s

hierarchical structure (i.e. the dynamic region tree).

With these insights in mind Kremlin uses the following equation to approx-

imate SP (R), the self-parallelism of a region R:

SP (R) =

∑n
k=1 cp(child(R, k)) + SW (R)

cp(R)
(4.2)

53

where n is the number of children of R, child(R, k) is the kth child of R, and cp(Q)

is the critical path length of region Q. SW (R) represents the amount of work that

is performed exclusively in region R (i.e. self-work).

Equation 4.2 bears a strong resemblance to the calculation of total par-

allelism in Equation 4.1. This is by construction as the two metrics follow the

same intuition: the numerator in both represents a measure of work while the

denominator is the ideal parallel time of the region.

The self-work of a region R is calculated using the following equation:

SW (R) = work(R)−
n∑

k=1

work(child(R, k)) (4.3)

We can however simplify the calculation of SP (R) by ensuring that all

SW (R) is always 0. This can be accomplished by ensuring that all work is done

is leaf-regions, which is possible through the use of the self-work sequence regions

we described in Section 4.3.1.

Summarizing Self-Parallelism Kremlin calculates self-parallelism each dy-

namic instance of a region but must combine these separate instances into a single

value for the summarized version of that region. This summarization could use the

average self-parallelism value but this value could be misleading. For example, con-

sider when there is one short running (i.e. low work) but highly parallel (i.e. high

self-parallelism) instance and one long running but mostly serial instance. Aver-

aging self-parallelism would make it appear as though there is significant speedup

to be had from parallelizing the region; in reality the speedup would be limited

because only a short amount of the total work for the region is spent in the highly

parallel instance.

Kremlin instead takes a weighted average of self-parallelism. The idea be-

hind this approach is to calculate the “parallel work” for each dynamic instance.

This parallel work represents the ideal time to execute the parallelized region and

is calculated using the equation workp = work
self−parallelism . Kremlin keeps a running

total of both work and workp for each summarized region: after execution termi-

nates, the weighted average of self-parallelism can be calculated according to the

54

cpi

...

cp(R) = cpi

SP = n * cpi
cpi

= n

cpi

cpi

(a) Parallel Subregions

cpi cpi cpi
...

cp(R) = n * cpi

SP =
n * cpi

n * cpi
= 1

(b) Serial Subregions

Figure 4.8: Self-Parallelism (SP) Scenarios. SP identifies the parallelism local
to a region by relating its critical path to the sum of its subregions’ critical paths
and its self-work. Shown in the example are SP calculations for two regions; (a)
one whose subregions can execute concurrently, (b) one whose subregions must
execute serially.

equation SPweighted(R) = work(R)
workp(R)

. This weighted value will be the value used for

the region during parallelism planning. For the previous example we examined,

this will lead to a self-parallelism that is much closer to that of the long running,

less parallel instance.

Illustrating Self-Parallelism’s Effectiveness To illuminate the effectiveness

of self-parallelism, we will examine the self-parallelism in several scenarios. We will

start by looking at two opposite ends of the parallelism spectrum: a region where

all subregions must be executed in sequence (i.e. a serial region) and a region

whose subregions can all be executed concurrently (i.e. a totally parallel region).

Figure 4.8 illustrates both of these cases.

For the parallel region in Figure 4.8a, its measured critical path will be

equal to a single child (i.e. cp(R) = cpi). Thus, the computed self-parallelism will

be n∗cpi
cpi

= n; this is as expected because its parallelism is equal to the number

of children. Now consider a parent whose children must be executed completely

serially (Figure 4.8b). In this case, the measured cp(R) will be equal to n∗ cpi and

therefore the computed self-parallelism will be n∗cpi
n∗cpi = 1; again, this is expected

55

for (i = 3 . .N−1)

a [i] = 2∗a [i −3]

(a) Loop with Pipeline Parallelism.

cp0 cp3 cp6

cp(R) = n/3 * cpi

SP =
n * cpi

n/3 * cpi
= 3

cp1 cp4 cp7

cp2 cp5 cp8

...

...

...

(b) Semi-parallel Subregions.

Figure 4.9: Self-Parallelism with Pipeline Parallelism. Self-parallelism is
able to identify pipeline parallelism, expressed in (a) as a DOACROSS loop. In
this example, a cross-iteration dependency length of 3 allows three separate strands
of computation to proceed concurrently.

because we cannot overlap execution of the children.

We will now move on to a slightly more complex example where subregions

partially overlap, allowing only a limited amount of parallelism. This situation is

often referred to as either DOACROSS–in the context of loop-based parallelism–or

pipeline parallelism–in the context of task-based parallelism. Figure 4.9 illustrates

this case. The loop in Figure 4.9a has a cross-iteration dependency that spans

three loop iterations. Figure 4.9b shows that three separate strings of dependencies

could be executed in parallel. The self-parallelism of this region is n∗cpi
n
3
∗cpi = 3, which

matches our intuition.

Finally, we will look an even more complex example to demonstrate the

power of self-parallelism. In this final example (shown in Figure 4.10) a signif-

icant amount of parallelism is hidden by the strongly serial implementation in

Figure 4.10a. The dependency graph in Figure 4.10b shows that iterations can

be grouped into independent, diagonal sets that can be executed in parallel. The

critical path of the code goes through 2(n−1)−1 iterations so the self-parallelism

of the outer loop is (n−1)2∗cpi
(2n−3)∗cpi ≈

n
2
.

This final example exemplifies many of the benefits that Kremlin has over

other techniques. Techniques that rely on dependency testing rather than critical

56

void c a l c a r r a y (int ∗∗ a) {
for (i = 1 ; i < N; ++i)

for (j = 1 ; j < N; ++j)

a [i] [j] = a [i −1] [j] + a [i] [j −1] ;

}

(a) Loop with unexpressed parallelism.

...

...

...

...

...

i

j

1

1

2

2

3

3

N-1

N-1

cp(R) = (2(N-1)-1)*cpi

(b) Iteration Dependency Graph

Figure 4.10: Uncovering Hidden Parallelism with Self-Parallelism. Self-
parallelism’s underlying reliance on critical path analysis allows it to uncover par-
allelism even when masked by a serial implementation. The code in (a) shows a
nested loop operating on a 2D array with cross-iteration dependencies over both
loops, making it appear very serial. The iteration dependence graph in (b) shows
that iterations can be grouped into independent, diagonal sets, allowing parallel
execution if loop skewing and interchange are used. The critical path goes through

2(N−1)−1 iterations, leading the self-parallelism of the region to be (n−1)2∗cpi
(2n−3)∗cpi ≈

n
2
.

path analysis for locating parallelism would miss this parallel region because of its

initial serial expression. Automatic parallelizing compilers would have difficulty

with this code because the array is passed using an array of pointers to arrays,

requiring complicated shape analysis to uncover the parallelism. In general, uncov-

ering parallelism could require an arbitrary number of complex analyses. Because

of complexity and runtime issues, modern compilers are not able to compose all

57

of these heroic tasks simultaneously into one coherent analysis and transformation

framework.

4.5 Evaluation

As we have discussed earlier, traditional critical path analysis leads to con-

fusion about the source of parallelism through a program. This confusion is a result

of ignoring the structure of the program, which leads many serial regions to appear

parallel because they have subregions with substantial amounts of parallelism.

We examined all eight benchmarks in the NAS Parallel Bench (NPB) bench-

mark suite [BBB+91] in order to determine self-parallelism’s ability to accurately

quantify the amount of parallelism available in a region. These benchmarks are

known for having abundant amounts of parallelism but with many regions that do

not contain parallelism. The nesting structure of parallel regions contained within

serial regions provides an opportunity to assess a parallelism metric’s ability to

localize parallelism to specific regions.

We began by classifying all 1953 regions in NPB into one of four categories

according to the amount of parallelism available: serial (parallelism < 1.1), mod-

erately parallel (1.1 to 2.0), parallel (2.0 to 5.0), or very parallel (parallelism >

5.0). We used Kremlin to calculate both the total and self-parallelism numbers for

all regions so that we could perform the classification.

Figure 4.11 shows the results of this classification. Self-parallelism identi-

fied approximately 6× as many regions as being serial when compared to total-

parallelism. There was also a corresponding large drop in the number of regions

classified by self-parallelism as being very parallel.

The data from Figure 4.11 is alone not enough to determine whether self-

parallelism correlates well with ability to exploit parallelism. To determine this,

we determined what percentage of regions in several ranges of parallelism (total-

and self-) were parallelized in the third-party parallel implementation of the bench-

marks. A correct classification for a parallelism metric would show that regions

classified with low levels of parallelism would rarely be parallelized while a larger

58

0	

20	

40	

60	

80	

serial	
 moderate	
 parallel	
 very	
 parallel	

%
	
 o
f	
 R

eg
io
ns
	

Total	
 Parallelism	
 Self	
 Parallelism	

(1.0	
 	
 ~	
 1.1)	
 (1.1	
 	
 ~	
 2.0)	
 (2.0	
 	
 ~	
 5.0)	
 (
 >	
 5.0	
)	

Figure 4.11: Classification of Regions Based On Total- and Self-
Parallelism. All 1953 regions in the NPB benchmark suite were classified based
on their parallelism, both total and self. Self-parallelism quantifies the parallelism
attributable to a specific region. In contrast, total parallelism includes parallelism
inherited from a region’s children. Self-parallelism identifies 6× more regions as
being serial than total-parallelism. A corresponding drop is seen in the number of
regions classified by self-parallelism as being very parallel. The large number of
changes in classification emphasizes the importance of self-parallelism in helping
to avoid “false positives,” regions that are classified as parallel but are serial.

percentage of regions with high parallelism would be parallelized.

Figure 4.12 charts the percentage of regions for both total- and self-

parallelism as a function of both parallelism and work coverage. For both total- and

self-parallelism, regions with parallelism less than 5.0 are rarely parallelized. This

indicates that the regions that self-parallelism classifies as having low parallelism

do indeed have low levels of parallelism: they are rarely exploited. Conversely, a

much larger percentage of regions that self-parallelism classifies as being very par-

allel have been parallelized. This indicates that self-parallelism performs better at

classifying regions as being very parallel.

While Figure 4.12 shows that self-parallelism is better at predicting whether

59

0%	
 0%	
 31%	

0%	
 1%	
 25%	

0%	
 0%	
 20%	

0%	
 0%	
 12%	

0%	
 0%	
 15%	

0%	
 0%	
 12%	

Self	
 Parallelism	
 Total	
 Parallelism

1.1 5.0 1.0

1%

5%

Work	

0%

100%

Inf 1.1 5.0 1.0 Inf

Figure 4.12: Percentage of regions parallelized as a function of parallelism
and work. All 1953 regions were classified based on their parallelism and work
coverage. The chart shows the percentage of regions inside each classification
range that were parallelized in by third-party experts. None of the regions with
SP of less than 1.1 were parallelized, indicating that SP correctly classified serial
regions (Figure 4.11). The percentage for “very parallel” regions (parallelism >
5.0) SP is approximately double that of the same classification with TP. Manual
analysis of the non-parallelized regions with SP > 5.0 and work > 5% (i.e. upper
right bucket) revealed that most of these regions were also parallel but were not
exploited because of region-nesting or infrequently occurring dependencies.

a region will be parallelized, it leaves one open question: why isn’t the percentage

higher? To determine if self-parallelism was correct in classifying these regions,

we examined the 41 regions classified as being in the upper right square for self-

parallelism (SP > 5.0, work > 5%) but that were not exploited in the third-party

version. Of these 41 regions, 9 contained parallelism that was difficult to exploit

(e.g. because of difficult-to-resolve WAW dependencies). The remaining 32 had

easily exploitable parallelism but we found that either an ancestor or descendant

of the region was already parallelized and thus excluded those regions from being

parallelized. This re-emphasizes the importance of incorporating region structure

information during planning: it is possible that parallelization of a less frequent

60

region negates the benefit of parallelizing a region with a larger work coverage.

Acknowledgments

Portions of this research were funded by the US National Science Foun-

dation under CAREER Award 0846152, by NSF Awards 0725357, 0846152, and

1018850, and by a gift from Advanced Micro Devices.

This chapter contain materials from “Kremlin: Rethinking and Rebooting

gprof for the Multicore Age”, by Saturnino Garcia, Donghwan Jeon, Chris Louie,

and Michael Bedford Taylor, which appears in PLDI ’11: Proceedings of the 32nd

ACM SIGPLAN conference on Programming language design and implementation.

The dissertation author was the primary investigator and author of this paper.

This material is copyright c©2011 by the Association for Computing Machinery,

Inc.(ACM). Permission to make digital or hard copies of part or all of this work

for personal or classroom use is granted without fee provided that the copies are

not made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page in print or the first screen in

digital media. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

to republish, to post on servers, or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Publications Dept., ACM, Inc.,

fax +1 (212) 869-0481, or email permissions@acm.org.

This chapter contains material from “Kismet: parallel speedup estimates for

serial programs”, by Donghwan Jeon, Saturnino Garcia, Chris Louie, and Michael

Bedford Taylor, which appears in OOPSLA ’11: Proceedings of the 2011 ACM

international conference on Object oriented programming systems languages and

applications. The dissertation author was the secondary investigator and author

of this paper. The material in these chapters is copyright c©2011 by the Association

for Computing Machinery, Inc.(ACM). Permission to make digital or hard copies of

part or all of this work for personal or classroom use is granted without fee provided

that the copies are not made or distributed for profit or commercial advantage and

61

that copies bear this notice and the full citation on the first page in print or the

first screen in digital media. Copyrights for components of this work owned by

others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept.,

ACM, Inc., fax +1 (212) 869-0481, or email permissions@acm.org.

This chapter contains material from “The Kremlin Oracle for Sequential

Code Parallelization”, by Saturnino Garcia, Donghwan Jeon, Chris Louie, and

Michael Bedford Taylor, which is set to appear in IEEE Micro. The dissertation

author was the primary investigator and author of this paper. The material in this

chapter is copyright c©2012 by the Institute of Electrical and Electronics Engineers

(IEEE). Personal use of this material is permitted. Permission from IEEE must

be obtained for all other uses, in any current or future media, including reprint-

ing/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

This chapter contains material from “Bridging the Parallelization Gap: Au-

tomating Parallelism Discovery and Planning”, by Saturnino Garcia, Donghwan

Jeon, Chris Louie, Sravanthi Kota Venkata, and Michael Bedford Taylor, which

appears in USENIX Workshop on Hot Topics in Parallelism (HotPar), 2010. The

dissertation author was the primary investigator and author of this paper.

Chapter 5

From Parallelism to

Parallelization Plan

Kremlin’s parallelism discovery phase provides the user with the amount of

self-parallelism in each region but this alone does not provide the actionable infor-

mation needed to start parallelization. In this chapter we will look at the process of

moving from a parallelism profile to a customized parallelization plan. We’ll start

by defining parallelism–both informally and formally–before discussing important

related issues such as estimating the time of a region after it has been parallelized

and identifying the type of parallelism available in a region. Next, we will intro-

duce the concept of planner personalities and discuss several planners that target

different systems. Finally, we will evaluate how our planner performs by compar-

ing Kremlin’s plans to actual parallel programming transformations performed by

expert, third-party programmers.

5.1 Defining Parallelism Planning

Parallelism planning ultimately aims to maximize parallel speedup while

minimizing the amount of programmer effort. This ultimate goal is not the only

goal though as human factors play a large role in forming a good parallelism plan.

For example, large, complex programs are likely to require a lengthy parallelization

process; it is therefore important that a parallelization plan enable an iterative

62

63

process of parallelizing the program region-by-region, starting with the regions

with the largest potential benefits.

We will informally define parallelism planning as the problem of producing

a sequence of program regions for the programmer to parallelize, ordered according

to their expected impact on program execution. Self-parallelism and work provide

the basis for creating an effective parallelism plan but additional factors will also

impact planning. One such constraint is the risk of over-parallelizing the program:

since parallel execution often incurs some overhead in terms of work and/or re-

source contention, expressing more parallelism than there are cores available to

exploit can result in slowdown. For instance, we found that in our experimental

setup using OpenMP it was seldom profitable to parallelize a child region of a re-

gion that had already been parallelized. Another constraint is that synchronization

and data movement costs in the system often affect the smallest parallel region

that can attain speedup.

We now formally define the problem of parallelism planning so that we

may later solve it algorithmically. Let RT be the set of regions in a program’s

summarized region tree T . A parallelism plan creates a tuple 〈RP , <〉 that defines

both the subset of regions that should be parallelized (RP) and a relation (<) that

is true for A < B iff A should be parallelized before B. While it is possible to define

this problem in terms of the static region graph G rather than the region tree T , the

region tree format enables context-sensitive planning as discussed in Section 4.3.4.

The use of a tree also simplifies our planning algorithms; in general, algorithms

that work on trees are less complex than those that must handle arbitrary graphs.

A set of constraints, C, will help to define both RP and <. Examples of

these constraints range from architecture-specific constraints (e.g. the number of

cores available), to language-specific constraints (e.g. inability to express pipeline

parallelism in OpenMP), and even human factors (e.g. the desire to achieve large

speedups as soon as possible). These constraints are combined to form a person-

ality for the planner. A planner personality may range from detailed (e.g. fine-

grained parallelism on a 100-core Tilera machine) to general (e.g. coarse-grained

parallelism), depending on the goal of the user; detailed planners will have better

64

performance on targeted systems while broader personalities will have more robust

performance across a broader range of machines.

5.2 Estimating Parallel Execution Time

Parallelism planning requires a model of the impact of various decisions

in order to be successful. Kremlin models parallel execution time by leveraging

the self-parallelism calculated during parallelism discovery along with other major

factors in performance such as the number of available cores, the synchroniza-

tion overhead of parallelization, and the types of parallelism that can successfully

exploited by the target system. With this model, Kremlin can evaluate the effec-

tiveness of many potential parallelization plans, allowing the planner to choose the

plan that will lead to the largest speedup.

Kremlin uses the following equation to calculate the parallel execution time

of a region R:

ET (R) =



∑n
k=1ET (child(R, k))

min(SP (R), A(R))
+O(R) non-leaf

work(R)
min(SP (R), A(R))

+O(R) leaf

(5.1)

where A(R) is the number of cores allocated to R, child(R, k) is the kth child region

of R, and O(R) is the parallelization overhead of R.

SP (R) denotes the amount of self-parallelism that is available to be ex-

ploited by the system, which is not necessarily the same as the self-parallelism

calculated during parallelism discovery. Some systems can profitably exploit only

a limited set of parallelism types (e.g. data parallelism on GPUs). In the following

section, we will describe how we might determine the type of parallelism available

in a region. Kremlin can use this parallelism type information to set SP (U) = 1

for any region U that contains unexploitable parallelism.

Leaf and non-leaf regions are handled similarly despite the use of separate

equations for each type. The first term for both cases represents the ideal par-

allelized time of the region when A(R) cores are allocated to it while the second

65

term (O(R)) corrects for the overhead associated with parallelization. The numer-

ator of the first term represents the amount of serial work to be done, either the

work in the region itself (if the region is a leaf) of the combined execution times

of the region’s children. The denominator represents potential speedup available

from parallelization. This speedup is limited either by the self-parallelism or the

allocated core count, meaning that speedup is limited either fundamentally by

the amount of parallelism available in that region or by the amount of parallel

resources available in the system.

The second term, O(R) models target-dependent parallelization overhead.

Parallel execution typically involves overhead from several sources: thread man-

agement, synchronization, communication, etc.. As a result, the overhead factor

is highly target-dependent. For example, the synchronization operation takes less

than 20 cycles in the MIT Raw processor but takes several thousand cycles on

shared memory multi-core processors. As such, Kremlin allows target-dependent

customization of O(R) by accepting parallelization constraints. This overhead

function directly impacts the parallelization granularity as the amount of work in

a region should offset parallelization overhead for a profitable parallelization.

Execution time is defined recursively, with a non-leaf region requiring the

execution time of its children. Calculating the execution time of the overall pro-

gram (i.e. the main function) is a recursive process, with leaf regions acting as

the base cases. In practice, execution time is calculated in a bottom-up manner

starting at the leaves.

Kremlin’s basic model for parallel execution time ignores many factors that

can affect parallel performance. For example, we showed that modeling the in-

fluence of caches on performance leads to more accurate estimates for program

speedup [JGLT11]. However, our experience shows us that increasing the accu-

racy of program speedups does not fundamentally change the results of planning;

the results of aforementioned work are therefore beyond the scope of this thesis.

66

5.3 Identifying Parallelism Types

While Kremlin’s self-parallelism profile quantifies the parallelism in each

region of the program, there is no guarantee that the parallelism will be expressible.

As we alluded to earlier, many systems have limitations on the type of parallelism

that can expressed. In this section we will describe a procedure for identifying the

type of parallelism available so that we may indicate to our planner that certain

regions will not be profitable to exploit.

As previously described, Kremlin’s region hierarchy has been designed to

ensure that only leaf regions have self-work; any parallelism inside of the leaves

is therefore instruction level parallelism (ILP). ILP is typically handled automat-

ically by some combination of the compiler and hardware so most planners will

consider the self-parallelism of all leaf regions to be 1 (i.e. not parallelizable by

the programmer).

Kremlin checks the region type of non-leaf regions to determine if the paral-

lelism is either loop- or task-based—loop regions being guaranteed to be the former

and function regions being the latter. Loop regions with parallelism typically have

either an embarrassing amount of parallelism (e.g. DOALL loop) or a small, fixed

amount of parallelism (e.g. DOACROSS loops). Embarrassingly parallel loops are

fairly easy to detect as the critical path the loop is the same as the critical path of

the longest iteration (as shown in Figure 4.8a). Loops with small amounts of fixed

parallelism are usually also easy to detect as their self-parallelism is only a small

fraction of the total number of iterations of the loop. Systems such as OpenMP

are efficient only at exploiting embarrassingly parallel loops: Kremlin is therefore

able to cater to their needs in planning by setting the self-parallelism of all other

loops to 1.

Function regions with parallelism are similar to loops in that they tend

to be either completely parallel (e.g. in task-level parallelism) or have a small,

fixed amount of parallelism (e.g. pipeline parallelism). Kremlin can differentiate

between the two in the same manner as it handled loops, by comparing critical

path lengths of a region with its subregions or comparing the self-parallelism with

the number of subregions.

67

While the above cases cover most regions, there is still the possibility that a

region will have a scalable amount of parallelism but not be embarrassingly parallel.

The example shown in Figure 4.10 demonstrates this point as the self-parallelism

of the outer loop scales with the number of iterations (N) but is not equal to the

number of iterations. Kremlin can identify these cases using a simple heuristic:

if the ratio of self-parallelism to the number of subregions is higher than some

constant c it considers the loop to contain scalable parallelism. This heuristic can

of course fail in degenerate cases where there is a large, fixed amount of parallelism

in a region; to detect this case, the user could run Kremlin on inputs of varying size

and note if there is any change in the self-parallelism for the questionable region.

5.4 Planner Personalities

We can view parallelization as a special type of performance optimization.

Optimizations often vary in effectiveness from system to system; the same opti-

mization that brings a large benefit on one processor may even be harmful on an-

other processor. Just as no compiler would blindly apply all possible optimizations

for every target, no competent parallel programmer would attempt to parallelize

every region of the program that has parallelism. This realization ultimately led

us to develop the concept of the planner personality.

Planner personalities brings the concept of target-specific optimizations to

parallelism planning. Each planner personality summarizes the salient character-

istics of a defined target, providing an algorithm that maps the parallelism and

program structure uncovered in parallelism discovery to an ordered parallelization

plan that is tailored for the specified target. The specified target can be as detailed

as desired, with highly detailed specifications providing more accurate plans at the

cost of reduced applicability to other systems.

In this section we will discuss several planning personalities: one for the

OpenMP environment, a prototype for the OpenCL environment, and one tar-

geting Cilk++. We will also provide some insight gained from the development

of these personalities and briefly talk about the process of developing additional

68

personalities.

5.4.1 OpenMP Planning Personality

OpenMP is a popular parallel programming environment with a strong

focus on parallelization of loops. Programmers insert pragma statements into their

source code and the OpenMP compiler generates the necessary threaded code for

them to run. While it does support nested parallelism, the overhead is often too

high for it to be effective: the number of execution contexts available is often not

enough to handle the extra threads that are spawned and thus the cost of spawning

new threads is never amortized. Furthermore, OpenMP requires the programmer

to transform loops into parallel (i.e. DOALL) loops in order to achieve good

performance.

Kremlin’s OpenMP planner takes into account the major constraints asso-

ciated with OpenMP. The planner disallows nested parallel regions to avoid the

performance penalty we observed on our experimental setup. OpenMP supports

reduction variables in parallel loops, but they have significant overheads [BO01].

We found that the amount of work in a region should be large enough to amortize

these costs. For instance, reduction-based loops in the SPEC OMP2001 bench-

marks art and ammp have too little work to overcome overheads. On the other

hand, ep, from the NAS Parallel Benchmarks [BBB+91] (“NPB”), has a reduction-

based main function that should be parallelized because it has ample work.

Based on these constraints for OpenMP planning, we can formulate the

problem as follows. Given a summarized region tree T , select a set of regions to

parallelize, R, such that in any path, P , in T there is at most one node in R (i.e.

|P ∩ R| ≤ 1). The non-nesting requirement means that all regions in R will have

all n available cores allocated to it (i.e. A(r ∈ R) = n). The optimal solution will

minimize the time required to execute the program.

OpenMP Planning Algorithm A naive algorithm for determining which re-

gions to parallelize would be to repeatedly select the region with the largest po-

tential speedup among all regions considered for parallelization. When a region is

69

t=50
s=5X

B
t=50
s=5X

C

t=100
s=2X

A

Figure 5.1: Shortcomings of Greedy Planning. Using a greedy planning al-
gorithm can lead to sub-optimal results. In the region graph shown here, region
A has the largest potential speedup, a potential cost reduction of 50 (2× speedup,
100 → 50). However, each of regions B and C have a reduction of 40 (5×, 50 →
10) for a total reduction of 80 when combined together. A greedy solution would
pick region A, leading to a sub-optimal result.

selected by the planner, any region that can reach or can be reached from a selected

region would then be excluded from consideration to avoid nested parallelization.

In some cases, this algorithm may lead to optimal results but in many cases it is

suboptimal. For example, a parent region might have the highest single potential

speedup, but collectively, a set of its child regions could offer a higher combined

speedup. A greedy algorithm would select the parent, precluding the more optimal

solution of selecting the set of child regions. Specifically, this problem was observed

in two of the NPB benchmarks: ft and lu.

Figure 5.1 demonstrates how this greedy approach to planning can lead to

suboptimal results. In this example, parallelizing region A will lead to a reduction

in execution time of 50 (2×, 100 → 50). However, both regions B and C can

each be reduced by 40 (5×, 50 → 10) for a total reduction of 80. It is therefore

advantageous to parallelize those two regions rather than immediately go for the

largest single speedup (from region A).

Kremlin’s OpenMP planner employs a dynamic-programming algorithm to

find the optimal set of regions to parallelize. This algorithm works as follows.

Kremlin breaks down the problem of finding the optimal set of regions R for the

whole program (i.e. the root region of the summarized region tree T) into the

problem of finding the optimal set of regions for each subtree rooted at one of

the root node’s children. Kremlin combines the solutions of these subproblems by

70

taking advantage of the fact that the subtrees of the children do not overlap. This

non-overlapping property means there are only two possible choices to be made:

either the root region is selected or the union of all subproblem solution sets is

selected. If the root region is selected, no other regions can be selected because

all other regions are nested under that region. If the root region isn’t selected,

all subproblem solutions can be combined because the non-overlapping property

of each child subtree guarantees that there is no path from a region in on subtree

to another. Kremlin uses the parallel time execution model described earlier to

determine which of the options will lead to a lower execution time and should

therefore be selected.

Kremlin can recursively apply the algorithm just described to each child of

the root region to find the optimal solution for the subtree rooted at that region.

This recursion will stop when we reach the leaves of the tree as their are no subtrees

to consider at that point: the only choice would be to parallelize the region or not.

The preceding algorithm provides the set of of regions that should be par-

allelized but does not provide an parallelization ordering. Kremlin produces an

ordering by setting the core allocation count for all regions to 1 (i.e. not paral-

lelized) then iteratively selecting only one region r ∈ R to parallelize (i.e. setting

A(r) = n) and noting the decrease in execution time. The times are then placed in

decreasing order to produce a plan that recommends the regions with the largest

speedups first.

5.4.2 OpenCL Planning Personality

Graphic processing units (GPU) have recently received considerable atten-

tion as general purpose computation devices (i.e. GPGPUs). GPGPUs are now

programmable via platforms such as OpenCL and NVIDIA’s Compute Unified

Device Architecture (CUDA). These platforms allow programmers to exploit the

massive data-parallel processing power of GPGPUs, and have led to the rapid

adoption of GPGPUs in fields such as scientific computing.

We have developed an OpenCL-based, GPGPU planning personality pro-

totype to help programmers realize the potential of GPGPUs. This personality

71

builds upon our OpenMP planner as both OpenMP and OpenCL share some com-

mon traits. First, both environments work best with embarrassingly parallel region

so both use Kremlin’s ability to filter out other types of parallel regions. Second,

both OpenMP and OpenCL have a limitation on their ability to exploit nested

parallelism. In OpenMP this limitation results from the significant overhead as-

sociated with nested parallelism. In OpenCL this limitation is fundamentally tied

to the programming model: each OpenCL kernel is self-contained and therefore

cannot exploit another kernel for additional parallelism.

Our OpenCL personality deviates from our OpenMP personality mainly

in the way it estimates parallel execution time. GPGPUs often have hundreds

of processing cores, greatly increasing the potential speedup over OpenMP envi-

ronments where most systems are limited to eight or fewer cores. GPGPUs also

differ from OpenMP environments in both the size and nature of parallelization

overhead. These devices support hundreds of lightweight threads, each operating

mostly independently of one another; this greatly reduces the overhead associated

with synchronization on GPUs. Conversely, the OpenCL model introduces a new

type of overhead: the overhead required to transfer data from a “host” device (nor-

mally a traditional CPU) to the “guest” (e.g. a GPU) that is executing the parallel

kernel. This overhead is especially large for discrete GPUs where data must be

transferred over a PCI bus that have far less bandwidth than the internal CPU

buses. Our OpenCL planner takes these differences into account by appropriately

setting O(R) in Equation 5.1.

We plan to continue refining our OpenCL planning personality to more

accurately model the OpenCL environment. For example, the data transfer over-

head between host and guest scales with the size of data rather than the number

of threads working on it. We plan to create a dynamic analysis pass that examines

the working set size of each region of the program; this profiling data can then be

passed to the planner to more accurately set O(R). This data transfer overhead

can also affect planning in other ways; for example, if two high-coverage regions are

separated by a low coverage region that has the same working set, additional over-

head can be avoided by also recommending the low-coverage region be parallelized

72

soon after the high-coverage regions.

5.4.3 Cilk++ Planning Personality

Cilk++ [Lei09] is a popular parallel programming environment that extends

C++, supporting both fork-join style parallelization and parallel loops. In contrast

to OpenMP, Cilk++ leverages very light-weight threads and a work-stealing-based

scheduler, helping programmers exploit both nested and finer-grained parallelism.

Kremlin was originally developed with a Cilk++ planner, which was used

in the user study described in Chapter 2. This early version of Kremlin did not

employ region summarizing or have a concept of self-parallelism. This meant that

the parameters of planning were much different than the current version of Kremlin

and therefore that version of the Cilk++ planner is no longer relevant.

Cilk++ lacks a large, established benchmark suite, which has hindered our

ability to perform a quantitative evaluation of potential Cilk++ planning person-

alities. We are still however able to posit an approach to planning for Cilk++

planning, which we will now briefly describe.

Unlike OpenMP, Cilk++ does not incur significant overhead for nested

parallelism so the limitation on nested parallelism is no longer valid. We are still,

however, limited by the number of cores available. Rather than selecting a binary

yes/no as to whether a region will be parallelized, we now must decide how many

parallel resources (i.e. cores) to allocate to each region. If we let A(R) denote the

number of cores allocated to a region R then we have the following constraint: for

any path P in the summarized region tree T the following constraint must be met:

∏
R∈P

A(R) < N (5.2)

where N is the total number of cores available. This constraint comes about

because core usage is multiplicative between parent and child: if the parent is

given i cores and the child is given j cores then there will be i simultaneous

children requiring j cores each, a total of i ∗ j cores.

For each region R we must decide how to split the cores between parent and

73

child in order to minimize execution time while still not violating the constraint in

Equation 5.2. However we do not know if an ancestor of R will be better suited to

use the cores so we must determine the best allocation for a range of possible core

counts, likely from 1 core to N cores.

We can calculate the execution time of R (ET (R)) using Equation 5.1 by

setting A(R) = C and setting the ET of each child (ET (child)) to the time when

A(child) is N
C

. If we work in a bottom-up fashion, we can create a table of “best”

execution times for each node for any given value of C and then use that table to

determine the ET (child) when calculating ET (R).

While the algorithm above would give us the best allocation of cores to re-

gions, it would not give us an ordering of regions. The best ordering will ultimately

depend on the objective of the programmer. The simplest method is to start with

all regions allocated only a single core. Next, we find the region R that leads to

the smallest execution time when allocating cores to only that region. We would

then leave that region with A(R) cores and repeat the process with the remaining

regions.

5.4.4 Developing Additional Planner Personalities

Planning personalities provide an avenue for the user to tailor planning rec-

ommendations to different systems. Underlying the development of new planning

personalities is a fundamental tension between accuracy and portability. The de-

signer of a planning personality must decide the level of architectural independence

that is part of the personality. Architectural independence is a desirable property

for portability, allowing the planning results to be useful over a wide range of

systems, but may need to be sacrificed in order to attain sufficient accuracy.

The development of the OpenMP and Cilk++ personalities provided some

insight into the portability-accuracy trade-off. These personalities required that

we model only fundamental parameters of the parallel machines: synchronization

costs, types of exploitable parallelism, and the profitability of nested parallel re-

gions. These parameters are likely to port well to other parallelization systems,

reducing the work necessary to develop new planners for these other systems. Our

74

first two personalities required algorithms to handle both nesting (Cilk++) and

non-nesting (OpenMP) parallelism environments. We expect these two algorithms

to provide the basis for many different personalities, as demonstrated by our re-use

of the OpenMP planning algorithm for the our GPGPU personality.

We found that while machine-specific parameters such as cache size, page

size, and memory bandwidth do influence parallel performance, and influence how

code should be transformed, they have limited impact on the set of regions that

should be parallelized. These machine-specific parameters therefore are of greater

import during the Enabling Transform stage of parallelization than during the

Planning stage.

5.5 Experimental Evaluation

We evaluated Kremlin’s planning abilities using all 8 programs in the NAS

Parallel Benchmarks (NPB) [BBB+91] and all 3 C-language programs in the SPEC

OMP2001 benchmark suite. For NPB, we used the third-party OpenMP manually-

parallelized version of these programs [omn] as a point of comparison for Krem-

lin’s ability to create an effective parallelization plan. For SPEC OMP2001, we

ran our tool on the corresponding serial versions of the programs in the SPEC

2000 benchmark suite, and then compared Kremlin’s plans against those paral-

lelized by humans in the SPEC OMP2001 versions. For art and ammp, SPEC

OMP versions benefit from serial optimizations compared to their SPEC 2000

counterparts [TWFO09]. To exclude the effect of serial optimizations, we applied

those optimizations on the SPEC 2000 code before running Kremlin. Our evalua-

tion included only third-party benchmarks that have preexisting parallel versions

to facilitate comparison and to make our results more credible. The programs

vary greatly in terms of speedup (1.5x to 25.89x, Figure 5.2), but low coverage,

low parallelism, parallelization overhead, and other factors significantly reduce the

percentage of regions that are good candidates for parallelization (Figure 5.4).

One might expect that iterative, “trial and error” manual parallelization

would do significantly better than Kremlin, because the user has the benefit of

75

performing iterative runtime measurements as they incrementally parallelize the

program. We found that parallelization with Kremlin came surprisingly close in

terms of performance on all but two benchmarks, and in those cases, it did much

better. At the same time, it achieved these results with substantially smaller

numbers of regions that needed to be parallelized.

5.5.1 Methodology

We first ran Kremlin on the unmodified, serial versions of the benchmarks

to generate a parallelism plan for each program. The resulting plan was used to

create a parallelized version of the serial program. In cases where Kremlin’s par-

allelism plans recommended regions that had also been parallelized in the third-

party, manually-parallelized version of the benchmark (“MANUAL”), we reused

the parallelized regions from the MANUAL version. This allowed us to control for

variances in performance that could result from slightly different parallel imple-

mentations of the same region.

To generate and evaluate parallelism plans, the ‘W’ input set was used for

NPB benchmarks while the ‘train’ input was used for SPEC OMP. Kremlin relies

on dynamic analysis and therefore may be affected by varying inputs. To test

for input-related sensitivities, we reused the parallelized program based on the

‘train’ input parallelism plan to measure the speedup numbers for SPEC OMP

benchmarks with the larger ‘ref’ input. We found that Kremlin-based parallel-

ization remained equally competitive on both input sizes, despite requiring a much

smaller set of parallelized regions.

Program performance was tested on 32-core system (8 × AMD 8380 Quad-

core processors) with 256GB of memory running on the Linux 2.6.18 Kernel. Pro-

grams were compiled with gcc version 4.1 with OpenMP and -O3 flags specified.

We executed the programs using configurations of 1, 2, 4, 8, 16, and 32 cores. As

is typical for these kinds of systems, performance can decline as locality effects

start to trump the benefits due to parallelization. For each parallel version, we

determined the configuration with the best performance and report that number.

76

Table 5.1: Evaluating Plan Size. Kremlin offers significantly smaller plan sizes
(1.57× on average) than the MANUAL implementation.

Benchmark MANUAL Kremlin Overlap Reduction

ammp 6 3 2 2.00x
art 3 4 1 0.75x

equake 10 6 6 1.67x
bt 54 27 27 2.00x
cg 22 9 9 2.44x
ep 1 1 1 1.00x
ft 6 6 5 1.00x
is 1 1 0 1.00x
lu 28 11 11 2.55x
mg 10 8 7 1.25x
sp 70 58 47 1.21x

Overall 211 134 116 1.57x

5.5.2 Comparing Plan Size

Kremlin seeks to focus the programmer’s efforts on a small subset of regions

that have the most potential for speedup from parallelization. To test Kremlin’s

effectiveness in this regard, we compared Kremlin’s recommended regions (“plans”)

to the set of regions that were parallelized in the third party-parallelized version of

the benchmark suite, referred to as MANUAL. Figure 5.1 provides this plan size

comparison.

Across all of the regions in the benchmarks, the MANUAL version included

1.57×more regions than the plan provided by Kremlin. For small benchmarks (e.g.

ep, ft, and is) there was little room for improvement, but larger, more complex

benchmarks showed larger savings compared to the average. At the extreme end,

lu’s manually-parallelized plan size was 2.55× the size of Kremlin. The programmer

using Kremlin would have had far fewer regions to parallelize than the original third

party programmers. 1

1 Programmer effort metrics for the Enabling Transforms part of parallelization is clearly a
hard problem. We have also explored other metrics, like lines of code, as proxies for programmer
effort in Kremlin, since it could perhaps be a better proxy for parallelization complexity. However,
our impression from the benchmarks is that, at least, for OpenMP, region count is a better, albeit

77

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1.95x 9.81x10.28x3.96x 3.95x25.89x3.82x

5.1x

5.9x
2.75x

1.85x

6.84x

Re
la

tiv
e

 S
p

e
e

d
up

Figure 5.2: Evaluating the Performance of Kremlin-based Parallelization.
Even though Kremlin proposes a substantially smaller number of regions to a user
(Table 5.1), this graph shows that the resulting performance is generally quite close
to the MANUAL parallelized versions, ranging from 12% slower to 85% faster.
Note that Kremlin formulated its plans solely by examining the execution of the
unmodified serial code. In order to reduce the experimental effects of different
effort levels and different programmers for hand tuning, we evaluated the plans for
Kremlin by using the parallelized code regions in the manually-parallelized version.
In the case of SP and IS, Kremlin’s recommendations were significantly different,
so we had to manually apply those optimizations.

5.5.3 Performance Comparison

Next, we evaluated the speedup of parallelized versions based on Kremlin’s

parallelism plan against the MANUAL version. Figure 5.2 shows the results of

this comparison. The Kremlin version of sp and is performed significantly better

(1.85×, 1.46×) than MANUAL as Kremlin was able to identify parallelism that

was missed in the MANUAL version. In this case, Kremlin recommended a coarse-

grained parallelization, requiring privatization and refactoring. Other benchmarks

saw a slight degradation in performance, averaging about 3.8%. Kremlin generally

selected the same regions as MANUAL, but decided to stop earlier because of the

imperfect, approximation of programmer effort.

78

bt
0 10 20 30 40 50

T
im

e
 R

e
d

u
c
ti
o

n
 (

%
)

0

2

4

6

8

10

12

cg
0 5 10 15 20

T
im

e
 R

e
d

u
c
ti
o

n
 (

%
)

0

10

20

30

40

50

60

mg
0 2 4 6 8 10

T
im

e
 R

e
d

u
c
ti
o

n
 (

%
)

0

5

10

15

20

25

sp
0 10 20 30 40 50 60 70

T
im

e
 R

e
d

u
c
ti
o

n
 (

%
)

0

1

2

3

4

5

6

7

lu
0 5 10 15 20

T
im

e
 R

e
d

u
c
ti
o

n
 (

%
)

0

5

10

15

20

25

30

35

ft
0 1 2 3 4 5 6 7 8

T
im

e
 R

e
d

u
c
ti
o

n
 (

%
)

0

5

10

15

20

25

30

equake
0 2 4 6 8 10

T
im

e
 R

e
d

u
c
ti
o

n
 (

%
)

0

10

20

30

40

50

art
0 1 2 3 4 5 6 7

T
im

e
 R

e
d

u
c
ti
o

n
 (

%
)

0

10

20

30

40

50

60

70

ammp
0 1 2 3 4 5 6 7 8

T
im

e
 R

e
d

u
c
ti
o

n
 (

%
)

0

5

10

15

20

25

30

35

40

is

0 1 2

T
im

e
 R

e
d
u
c
ti
o
n
 (

%
)

0

20

40

60

80

100

ep

0 1 2

T
im

e
 R

e
d
u
c
ti
o
n
 (

%
)

0

20

40

60

80

100

Figure 5.3: Effectiveness of Region Prioritization. Kremlin provides a list
of regions prioritized by their estimated speedup so that users can maximize their
productivity. The graphs above show the marginal decrease in execution time,
relative to the original program run time, as each region in Kremlin plan is par-
allelized. We also included regions that were filtered out in the Kremlin plan but
were chosen to be parallelized by the expert third party (MANUAL). These re-
gions are shown to the right of the dotted line. As the graphs illustrate, little
benefit came from regions that were parallelized by the third-party but that were
not suggested by Kremlin.

diminishing returns.

To gain additional insight, Figure 5.3 shows the marginal benefit attained

by applying each of the recommendations, in order, from Kremlin’s plans. Also

shown in the graphs are the marginal benefits of regions parallelized in MANUAL

79

but not recommended by Kremlin (regions to the right of the dotted line).

In a large majority of cases, regions not recommended by Kremlin but

parallelized by MANUAL provide negligible benefit. Additionally, we can see that,

although Kremlin’s plans are well-prioritized overall, the incremental contribution

of a parallelizing a region can be somewhat noisy. For instance, in several cases, the

second recommended region attains a much higher incremental speedup than the

first recommended region—this is because as more of the program is parallelized,

less data migration happens in the NUMA machine. Often it is groups of regions

that must be parallelized before any speedup is observed.

Overall, Kremlin does an excellent job of eliminating regions that offer little

benefit. Even for those few regions that were eliminated by Kremlin but had some

marginal benefit, the benefits are slight. Given the savings in the number of regions

parallelized by Kremlin, we suspect that the programmer could easily make up the

difference by applying serial optimizations rather than attempting to parallelize

the additional regions.

5.5.4 Effectiveness of Region Prioritization

An important aspect of planning is to ensure not only that the regions with

the most benefit are selected but also that they are prioritized correctly. The

planner attempts to place regions with the largest benefit at the beginning of the

plan. Meeting this goal maximizes the productivity of the programmer by focusing

their efforts where they are most valuable.

To evaluate the effectiveness of the ordering produced by Kremlin, we mea-

sured the fraction of total realized execute time reduction attained by following

increasing portions of Kremlin’s plans, including the first 25%, first 50%, first 75%,

and all 100% of the plan. We would expect well-prioritized plans to generally pro-

duce monotonically decreasing benefits for each additional fraction that is added.

As shown in Table 5.2, Kremlin’s plans are well-prioritized. The first 25% of the

plans average 56.2% of the benefit, the next 25% averages 30.2% of the benefit,

while the following 25% yields 9.2%, and the last 25% yields 4.4% of the benefit.

80

Table 5.2: Marginal Benefit of Region Parallelization. A well-prioritized
parallelism plan will show decreasing marginal benefits as more of the recom-
mended regions are parallelized. This table shows the average marginal benefit of
25% increments in the fraction of regions parallelized. The final row shows that
a majority (56.2%) of benefit comes from the first 25% of regions with the fol-
lowing intervals showing decreasing average marginal benefits. This suggests that
Kremlin’s parallelism planner is effective at region prioritization.

Fraction of Kremlin Plan Applied

First First First All
Benchmark 25% 50% 75% 100%

ammp 74.7 % 100.0 % 100.0 % 100.0 %
art 100.0 % 100.0 % 100.0 % 100.0 %
equake 82.5 % 89.2 % 99.0 % 100.0 %
bt 48.9 % 85.8 % 92.2 % 100.0 %
cg 84.9 % 86.7 % 93.5 % 100.0 %
ep 100.0 % 100.0 % 100.0 % 100.0 %
ft 44.7 % 78.9 % 100.0 % 100.0 %
is 100.0 % 100.0 % 100.0 % 100.0 %
lu 45.8 % 84.0 % 95.4 % 100.0 %
mg 35.6 % 73.0 % 79.5 % 100.0 %
sp 9.6 % 62.1 % 94.5 % 100.0 %

average
56.2 % 86.4 % 95.6 % 100.0 %

benefit

marginal
average 56.2 % 30.2 % 9.2 % 4.4 %
benefit

5.5.5 Influences on Plan Size

Next, we evaluated how plan size is reduced as additional information is

taken into account. The factors that we looked at were work coverage, self-

parallelism, and usage of the full OpenMP planner personality. Figure 5.4 il-

lustrates the impact of each of these factors on the programs. Programmers that

take into account only work information (e.g. a gprof-based approach) would

be left with an average of approximately 59% of the total regions to analyze and

attempt to parallelize. With the addition of self-parallelism information for each

region, the average plan size is cut to 25.4% of all regions. Finally, when using the

81

0
10
20
30
40
50
60
70
80

self-parallelismwork full planner

Pl
a

n
Si

ze
 (

%
 o

f a
ll

re
g

io
ns

)

Figure 5.4: Effects of Factors on Plan Size. Plans based only on work coverage
comprised 58.9% of all regions on average. Using self-parallelism to eliminate low
parallelism regions cut this more than half (25.4%, on average). Finally, using the
full OpenMP planner personality, the plan size was reduced to only 3.0% of the
total regions.

full planner an average of only 3.0% of the regions are included in the plan. As

we have shown in Figure 5.2, despite only parallelizing a fraction of the regions,

Kremlin achieves performance that is comparable to the highly-tuned MANUAL

version.

5.5.6 Initial GPGPU Planning Results

We described in Section 5.4.2, we have created a prototype GPGPU plan-

ning personality for OpenCL environments. To test the effectiveness of this proto-

type, we examined the programs in version 2.0.1 of Rodinia [CBM+09], a bench-

mark suite for heterogeneous programming environments. The benchmarks ini-

tially targeted an NVIDIA GTX 280 GPU running CUDA but were later ported

to the OpenCL programming environment.

Table 5.3 shows our initial results for OpenCL planning on the Rodinia

benchmarks. Kremlin’s recommendations exactly matched those of the third-party

version on 8 of the 12 (i.e. 66%) analyzed benchmarks.2 In two cases (cfd and

2The lud and particlefilter benchmarks could not be analyzed due to runtime errors.

82

Table 5.3: OpenCL Planning Results. Preliminary results show that Krem-
lin is effective at selecting parallelization regions for code in the OpenCL-based
parallelization of the Rodinia benchmark suite. In many cases, Kremlin matched
the third-party human manual parallelization exactly. On two benchmarks, cfd and
srad, Kremlin found low coverage for regions that had been turned into kernels,
suggesting wasted parallelization efforts.

Benchmark
OpenCL Kernels

(Manual)
Kremlin

Recommended Overlap

backprop 2 2 100%
bfs 2 2 100%
cfd 4 3 75%
heartwall 1 1 100%
hotspot 2 2 100%
kmeans 2 2 0%
lavaMD 1 1 100%
nn 1 1 100%
nw 2 3 66%
pathfinder 1 1 100%
srad 5 3 60%
streamcluster 1 1 100%

Total 24 22 79%

srad), Kremlin found regions of low coverage (i.e. coverage < 3% of total execu-

tion) that had been turned into OpenCL kernels, potentially leading to wasted

programming effort. In another benchmark (nw), Kremlin was able to identify a

missed opportunity for exploiting data-level parallelism on a high-coverage (38%)

region.

In the future we plan to parallelize each benchmark according to Kremlin’s

recommendations to establish the “ground truth” for regions that did not match.

Acknowledgments

Portions of this research were funded by the US National Science Foun-

dation under CAREER Award 0846152, by NSF Awards 0725357, 0846152, and

1018850, and by a gift from Advanced Micro Devices.

83

This chapter contain materials from “Kremlin: Rethinking and Rebooting

gprof for the Multicore Age”, by Saturnino Garcia, Donghwan Jeon, Chris Louie,

and Michael Bedford Taylor, which appears in PLDI ’11: Proceedings of the 32nd

ACM SIGPLAN conference on Programming language design and implementation.

The dissertation author was the primary investigator and author of this paper.

This material is copyright c©2011 by the Association for Computing Machinery,

Inc.(ACM). Permission to make digital or hard copies of part or all of this work

for personal or classroom use is granted without fee provided that the copies are

not made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page in print or the first screen in

digital media. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

to republish, to post on servers, or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Publications Dept., ACM, Inc.,

fax +1 (212) 869-0481, or email permissions@acm.org.

This chapter contains material from “Kismet: parallel speedup estimates for

serial programs”, by Donghwan Jeon, Saturnino Garcia, Chris Louie, and Michael

Bedford Taylor, which appears in OOPSLA ’11: Proceedings of the 2011 ACM

international conference on Object oriented programming systems languages and

applications. The dissertation author was the secondary investigator and author

of this paper. The material in these chapters is copyright c©2011 by the Association

for Computing Machinery, Inc.(ACM). Permission to make digital or hard copies of

part or all of this work for personal or classroom use is granted without fee provided

that the copies are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page in print or the

first screen in digital media. Copyrights for components of this work owned by

others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept.,

ACM, Inc., fax +1 (212) 869-0481, or email permissions@acm.org.

This chapter contains material from “The Kremlin Oracle for Sequential

84

Code Parallelization”, by Saturnino Garcia, Donghwan Jeon, Chris Louie, and

Michael Bedford Taylor, which is set to appear in IEEE Micro. The dissertation

author was the primary investigator and author of this paper. The material in this

chapter is copyright c©2012 by the Institute of Electrical and Electronics Engineers

(IEEE). Personal use of this material is permitted. Permission from IEEE must

be obtained for all other uses, in any current or future media, including reprint-

ing/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

Chapter 6

Improving Kremlin’s Practicality

Kremlin’s parallelism discovery phase relies on a new dynamic program

analysis known as hierarchical critical path analysis (HCPA). HCPA is similar to

traditional CPA in that it is a heavyweight analysis; unlike CPA however, HCPA

analyzes every region of the program separately rather than analyzing only a sin-

gle region. This additional requirement places an even larger burden on an al-

ready heavyweight analysis; without proper design, both the runtime and memory

overheads can quickly make HCPA impractical. In Chapter 4, we discussed ba-

sic techniques for managing the runtime and memory overheads of HCPA. These

techniques include concurrent analysis of multiple regions–to reduce runtime–and

sharing of shadow memory between multiple levels–to reduce memory overhead.

In this chapter we will look at two advanced techniques we developed to

further reduce the overheads associated with HCPA: a novel, space-efficient shadow

memory organization, and static partial evaluation of critical path analysis. The

latter technique takes advantage of Kremlin’s static instrumentation architecture

(introduced in Chapter 3) while the former leverages key properties of HCPA to

produce a shadow memory that makes the common case fast and uncommon cases

space-efficient. These two techniques reduce HCPA’s requirements to the point

where most laptops can run Kremlin on sizable inputs.

The work in this chapter is part of a wider effort to make Kremlin more effi-

cient and therefore more accessible to a wide range of programs and systems. The

dissertation author was the secondary investigator of this work. The descriptions

85

86

Table 6.1: Shadow Memory Overheads for HCPA. Kremlin’s initial imple-
mentation of HCPA resulted in high memory overheads. This table shows that the
average memory expansion overhead for a selection of Spec2000 (“ref” inputs) and
NAS Parallel Bench (NPB, “B” inputs) is 49×, resulting in an average memory
usage of 15.7GB. This limited its utility in standard workstations, which typically
do not have this much memory. New techniques have allowed us to reduce this
memory expansion factor to 5.2×, making Kremlin practical on a wider range of
machines.

Suite Bench W/ Shadow Native Memory
mark Memory Memory Expansion

(GB) (GB) Factor

Spec bzip2 28.2 .189 149×
mcf 16.0 .152 105×
gzip 21.7 .200 109×

NPB sp 8.0 .316 25×
mg 13.0 .449 29×
cg 14.4 .427 34×
is 13.9 .384 36×
ft 66.0 1.683 39×

Geomean 15.7 .324 49×

contained within this chapter are intended to summarize the techniques in the con-

text of Kremlin’s goal of being a practical parallelization oracle. The results are

also focused on this objective. For a fuller description of Kremlin’s novel shadow

memory architecture and additional results related to these techniques, the reader

is referred to the forthcoming doctoral dissertation by Donghwan Jeon.

6.1 Efficient Shadow Memory Organization

While runtime overhead is likely the most salient characteristic of a heavy-

weight analysis infrastructure, the memory overhead is potentially more damaging

to such an infrastructure. If the memory overhead is large, it can cripple the sys-

tem by severely limiting the size of inputs that can successfully be run, the system

on which the infrastructure can be used, or both. Table 6.1 demonstrates the

87

Ver0

Ver1

Ver2

...

T(0,0) T(0,1) T(0,N)...

T(1,0) T(1,1) T(1,N)...

T(2,0) T(2,1) T(2,N)...

Version Time Array

(a) Shadow Memory Cache

0

1

2

...

Ver0

Ver1

...

Ptr PtrVersion Time

.....

SegTable Level Table Time Table

...

T(0,0)

T(1,0)

...

T(0,1)

T(1,1)

...

(b) Shadow Memory Backing Store

Figure 6.1: Efficient Shadow Memory Organization. Kremlin’s improved
shadow memory organization utilizes a direct-mapped cache (a) to make the com-
mon case fast. Only when valid shadow data needs to be evicted does it get
written to the space-efficient but slower access backing store (b). Two novel tech-
niques, SlimTV and BulkTV, make this organization possible by greatly reducing
the amount of memory overhead required for validation of data. While not shown,
compression is used for all but the most recently used time tables to further reduce
memory overhead.

scale of this problem. On a set of Spec2000 and NPB benchmarks, the average

memory expansion factor (i.e. the ratio of instrumented to native memory usage)

for the baseline implementation HCPA was 49×. This resulted in an average min-

imum required memory size of 15.7GB, an amount far exceeding what is typical

in contemporary computer workstations.

Traditional memory shadowing infrastructures have largely overlooked the

issue of memory overhead because they have not required hierarchical analysis.

Hierarchical analysis calls for profiling multiple regions simultaneously, which as

we have previously seen, requires multiple shadow tags per address. To address

the issue of memory overhead, we have introduced a novel memory shadowing

infrastructure that leverages the key properties of hierarchical analysis to greatly

reduce memory overhead while not sacrificing runtime overhead.

Figure 6.1 illustrates Kremlin’s improved memory shadowing infrastructure.

This infrastructure attempts to make the common case fast while all other cases

are handled in a space-efficient manner. Kremlin makes the common case fast by

88

providing a small, direct-access cache for commonly used addresses, as shown in

Figure 6.1a. Kremlin reduces memory overhead by employing a novel, three-level

backing store for infrequently accessed addresses, as shown in Figure 6.1b.

Kremlin’s shadow memory cache differs from traditional caches in that it

is not a subset of its backing store: it is only when a line needs to be evicted that

it is placed in the backing store. This policy resembles that of a write-back policy

for traditional caches but Kremlin further optimizes storage by first validating the

evicted data; any tags that are invalid (i.e. have were written by a region that

has already finished) are not written out. This policy is extremely efficient as our

experience shows that a cache line that is being evicted is usually sufficiently old

that most, if not all, of its tags are invalid.

Kremlin’s space-efficient, three-level backing store is enables by two key

techniques: slim and bulk tag validation. Slim tag validation is also utilized by the

shadow memory cache. While not the focus of this thesis, below are descriptions

of these two techniques.

Slim Tag Validation (SlimTV) SlimTV replaces the version vector of HCPA’s

baseline implementation (shown in Figure 4.6) with a single version, reducing the

space overhead of version management from O(n) to O(1) where n is the number

of levels. This change also leads to a reduction in runtime overhead as the number

of loads/stores required for each operation is greatly reduced.

SlimTV relies on the key insight that unique IDs can be used to create a

total ordering of all regions in the region tree. SlimTV assigns IDs to regions in

the order in which they begin; a larger ID indicates that a region began after the

region with a smaller ID. HCPA’s hierarchical nature also ensures that a region’s

children will all have larger IDs. Kremlin constantly maintains a vector of IDs

associated with the set of regions that is currently active; newly entered regions

push their ID to the back of this vector while exiting a regions causes the last entry

in this vector to be removed.

SlimTV sports a validation process that uses a single stored ID to determine

the deepest level whose data is still valid. Writing to memory results in tagging the

associated address with the ID of the deepest active region (i.e. the last ID in the

89

vector). Reading from memory triggers a validation procedure to determine which

of the stored “parallel time” tags can be safely used. This validation checks which

IDs in the vector of active IDs are less than the ID stored with the address being

read; all other active IDs are from regions that began after the tags were written

so these regions should ignore the stored tags. SlimTV reduces the problem of tag

validation to finding the minimum region level with an invalid tag: active regions

at deeper levels must have started later and therefore are also invalid.

Bulk Tag Validation (BulkTV) While SlimTV greatly reduces the overhead

introduced by version management, it still requires a non-trivial amount of over-

head. For example, when shadowing every byte of memory, the 8-byte version ID

used by HCPA will result in 8× memory expansion.

BulkTV reduces tag validation memory expansion by amortizing validation

overhead across a range of memory addresses. This amortization is accomplished

by using only a single version ID for a page of shadow memory, performing tag

validation for all entries in the page whenever a single address is accessed. Fig-

ure 6.1b shows how this is implemented in Kremlin; each level table entry contains

a single version, which corresponds to the version for all entries in the pointed-to

tag table. The effectiveness of this technique is clearly tied to the size of the page

with bigger pages producing bigger benefits. For example, a modest 4KB page

leads to a drastic reduction of 4096X when shadowing every byte.

BulkTV works in concert with SlimTV. Reading from or writing to a tag

table triggers the same validation process that happens on a SlimTV read, the

difference being that each level has its own tag table so invalidation requires inval-

idating a range of addresses rather than a single address. Invalidating a tag table

is a relatively lightweight operation as Kremlin maintains a free list of tag tables,

which can be easily switched in by simply changing the pointer in the level table.

Invalidated tables can be scrubbed (i.e. all values returned to 0) and then placed

on the free list.

As with SlimTV, BulkTV can also have an impact on runtime overhead.

BulkTV can affect runtime overhead in two major ways. First, BulkTV can po-

tentially increase the time required for correcting invalid tags; what previously

90

involved simply writing a 0 into a vector now involves pulling a free table from a

list and resetting the pointer to that table. The impact of this effect will depend on

the locality exhibited by the program as higher locality means fewer invalidations

and therefore lower overhead.

Second, BulkTV greatly reduces the overhead associated with the costly tag

validation procedure. SlimTV requires examining up to n entries in the active ID

vector to determine the deepest region that is still valid; BulkTV still requires this

lookup and has the same worst (n comparisons) and best case (1 comparison) but

the average case tends to have fewer required comparisons. The improved average

case is a result of leveraging locality. When similar addresses are accessed by the

same or a closely related region, the later accesses benefit from the fact that the

version ID is updated by the earlier accesses; most active IDs should still be valid

and therefore only one or two IDs will need to be checked before we find the first

valid ID—as long as we start from the end of the vector.

Other Benefits of Kremlin’s Shadow Memory Architecture In addition

to benefiting from SlimTV and BulkTV, Kremlin’s improved shadow memory ar-

chitecture lends itself to two other major techniques: compression and garbage

collection. Compression greatly reduces memory usage but can quickly lead to

large runtime overheads if not utilized correctly. Kremlin’s split cache-storage ar-

chitecture keeps frequently accessed data in the cache, freeing up the possibility

of compressing the backing store. Kremlin keeps only a small subset of tag tables

in an uncompressed state, with the rest being compressed for storage and then

decompressed when needed again. Kremlin places newly evicted cache entries in

uncompressed tables as they are the most likely to be used again. A simple “clock”

algorithm is used to determine which page will be compressed should the number

of uncompressed tag tables reach its limit.

Kremlin employs a simple garbage collector that scans all active level tables

and determines which of them are no longer valid. Invalidated tables are either

scrubbed and then sent to the free list or simply deallocated if there are already

enough entries in the free list.

91

de f foo (a , b , c , d , e) :

t1 = a + b ;

t2 = t1 + c ;

t3 = t2 + d ;

t4 = t3 + e ;

return t4 ;

(a) Code example.

a b c d e

t1

t2

t3

t4

(b) Dependency graph.

Figure 6.2: Exploring Optimization Possibilities. The dependency graph for
the code example shows that most of the values (t1,t2,t3) are intermediate values.
Our initial HCPA implementation calculated and stored each of these intermediate
values but memory bandwidth can be reduced by expressing outputs as functions
of inputs, eliminating many loads and stores in the process.

6.2 Static Partial Evaluation of CPA

Chapter 4 described our basic approach to instrumenting a program to

enable the implementation of hierarchical critical path analysis. This approach

provides a clean abstraction for calculating the critical path, but it also completely

places the burden of calculating critical path on the runtime environment. This

section will describe a technique for moving some of that burden to static analysis

time, which can significantly reduce the runtime overhead of HCPA.

As we have discussed, Kremlin calculates critical path lengths with the

assistance of shadow memory. Our initial approach required the following 4 steps

for every binary instruction (e.g. add) in the program, each required ` times to

account for all ` active program regions:

1. Read stored availability time for each input from shadow register.

2. Perform a max operation to determine the latest available time.

3. Add the cost of the performed operation (e.g. add or mul) to the maximum

time calculated.

4. Store the result into the shadow register associated with the operation.

92

Critical path analysis requires steps 2 and 3 to calculate the critical path

length but the remaining steps are simply overhead associated with keeping calcu-

lated “parallel times” in shadow memory. The additional steps produce significant

runtime overhead as they tax the memory system with many loads and stores.

However, many of these loads and stores are unnecessary.

Figure 6.2 demonstrates how many shadow register accesses can be avoided.

Figure 6.2b represents the dependency graph of the code snippet shown in Fig-

ure 6.2a. Variables t1, t2, and t3 are intermediate values that are used only as

part of the calculation of the output, t4. The times calculated for these variables

would ideally be passed directly from source to destination, avoiding reads from

and writes to shadow registers.

We can statically analyze a program to identify intermediate values and

avoid storing temporary values for them. This analysis is keyed by the realization

that we can express the availability times of all outputs solely as a function of the

inputs. The dependency graph in Figure 6.2b provides the insight necessary to

understand how this is possible. The graph in this example has 5 inputs (a - e)

and a single output (t4). We can see that the critical path is limited to 5 possible

paths:

• Starting at a and going through all four nodes.

• Starting at b and going through all four nodes.

• Starting at c and going through the final three nodes.

• Starting at d and going through the final two nodes.

• Starting at e and going through only the final node.

We cannot statically determine which of these paths is the correct one but

we can simplify the calculation of the output time to the following:

timet4 =max(timea + costs(t1, t2, t3, 4), timeb + costs(t1, t2, t3, t4),

timec + costs(t2, t3, t4), timed + costs(t3, t4), timee + costs(t4))
(6.1)

93

where timeX is the parallel time of value x (stored in shadow memory) and costs()

is simply the sum of the cost of each operation. The number of max operations

and additions has not changed; as discussed earlier, this is a requirement of CPA.

What has changed is the number of reads and writes to shadow registers: from 8

reads (2 for each instruction) down to 5 (1 for each input) and from 4 writes (1 for

each instruction) down to 1 (for the lone output). These savings are multiplied by

` to account because each of the ` active levels obtains this savings.

The savings of this technique is directly tied to the number of values that

are considered inputs and outputs. Kremlin optimizes the number of inputs by

classifying as inputs only values that cannot be statically determined. These val-

ues include function arguments, values returned from function calls, loads, and

LLVM φ-nodes. Function arguments are required because each function may have

multiple call sites and therefore the source of the function arguments is not known

until runtime. This break at function boundaries also forces values returned from

function calls to be considered inputs. Loads are required because alias analysis is

imprecise and we therefore cannot determine what values previously wrote to the

address being pointed to. φ-nodes are required because by definition their value is

one of several options, being finally determined only during runtime.

Similarly to inputs, Kremlin limits the values considered to be outputs to

those that cannot be statically determined. These values include function return

values, values passed as parameters during a function call, and stores. Also similar

to inputs, these requirements all stem from limitations of interprocedural analysis

(the first two) and pointer analysis (stores).

The downside of this approach is that it may possibly result in additional,

redundant computations. For example, consider the scenario when one of the

intermediate values in Figure 6.2a (e.g. t3) is used by an additional output (e.g.

t5). This will result in the max calculations for t4 and t5 sharing many of the

same terms. It would be computationally more efficient to calculate the time for

t3 and reuse that value when calculating the outputs. However, that would also

increase the required memory bandwidth because of additional reads and writes

to the shadow register for non-output values.

94

While we would like to find the optimal set of intermediate values that

should be stored to minimize total runtime, this optimization problem is non-

trivial. It may in fact be NP-complete as the dependency graphs can be arbitrarily

complex. We plan to look into this issue in the future; however, our results show

that runtime overhead often significantly decreases even without trying to minimize

redundant computations. This performance boost leads us to believe that memory

bandwidth is ultimately the limiting factor in our runtime overhead.

6.3 Evaluation

Methodology We examined the effectiveness of both the novel shadow mem-

ory architecture and the static partial evaluation of CPA by looking at both the

memory and runtime overheads. For memory overhead we tracked the maximum

memory required because it determines the minimum amount of memory neces-

sary for Kremlin to successfully complete. Measurements for evaluating Krem-

lin’s unique shadow memory architecture were performed on a 32-core system (8X

AMD Opteron 8380 Quad-core processors) with 256GB of memory running on the

Linux 2.6.18 kernel. Measurements for evaluating static partial evaluation of CPA

were performed on an 8-core system (2X Intel Xeon E5530 Quad-core processors)

with 24GB of memory running on the Linux 2.6.18 kernel. For compression, we

employed the miniLZO 2.06 library [Obe].

Our evaluation looked at 12 benchmarks across three benchmark suites:

SpecInt 2000, SpecFP 2000, and NAS Parallel Bench (NPB) [BBB+91]. Bench-

marks were selected from these suites so long as they had a native memory foot-

print of 1MB or greater, were written in C, and had a runtime of less than 12

hours. The minimum footprint requirement was selected so that memory over-

heads were representative of scaling cost rather than the modest fixed overhead

of shadow memory. We used SpecInt and SpecFP’s ’ref’ input set–as it was the

largest available–and NPB’s ’A’ input set–as larger inputs can require several GB

of memory natively–for all results.

The selection of three benchmark suites allowed for a range of types of

95

Table 6.2: Memory Usage with Optimized Shadow Memory. Kremlin’s
optimized shadow memory reduces the memory expansion for shadow memory to
an average of 10.16× without compression and 8.65× with compression. With-
out these optimizations a system with 28.182GB of memory would be required
to run all the analysis; with these optimizations, the maximum system memory
requirements are reduced to 2.51GB (without compression) or 0.963GB (with com-
pression).

Benchmark Memory Usage (GB) Expansion Factor

Suite Name Native Baseline
All w/o
Compr.

All
Opts

All w/o
Compr.

All
Opts

SpecInt

bzip2 0.189 28.182 0.911 0.586 4.82 2.44
gzip 0.200 21.759 0.488 0.380 2.44 1.90
mcf 0.152 15.988 0.666 0.593 4.38 3.90
vpr 0.003 0.282 0.077 0.077 25.50 25.50

SpecFP
art 0.002 0.157 0.083 0.076 41.29 37.90
equake 0.037 2.113 0.222 0.159 6.00 4.30
mesa 0.020 1.204 0.174 0.174 8.71 8.70

NasPB

cg 0.055 1.538 0.224 0.154 5.09 3.50
ft 0.419 17.125 2.027 0.963 4.84 2.30
is 0.068 2.546 0.350 0.270 5.14 4.00
lu 0.043 1.124 0.343 0.284 7.97 6.60
mg 0.434 13.051 2.510 0.911 5.78 2.10

max 0.434 28.182 2.510 0.963 41.29 37.90
avg 0.134 8.756 0.673 0.386 10.16 8.65

programs. SpecFP and NPB benchmarks tend to have regular memory access

patterns and contain many dense, array-based operations. Conversely, SpecInt

benchmarks have more irregular memory access patterns in addition to deeper

region hierarchies.

6.3.1 Shadow Memory Optimization

Evaluating Memory Requirements Kremlin’s shadow memory optimization

primarily focus on reducing the memory overhead associated with performing hi-

erarchical critical path analysis. Table 6.2 shows the memory requirements when

various combinations of optimizations are used. The required memory for the

96

implementation without any optimizations (our “baseline”) averages 8.576GB–an

amount that even most new desktop machines would struggle to support–but goes

as high as 28.182GB–an amount usually available only in supercomputers. A com-

bination of SlimTV, BulkTV, and garbage collection (labeled “All w/out Compr.”)

bring this down to an average of 673MB with a maximum of 2.51GB, both reason-

able to expect available on even on many laptops sold today. Kremlin’s ability to

compress the time tables further reduces the requirements to 963MB and 386MB

for the worst and average case, respectively.

Table 6.2 also shows the memory expansion factors for the benchmarks.

Kremlin’s optimized shadow memory requires an average of only 10.16× if com-

pression isn’t used or 8.65× if compression is used. With these techniques, it is

possible to run programs requiring approximately 800MB or 1GB natively on a

modest system with 8GB of system memory, depending on whether or not com-

pression is used. If even larger inputs are required, Kremlin’s region summarizing

opens the possibility of performing multiple runs, each with a subset of levels

in the region tree instrumented, and quickly combining their results to achieve

whole-program coverage.

Evaluating Runtime Overhead As previously discussed, Kremlin’s shadow

memory optimizations can affect runtime overhead in both positive and negative

ways. We measured the slowdown relative to native execution time with the same

combinations of optimizations used in our evaluation of memory requirements in

order to quantify their impact on performance.

Table 6.3 presents the performance results for our shadow memory opti-

mizations. The baseline implementation (i.e. no optimizations) led to an average

slowdown of 193×. The combination of SlimTV, BulkTV, and garbage collection

resulted in an average slowdown of 198×, an increase of only 2.6% over the baseline

implementation. While this increase is small, we would expect even better perfor-

mance with a slightly more optimized version of these techniques. For example,

our implementation of garbage collection pauses program execution while shadow

memory is cleaned. We would expect a multi-threaded implementation of garbage

collection to significantly improve performance.

97

Table 6.3: Performance Impact of Optimized Shadow Memory. Despite
being optimized for greatly reduced memory requirements, Kremlin’s optimized
shadow memory infrastructure leads to roughly equal performance on average when
compression is not used. Compression adds an average of 20% overhead in addition
to the other optimizations. This overhead is a small price to pay for the ability to
run in memory constrained systems or with larger input sizes.

Benchmark Native
Runtime

(sec)

Slowdown

Suite Name Baseline
All w/o
Compr. All Opts

From
Compr.

SpecInt

bzip2 57.1 211 205 211 1.03
gzip 41.0 179 168 170 1.01
mcf 90.5 85 120 231 1.92
vpr 72.5 144 129 131 1.02

SpecFP
art 6.5 178 187 202 1.08
equake 114 204 189 227 1.20
mesa 120 173 188 188 1.00

NasPB

cg 6.4 175 186 213 1.15
ft 11.4 225 203 221 1.09
is 2.0 80 119 148 1.24
lu 82.9 220 279 401 1.44
mg 5.6 447 403 475 1.18

max 90.5 447 403 474 1.92
avg 50.8 193 198 235 1.20

Compression causes the average slowdown to increase to an average of 235×,

an increase of 20% compared to the optimizations without compression. This in-

crease is most notable in mcf, a program notorious for having poor memory local-

ity. This poor locality leads to an increase in the number of active time tables and

therefore a greater number of compressions and decompressions that need to be

performed. Surprisingly, the reduction in memory expansion from using compres-

sion on mcf (11%) is poor in comparison to its increased runtime overhead (92%).

This appears to be a degenerate case as the average increase in compression’s run-

time overhead (20%) compares much more favorably to the average reduction in

memory expansion (14.9%). Similarly to the other optimizations, compression’s

runtime overhead could be reduced via some simple techniques.

98

Table 6.4: Speedup From Static Partial Evaluation of CPA. Combining
static partial evaluation of CPA with our novel shadow memory architecture re-
sulted in an average of 1.17× and 1.16× speedup (without and with compression
enabled) compared to using only the novel shadow memory. The speedup from
this technique is large enough to offset the slowdown from using compression. lu
offered the largest speedup, largely because its source code contained many lines
that resulted in a large number of LLVM IR temporary values. Even at its worst
(in gzip), static partial evaluation did not result in appreciable slowdown.

Benchmark Speedup

Suite Name
All w/o
Compr. All Opts

SpecInt

bzip2 1.06 1.06
gzip 1.01 0.99
mcf 1.07 1.07
vpr 1.14 1.13

SpecFP
art 1.02 1.05
equake 1.13 1.21
mesa 1.15 1.19

NasPB

cg 1.00 1.15
ft 1.15 1.13
is 1.27 1.19
lu 1.78 1.56
mg 1.21 1.20

avg 1.17 1.16

6.3.2 Static Partial Evaluation of CPA

Our evaluation of static partial evaluation of CPA focused on the runtime

overhead when using this technique in addition to our novel shadow memory archi-

tecture. This technique should have minimal impact on memory overhead because

it does not affect the size of the shadow memory; loads and stores are consid-

ered to be unresolvable statically and therefore none are removed or added during

optimization.

Table 6.4 shows the speedup from applying static partial evaluation of CPA

on top of our novel shadow memory architecture, both with and without compres-

sion enabled. The average speedup without compression and with compression was

99

1.17× and 1.16×, respectively. This slight difference is most likely due to the in-

creased percentage of time spent in shadow memory operations compared to other

operations: as previously mentioned, the number of loads and stores remains the

same because their values cannot be determined statically. The speedup obtained

when using compression is enough to offset the slowdown from compression in our

novel shadow memory architecture.

Static partial evaluation of CPA resulted in a range of speedups across the

benchmarks. At its worst, this technique did not result in an appreciable slowdown

(gzip displayed a negligible 1% slowdown with compression). This confirms our

intuition that the decrease in memory bandwidth is at least large enough to offset

any increase in time from redundant computations. At its best, static partial

evaluation resulted in significant speedup: lu was 78% faster without compression

and 56% faster with compression. lu is an almost ideal candidate for this technique;

its source code revealed many lines of code were of the form X = a1 op a2 op a3 ..

op an. These lines of code become n − 1 binary operator instructions in LLVM’s

intermediate representation. Static evaluation of CPA ensures that the n − 2

temporary values are not stored, and because they are not used elsewhere there

are no redundant computations to offer slowdown. The gzip had few such lines of

code, and therefore did not result in speedup when this technique was applied.

Acknowledgments

Portions of this research were funded by the US National Science Foun-

dation under CAREER Award 0846152, by NSF Awards 0725357, 0846152, and

1018850, and by a gift from Advanced Micro Devices.

Chapter 7

Related Work

7.1 Parallelism Discovery

Approaches for parallelism-related profiling have generally fallen into two

categories: critical path analysis (CPA) and dependence testing. Critical path

analysis dates back several decades, with early important works including [Kum88,

AS92]. These approaches measured the number of concurrent operations at each

time step along the critical path of the program. More recent work includes ap-

plication of CPA to Java [HSHZ09] as well as a modified CPA for the purpose of

function-level parallelism in Java programs [RVVYS10]. Unlike these approaches,

Kremlin’s hierarchical critical path analysis is able to localize parallelism within

nested program regions, and provide concrete guidance on which program regions

to parallelize.

Allen et al. [ABC+88] performed static analysis of Fortran programs in an

attempt to automatically identify the correct granularity of parallelism for a target

architecture. Kremlin is also able to identify the proper granularity of parallelism

through the use of self-parallelism and planning personalities. However, the work

in [ABC+88] was limited to structured, Fortran code; Kremlin is able to work

with unstructured code that contains pointers which cannot be analyzed statically.

Furthermore, Kremlin focuses on enabling the user to parallelize complicated code

with which automatic parallelizing compilers have traditionally struggled.

Kulkarni et al. [KBI+09] used a critical path based analysis to bring insight

100

101

into the parallelism inherent in the execution of irregular algorithms. In contrast

to Kremlin’s focus on localizing parallelism to concrete code regions via HCPA,

Kulkarni’s approach attempts to transcend the details of the implementation and

to quantify the amount of latent parallelism in irregular programs that exhibit

amorphous data parallelism.

Cilkview [HLL10] is a recent tool that takes an already-parallelized Cilk++

program and estimates how that program’s performance will change as the number

of cores is increased. Similar to Kremlin, Cilkview leverages runtime information,

and analyzes runtime dependencies in the program. However, Cilkview examines

dependencies between pre-parallelized threads in a work-queuing runtime system

rather than between instructions.

Another approach to parallelism-related profiling has been to use depen-

dence testing to uncover the dependencies between different regions in the pro-

gram. pp [Lar93] is an early important work that proposed hierarchical dependence

testing to estimate the parallelism in loop nests. Notable recent works include Al-

chemist [ZNJ09] and SD3 [KKL10], which reduces runtime and memory overhead of

dependence testing through the use of parallelization and compression. Although

dependence testing and Kremlin’s HCPA share similar goals, Kremlin focuses on

localizing and quantifying parallelism across many different, nested program re-

gions rather than establishing independence of pre-existing regions. As a result,

it can identify more nuanced forms of parallelism even though significant transfor-

mation is required to expose it. Dependence testing is generally more pessimistic

and sensitive to existing program structure.

A number of works have used dependence testing to determine the prob-

ability that specific dependencies will occur [WKC08, vPBC08]. DProf [WKC08]

uses a compiler to identify may dependencies and then determine the probability

that these dependencies will occur. von Praun et al. [vPBC08] introduced the de-

pendence density metric to describe the probability that two random tasks would

have a dependency. Both of these approaches target optimistic concurrency such

as TLS or transactional memory.

The main difference between Kremlin’s parallelism discovery and depen-

102

dence testing frameworks is in the stage of parallelization (Figure 1.1) that profil-

ing targets. Kremlin’s parallelism discovery is meant to quantify the parallelism in

a fashion that is not as strongly tied to the program’s current structure, exposing

hidden sources of parallelism. In contrast, dependence testing-based approaches

are more aligned with the enabling transforms stage of parallelization as they en-

able identifying specific changes that need to be made to enable parallelism. In

the absence of discovery and planning tools, [ZNJ09] orders regions by total exe-

cution time. An interesting possibility would be to augment [ZNJ09]’s approach

with the improved analysis provided by Kremlin. ParaScope [KMT91] used static

analysis to expose difficult-to-analyze dependencies to the user so that they could

circumvent them via refactoring.

HCPA initially used a compression scheme that resembled whole-program

path compression schemes [ZG01]. We achieved much higher compression lev-

els because we did not need to store information about the relative ordering of

child subregions. We have replaced this compression with one that better handles

multiple calling contexts and has a much higher compression ratio on similar-but-

not-identical regions.

7.2 Parallelism Planning

The task of parallelism planning has been mostly overlooked in the context

of manual parallelization. Outside of manual parallelization, automatic paralleliz-

ing compilers such as SUIF [HAA+96] and Polaris [BDE+02] implicitly perform

planning. Because these tools do not target user-assisted parallelization, their

planning phases focus on finding thresholds for profitable exploitation.

Speculative parallelization systems [SBV95, RP95] have created new op-

portunities for compilers to exploit parallelism even in the face of difficult-to-

analyze code, or infrequent dependencies that result in overly conservative ex-

ecution. These systems typically have a memory speculation system, often in

special hardware but sometimes in software, which removes the burden of prov-

ing the correctness of potential parallel transformations, allowing the compiler to

103

focus on selecting the transformations that maximize performance. TLS compil-

ers [CO03, DLL+04, LTC+06, RP95, ZMLM08, TFNG08] and often use dynamic

critical path or dependence testing analyses in order to establish regions which are

likely to be profitable for TLS-style execution. Kremlin’s HCPA can be used in a

complementary manner by providing a way to guide programmers in restructuring

their code to improve parallelism for execution on TLS. This can enable an even

larger class of transformations than these systems natively support.

Recent work by Tournavitis et al. [TWFO09] provides a semi-automated

approach to parallelization. This approach automates parallelism discovery using

a form of dependence testing and uses machine learning to pick a set of regions to

be parallelized. The selected regions are automatically annotated with OpenMP

pragma statements. The presumption is that the user will verify the correctness of

the parallelization. While this approach has promise, it is limited by the compiler’s

ability to perform the Enabling Transforms phase of parallelization. In contrast,

Kremlin has a more optimistic view of parallelism and is able to report regions with

parallelism even if the compiler is not up to the task of exploiting it automatically.

Systems such as SUIF Explorer [LDB+99] and CAPO-Paraver [JJLG03]

share Kremlin’s focus on empowering the user during parallelization. SUIF Ex-

plorer’s novelty focuses around its use of static interprocedural program analysis

including pointer analysis and slicing; its use of dynamic analysis is very briefly

described but appears to detect the absence or presence of memory dependencies

within loops, and to provide time profiles for regions. CAPO-Paraver extends the

CAPO parallelizing compiler to allow it to insert instrumentation that helps the

user understand the load balancing properties of parallelized code.

7.3 Performance Prediction

CilkView [HLL10], Parallel Prophet [KKKB12], and Intel Parallel Advisor’s

Suitability Tool are recent tools whose motivation is similar to Kremlin. Like

Kremlin, they also predict parallel performance on a target with arbitrary number

of cores. Unlike Kremlin, however, these tools rely on the user’s parallelized code—

104

or annotations—to predict speedup. Kremlin minimizes user’s efforts in prediction

by automatically detecting parallelism in the serial program.

Simulation has been used to predict the performance of processors and

systems that are still in development. In this case, a parallel version of the program

exists, but the machine itself is not available to run it. ManySim [ZIM+07] is

one such simulator that was designed to evaluate the performance potential and

scalability of large-scale multi-core processors. GEMS [MSB+05] is a full-system

functional simulator for multiprocessors. It separates the simulation from the

timing models, allowing them build a detailed memory system timing simulator

rather than focus on basic functional simulation. However, simulators still require

code that has been parallelized for these systems, unlike Kremlin.

A number of works have looked at the limits of parallelism and their im-

pact on performance. Theobald et al [TGH92] examined the “smoothability” of a

program’s parallelism, i.e. the ability to which a program’s parallelism could be

equally spread throughout the program’s entire execution to ensure high utilization

on a constrained multiprocessor. Rauchwerger et al [RDN93] also looked at the

ability to map ideal parallelism to a constrained processor, introducing the concept

of slack to describe the ability of parallelism to be pushed to later parts of the

program. Kremlin improves upon these works by using HCPA’s ability to localize

parallelism; Kremlin can examine the effect of parallelizing specific regions of the

program in order to gain a better estimate of the program’s parallel performance.

There have been several efforts to predict serial performance [OH00, Loh01,

HPE+06, KS04]. In theory, these predictions could be combined with Kremlin’s

speedup predictions to predict the parallel execution time of a program.

Several works have looked at predicting the scalability of parallel programs

based on their performance on a small number of processors [BRL+08, ZCZ10].

Barnes et al [BRL+08] looked at several techniques for extrapolating performance

of MPI programs, including one that measured the global critical path. Zhai et al

[ZCZ10] avoid performance extrapolation to predict performance; instead, they use

deterministic replay to measure sequential time of each process using only a single

node. Again, these systems differ from Kremlin in that they predict performance

105

based on an existing parallel implementation.

Hill and Marty [HM08] recently proposed a simple performance analytical

model, extending Amdahl’s law. Their model assumes future processors include

different types of cores and each program region can choose the more appropriate

core based on its workload. Chung and Mai [CMHM10] further improved Hill

and Marty’s model with heterogeneous chip including ASIC, FPGA, and GPU.

Although we kept Kremlin’s analytical model relatively simple, Kremlin can easily

incorporate these sophisticated models if needed.

7.4 Shadow Memory Design

Wide applicability of shadow memory has led to a wide range of shadow

memory architectures. Some of these approaches use only a single-level imple-

mentation [SBN+97, CZYH06, BFW03], relying on assumptions about the size of

address space (e.g. 32-bit addresses) and often allocating half of the address space

for shadow memory. This single-level approach is not robust: it often fails in the

face of programs that make assumptions about memory placement and often clash

with operating systems which have assumptions about object locations. Mem-

Check [SN05], pinSEL [NPP+06], and an array of tools [New05, MW07, NM03]

built using Valgrind [NS07] use a two-level translation table similar to the one

shown in Figure 4.3. This approach works well for 32-bit address spaces but does

not scale well to 64-bit spaces. Recent work has expanded this basic structure to

three-levels to better support 64-bit address spaces [ZBA10a, ZBA10b].

While Kremlin’s shadow backing store uses a three-level address translation

organization similar to that of Umbra [ZBA10a], Kremlin’s overall architecture is

optimized to meet the needs of region-based analysis and vectored shadow memory

operations. Kremlin introduces novel shadow memory features such as a shadow

memory cache, level tables, garbage collection, and tag compression. These addi-

tions are unnecessary in traditional memory shadowing applications but are critical

in meeting the exacting demands of region-based analysis.

A number of tools propose specialized hardware to reduce the overhead

106

of memory shadowing [VRSP07, ZTZ07, NG09]. These proposals are effective at

reducing overhead but they add inflexibility to the shadow memory infrastructure.

These tools overwhelmingly focus on a single application of memory shadowing

and are therefore not general frameworks. Furthermore, they are also targeted

towards traditional shadow memory.

7.5 Parallel Performance Debugging Tools

Several systems have been developed in order to help debug the perfor-

mance of pre-Kremlin- parallel programs [DRR99, AMCA+95]. SvPablo provided

an integrated viewing and instrumentation environment that allowed performance

debugging of MPI programs. Adve et al [AMCA+95] performed similar analysis

on data parallel FORTRAN. Paradyn [MCC+95] automatically searches for per-

formance problems in long running programs by dynamically instrumenting the

program. Martonosi et al [MFH96] were able to examine the performance of the

cache system with very little overhead by integrating performance monitoring into

existing cache-coherence mechanisms. These systems could be used in concert with

Kremlin to help determine why actual performance does not match the predicted

bound on program performance. SUIF Explorer [LDB+99] uses static and dynamic

analyses to understand parallel-execution related properties, much like Kremlin;

however, Kremlin does not require user interaction, and uses a simplify hardware

specifications to give reasonable speedup predictions of post-parallelized code.

Acknowledgments

Portions of this research were funded by the US National Science Foun-

dation under CAREER Award 0846152, by NSF Awards 0725357, 0846152, and

1018850, and by a gift from Advanced Micro Devices.

This chapter contain materials from “Kremlin: Rethinking and Rebooting

gprof for the Multicore Age”, by Saturnino Garcia, Donghwan Jeon, Chris Louie,

and Michael Bedford Taylor, which appears in PLDI ’11: Proceedings of the 32nd

107

ACM SIGPLAN conference on Programming language design and implementation.

The dissertation author was the primary investigator and author of this paper.

This material is copyright c©2011 by the Association for Computing Machinery,

Inc.(ACM). Permission to make digital or hard copies of part or all of this work

for personal or classroom use is granted without fee provided that the copies are

not made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page in print or the first screen in

digital media. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

to republish, to post on servers, or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Publications Dept., ACM, Inc.,

fax +1 (212) 869-0481, or email permissions@acm.org.

This chapter contains material from “Kismet: parallel speedup estimates for

serial programs”, by Donghwan Jeon, Saturnino Garcia, Chris Louie, and Michael

Bedford Taylor, which appears in OOPSLA ’11: Proceedings of the 2011 ACM

international conference on Object oriented programming systems languages and

applications. The dissertation author was the secondary investigator and author

of this paper. The material in these chapters is copyright c©2011 by the Association

for Computing Machinery, Inc.(ACM). Permission to make digital or hard copies of

part or all of this work for personal or classroom use is granted without fee provided

that the copies are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page in print or the

first screen in digital media. Copyrights for components of this work owned by

others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept.,

ACM, Inc., fax +1 (212) 869-0481, or email permissions@acm.org.

Chapter 8

Summary

The switch from single- to multi-core processors has fundamentally changed

the way software engineers will achieve scalable performance. We began this disser-

tation by discussing how the scalable performance on multi-core processors requires

software to exploit the parallelism available inside of a program. We discussed

how fully automated approaches to parallelization are fundamentally limited and

result in performance that often pales in comparison to that of a manually par-

allelized implementation. This fundamental limitation has led to the creation of

programmer-centric tools to ease certain parts of the parallelization process.

We examined a taxonomy of parallelization tools that underscored how

the initial stages of parallelization, parallelism discovery and parallelism planning,

currently lack practical tools. This gap in the parallelization toolchain forces pro-

grammers to consult a number of oracles to answer one of the primary questions

of parallelization, “What parts of this program should I spend time parallelizing?”.

The oracles are impractical for a number of reasons, giving rise to the need for

a practical oracle for parallelization. Throughout the rest of the dissertation, we

discuss the design and implementation of Kremlin, one such practical oracle.

In Chapter 2, we examined the parallelization methodology currently em-

ployed by many programmers. This methodology is highly efficient because it

relies on the impractical oracles first introduced in Chapter 1. In this chapter

we describe a user study we performed with an early prototype of Kremlin. The

results of the user study underscored the importance of a practical oracle to guide

108

109

users through parallelism discovery and planning. In this study, users without a

practical oracle spent roughly 50% of their time working on performance critical

regions while users with access to the early Kremlin oracle spent roughly 85% of

their time in these critical regions. Our results from this study also guided the fur-

ther development of Kremlin as a practical oracle, having focused our attention on

automated tools for quantifying the type and amount of parallelism within specific

program regions.

Existing parallelism discovery tools rely on one of the following two general

techniques: critical path analysis and dependence testing. Unfortunately, neither

of these two techniques are suited as precursors for parallelism planning. In Chap-

ter 4, we examined creating a planning-aware parallel discovery tool. Kremlin

builds upon the critical path analysis, but extends to make it more realistic its

results more practical for us in parallelism planning. In this chapter, we looked at

two of our core contributions: hierarchical critical path analysis (HCPA) and the

self-parallelism metric. HCPA provides localized parallelism info, which enables

iterative planning by allowing evaluation of only partially parallelized programs.

The results in this chapter showed that our self-parallelism metric more accurately

classifies the amount of parallelism in each region, e.g. leading to 6× more re-

gions being identified as serial as compared to the total-parallelism metric from

the overly optimistic CPA. Our results also show that self-parallelism aligns much

more closely with the parallelizability of a region, with a nearly 2× increase in the

likelihood that regions classified as being highly parallel are parallelized.

In Chapter 5 we examined parallelism planning. We described how Kremlin

is able to model the parallel execution time of a program and to use self-parallelism

and the program structure to infer the type of parallelism in each region of the

program. We looked at three separate planning personalities (OpenMP, OpenCL,

and Cilk++), which tailor planning results to a specific target system. Results

show that Kremlin’s planning ability is able to reduce the number of regions that

need to be parallelized by 1.57×. This reduction does not come at the cost of poor

performance: in two cases Kremlin’s plan led to greatly improved performance

while on the remaining cases, Kremlin’s succinct plan led to speedup was within

110

4% of the performance for an optimized, expert, third-party implementation. Our

results in this chapter also showed that Kremlin is able to prioritize regions well,

with an average of 86.4% of performance coming after implementing only the first

half of the plan and only 4.4% improvement coming from the final quartile of

recommendations.

Kremlin’s effectiveness as a parallelization oracle relies in large part on

a HCPA, a heavyweight dynamic analysis. Naively implemented, HCPA is im-

practical because of extreme memory and/or runtime overheads. In Chapter 6,

we looked at two optimizations to reduce the overhead associated with HCPA.

The first technique, a novel shadow memory architecture, provides not only fast

access to shadow memory for most accesses but also space-efficient storage for in-

frequently used memory. The second technique, partial static evaluation of critical

paths, offloads part of the runtime calculation of critical path lengths to compile

time through the use of static analysis. Our results in this chapter show that

the first technique reduces the average memory requirement of HCPA from by an

average of 22.7× (8.756GB to 386MB) at a cost of only 21.8% slowdown; when per-

formance is more critical, compression can be turned off and the slowdown reduces

to 2.6% while memory reduction reduces to 13× (average: 673MB). This reduction

makes Kremlin practical even for lower-end systems such as laptops. Results also

show that enabling second technique improves performance by an average of 1.17×
without compression enabled, and 1.16× with compression.

Overall, we have shown that Kremlin is indeed a practical oracle for the

parallelization of sequential code. Kremlin provides a simple-to-use tool that al-

lows programmers to understand the parts of the program on which they should

focus their parallelization efforts. Kremlin’s HCPA implementation allows efficient

discovery of parallelism throughout the program, providing the basis for efficient

parallelism planning. Kremlin’s results can be customized to the system environ-

ment to allow highly relevant results, no matter what the target is. We plan on

releasing Kremlin as an open source tool so that both researchers and practitioners

can benefit from its capabilities.

111

Acknowledgments

Portions of this research were funded by the US National Science Foun-

dation under CAREER Award 0846152, by NSF Awards 0725357, 0846152, and

1018850, and by a gift from Advanced Micro Devices.

Bibliography

[ABC+88] F. Allen, M. Burke, R. Cytron, J. Ferrante, W. Hsieh, and V. Sarkar.
A framework for determining useful parallelism. In ICS ’88: Pro-
ceedings of the International Conference on Supercomputing, pages
207–215. ACM, 1988.

[ABL97] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hard-
ware performance counters with flow and context sensitive profiling.
In PLDI ’97: Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 85–96, New
York, NY, USA, 1997. ACM.

[AL90] Thomas E. Anderson and Edward D. Lazowska. Quartz: a tool for
tuning parallel program performance. In Proceedings of the 1990
ACM SIGMETRICS conference on Measurement and modeling of
computer systems, SIGMETRICS ’90, pages 115–125. ACM, 1990.

[AMCA+95] V.S. Adve, J. Mellor-Crummey, M. Anderson, J-C. Wang, D. A.
Reed, and K. Kennedy. An integrated compilation and performance
analysis environment for data parallel programs. In SC ’95: Proceed-
ings of the ACM/IEEE conference on Supercomputing, 1995.

[AS92] Todd Austin and Gurindar S. Sohi. Dynamic dependency analysis
of ordinary programs. In ISCA ’92: Proceedings of the International
Symposium on Computer Architecture, pages 342–351, 1992.

[BBB+91] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter,
L. Dagum, R.A. Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S.
Schreiber, H.D. Simon, V. Venkatakrishnan, and S.K. Weeratunga.
The nas parallel benchmarks summary and preliminary results. In
Supercomputing, 1991. Supercomputing ’91. Proceedings of the 1991
ACM/IEEE Conference on, pages 158 –165, nov. 1991.

[BDE+02] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger,
T. Lawrence, J. Lee, D. Padua, W.M. Paek, Y. Pottenger, L. Rauch-

112

113

werger, and P. Tu. Parallel programming with Polaris. IEEE Com-
puter, 29(12):78–82, Aug 2002.

[BFW03] Michael Burrows, Stephen Freund, and Janet Wiener. Run-time type
checking for binary programs. In Compiler Construction, volume 2622
of Lecture Notes in Computer Science, pages 90–105. Springer Berlin
/ Heidelberg, 2003.

[BO01] J. Mark Bull and Darragh O’Neill. A microbenchmark suite for
OpenMP 2.0. SIGARCH Computer Architecture News, 29:41–48, Dec
2001.

[BRL+08] Bradley J. Barnes, Barry Rountree, David K. Lowenthal, Jaxk
Reeves, Bronis de Supinski, and Martin Schulz. A regression-based
approach to scalability prediction. In ICS ’08: Proceedings of the
International Conference on Supercomputing, pages 368–377, 2008.

[BZ11] D. Bruening and Qin Zhao. Practical memory checking with dr.
memory. In CGO ’11: International Symposium on Code Generation
and Optimization, pages 213 –223, 2011.

[CBM+09] Shuai Che, M. Boyer, Jiayuan Meng, D. Tarjan, J.W. Sheaffer, Sang-
Ha Lee, and K. Skadron. Rodinia: A benchmark suite for heteroge-
neous computing. In Workload Characterization, 2009. IISWC 2009.
IEEE International Symposium on, pages 44 –54, oct. 2009.

[CMHM10] Eric S. Chung, Peter A. Milder, James C. Hoe, and Ken Mai.
Single-chip heterogeneous computing: Does the future include cus-
tom logic, fpgas, and gpgpus? In MICRO ’10: Proceedings of the
IEEE/ACM International Symposium on Microarchitecture, pages
225–236, Washington, DC, USA, 2010. IEEE Computer Society.

[CO03] Michael K. Chen and Kunle Olukotun. The Jrpm system for dynam-
ically parallelizing Java programs. In ISCA ’03: Proceedings of the
International Symposium on Computer Architecture, pages 434–446.
ACM, 2003.

[CZYH06] W. Cheng, Qin Zhao, Bei Yu, and S. Hiroshige. Tainttrace: Efficient
flow tracing with dynamic binary rewriting. In Computers and Com-
munications, 2006. ISCC ’06. Proceedings. 11th IEEE Symposium
on, pages 749 – 754, june 2006.

[DLL+04] Zhao H. Du, Chu C. Lim, Xiao F. Li, Chen Yang, Qingyu Zhao, and
Tin F. Ngai. A cost-driven compilation framework for speculative
parallelization of sequential programs. In PLDI ’04: Proceedings of
the Conference on Programming Language Design and Implementa-
tion, pages 71–81. ACM, 2004.

114

[DM98] L. Dagum and R. Menon. Openmp: An industry standard api for
shared-memory programming. Computational Science Engineering,
IEEE, 5(1):46 –55, jan-mar 1998.

[DME09] Danny Dig, John Marrero, and Michael D. Ernst. Refactoring sequen-
tial java code for concurrency via concurrent libraries. In ICSE ’09:
Proceedings of the International Conference on Software Engineering,
pages 397–407. IEEE Computer Society, 2009.

[DRR99] L.A. De Rose and D.A. Reed. SvPablo: A multi-language
architecture-independent performance analysis system. In ICPP
’99:International Conference on Parallel Processing, pages 311 –318,
1999.

[GKM82] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. gprof:
A call graph execution profiler. In Proceedings of the 1982 SIGPLAN
Symposium on Compiler Construction, SIGPLAN ’82, pages 120–126.
ACM, 1982.

[HAA+96] M. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, Shih-Wei
Liao, and E. Bu. Maximizing multiprocessor performance with the
SUIF compiler. IEEE Computer, 29(12):84–89, Aug 1996.

[HBZ+05] Lorin Hochstein, Victor R. Basili, Marvin V. Zelkowitz, Jeffrey K.
Hollingsworth, and Jeff Carver. Combining self-reported and au-
tomatic data to improve programming effort measurement. In
ESEC/FSE-13: Proceedings of the 10th European software engineer-
ing conference held jointly with 13th ACM SIGSOFT international
symposium on Foundations of Software Engineering, pages 356–365.
ACM, September 2005.

[HLL10] Y. He, C. Leiserson, and W. Leiserson. The Cilkview Scalability
Analyzer. In SPAA ’10: Proceedings of the Symposium on Parallelism
in Algorithms and Architectures, pages 145–156, 2010.

[HM08] Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore
era. IEEE Computer, 41:33–38, July 2008.

[HPE+06] Kenneth Hoste, Aashish Phansalkar, Lieven Eeckhout, Andy
Georges, Lizy K. John, and Koen De Bosschere. Performance pre-
diction based on inherent program similarity. In PACT ’06: Parallel
Architectures and Compilation Techniques, 2006.

[HSHZ09] C. Hammacher, K. Streit, S. Hack, and A. Zeller. Profiling java pro-
grams for parallelism. In IWMSE ’09: Proceedings of the 2009 ICSE
Workshop on Multicore Software Engineering, pages 49–55, 2009.

115

[JGLT11] Donghwan Jeon, Saturnino Garcia, Chris Louie, and Michael Bed-
ford Taylor. Kismet: parallel speedup estimates for serial programs.
In Proceedings of the 2011 ACM international conference on Object
oriented programming systems languages and applications, OOPSLA
’11, pages 519–536. ACM, 2011.

[JJLG03] Gabriele Jost, Haoqiang Jin, Jesus Labarta, and Judit Gimenez. In-
terfacing computer aided parallelization and performance analysis. In
Proceedings of the 2003 international conference on Computational
science, ICCS’03, pages 181–190, Berlin, Heidelberg, 2003. Springer-
Verlag.

[KBDZ09] K. Kelsey, T. Bai, C. Ding, and C. Zhang. Fast track: A software sys-
tem for speculative program optimization. In CGO ’09: Proceedings
of the International Symposium on Code Generation and Optimiza-
tion, pages 157–168. IEEE Computer Society, 2009.

[KBI+09] Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu, Keshav Pin-
gali, and Calin Casçaval. How much parallelism is there in irreg-
ular applications? In PPoPP ’09: Proceedings of the ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Program-
ming, pages 3–14, 2009.

[KKKB12] Minjang Kim, Pranith Kumar, Hyesoon Kim, and Bevin Brett. Pre-
dicting potential speedup of serial code via lightweight profiling and
emulations with memory performance model. In IPDPS ’12: Proceed-
ings of the 26th IEEE International Parallel and Distributed Process-
ing Symposium, 2012.

[KKL10] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. SD3: A scalable
approach to dynamic data-dependence profiling. MICRO ’10: Pro-
ceedings of the International Symposium on Microarchitecture, 0:535–
546, 2010.

[KLW+04] D. Kim, S.S.-W. Liao, P.H. Wang, J. del Cuvillo, X. Tian, X. Zou,
H. Wang, D. Yeung, M. Girkar, and J.P. Shen. Physical experi-
mentation with prefetching helper threads on intel’s hyper-threaded
processors. In Code Generation and Optimization, 2004. CGO 2004.
International Symposium on, pages 27 – 38, march 2004.

[KMC72] D.J. Kuck, Y. Muraoka, and Shyh-Ching Chen. On the number of op-
erations simultaneously executable in fortran-like programs and their
resulting speedup. IEEE Transactions on Computers, C-21(12):1293–
1310, Dec. 1972.

116

[KMT91] K. Kennedy, K. S. McKinley, and C. W. Tseng. Interactive paral-
lel programming using the parascope editor. IEEE Transactions on
Parallel and Distributed Systems, 2(3):329–341, 1991.

[KS04] Tejas S. Karkhanis and James E. Smith. A first-order superscalar pro-
cessor model. In ISCA ’04: Proceedings of the International Sympo-
sium on Computer Architecture, pages 338–, Washington, DC, USA,
2004. IEEE Computer Society.

[KST10] Md Kamruzzaman, Steven Swanson, and Dean M. Tullsen. Soft-
ware data spreading: leveraging distributed caches to improve single
thread performance. In Proceedings of the 2010 ACM SIGPLAN con-
ference on Programming language design and implementation, PLDI
’10, pages 460–470, 2010.

[Kum88] M. Kumar. Measuring parallelism in computation-intensive scien-
tific/engineering applications. IEEE Transactions on Computers,
37(9):1088–1098, Sep 1988.

[KVAJ+09] S. Kota Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M.B. Taylor. SD-VBS: The San Diego Vision Bench-
mark Suite. In IISWC ’09: Proceedings of the IEEE International
Symposium on Workload Characterization, pages 55–64. IEEE Com-
puter Society, 2009.

[LA04] C. Lattner and V. Adve. Llvm: a compilation framework for lifelong
program analysis transformation. In Code Generation and Optimiza-
tion, 2004. CGO 2004. International Symposium on, pages 75 – 86,
march 2004.

[Lar93] J. R. Larus. Loop-level parallelism in numeric and symbolic programs.
IEEE Trans. Parallel Distrib. Syst., 4(7):812–826, 1993.

[LBF+98] Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna,
Jonathan Babb, Vivek Sarkar, and Saman Amarasinghe. Space-time
scheduling of instruction-level parallelism on a Raw machine. In ASP-
LOS ’98: International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 46–54, Oct 1998.

[LDB+99] Shih-Wei Liao, Amer Diwan, Robert P. Bosch, Jr., Anwar Ghuloum,
and Monica S. Lam. SUIF Explorer: an interactive and interpro-
cedural parallelizer. In PPoPP ’99: Proceedings of the ACM SIG-
PLAN symposium on Principles and Practice of Parallel Program-
ming, pages 37–48, New York, NY, USA, 1999. ACM.

117

[Lei09] Charles E. Leiserson. The Cilk++ concurrency platform. In DAC
’09: Proceedings of the Design Automation Conference, pages 522–
527, 2009.

[Loh01] Gabriel Loh. A time-stamping algorithm for efficient performance
estimation of superscalar processors. In SIGMETRICS, pages 72–81,
New York, NY, USA, 2001. ACM.

[LTC+06] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and J. Tor-
rellas. POSH: a TLS compiler that exploits porogram structure. In
PPoPP ’06: Proceedings of the ACM SIGPLAN symposium on Prin-
ciples and Practice of Parallel Programming, pages 158–167. ACM,
2006.

[MCC+95] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jef-
frey K. Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna
Kunchithapadam, and Tia Newhall. The Paradyn Parallel Perfor-
mance Measurement Tool. IEEE Computer, 28(11):37–46, 1995.

[MFH96] Margaret Martonosi, David Felt, and Mark Heinrich. Integrating
performance monitoring and communication in parallel computers.
In SIGMETRICS, pages 138–147, 1996.

[MSB+05] Milo Martin, Daniel Sorin, Bradford Beckmann, Michael Marty,
Min Xu, Alaa R. Alameldeen, Kevin Moore, Mark Hill, and David
Wood. Multifacet’s general execution-driven multiprocessor simula-
tor (GEMS) toolset. SIGARCH Comput. Archit. News, 33:92–99,
Nov 2005.

[MW07] Arndt Mhlenfeld and Franz Wotawa. Fault detection in multi-
threaded c++ server applications. Electronic Notes in Theoretical
Comp Sci, 174(9):5 – 22, 2007.

[New05] James Newsome. Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software.
In NDSS ’05: Proceedings of the Network and Distributed System
Security Symposium, 2005.

[NG09] Vijay Nagarajan and Rajiv Gupta. Architectural support for shadow
memory in multiprocessors. In VEE ’09: Proceedings of the Inter-
national Conference on Virtual Execution Environments, pages 1–10,
New York, NY, USA, 2009. ACM.

[NM03] Nicholas Nethercote and Alan Mycroft. Redux: A dynamic dataflow
tracer. Electronic Notes in Theoretical Comp Sci, 89(2):149 – 170,
2003.

118

[NPP+06] Satish Narayanasamy, Cristiano Pereira, Harish Patil, Robert Cohn,
and Brad Calder. Automatic logging of operating system effects to
guide application-level architecture simulation. In SIGMETRICS ’06,
pages 216–227, New York, NY, USA, 2006. ACM.

[NS07] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In PLDI ’07: Proceedings of the
Conference on Programming Language Design and Implementation,
pages 89–100, New York, NY, USA, 2007. ACM.

[Obe] Markus Oberhumer. LZO Data Compression Library.
http://www.oberhumer.com/opensource/lzo/.

[OH00] David Ofelt and John L. Hennessy. Efficient performance prediction
for modern microprocessors. In SIGMETRICS, pages 229–239, New
York, NY, USA, 2000. ACM.

[omn] NAS Parallel Benchmarks 2.3; OpenMP C.
http://www.hpcc.jp/Omni/.

[QWL+06] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou,
and Youfeng Wu. Lift: A low-overhead practical information flow
tracking system for detecting security attacks. In Proceedings of the
39th Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO 39, pages 135–148, Washington, DC, USA, 2006. IEEE
Computer Society.

[RDN93] Lawrence Rauchwerger, Pradeep K. Dubey, and Ravi Nair. Mea-
suring limits of parallelism and characterizing its vulnerability to re-
source constraints. In MICRO ’93: Proceedings of the international
symposium on Microarchitecture, pages 105–117, 1993.

[RP95] L. Rauchwerger and D. Padua. The LRPD test: speculative run-
time parallelization of loops with privatization and reduction parallel-
ization. In PLDI ’95: Proceedings of the Conference on Programming
Language Design and Implementation, pages 218–232, New York, NY,
USA, 1995. ACM.

[RVVYS10] A. Rountev, K. Van Valkenburgh, Dacong Yan, and P. Sadayappan.
Understanding parallelism-inhibiting dependences in sequential java
programs. In ICSM ’10: Proceedings of the International Conference
on Software Maintenance, pages 1–9, Sept 2010.

[SBN+97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
and Thomas Anderson. Eraser: a dynamic data race detector for
multithreaded programs. ACM Trans. Comput. Syst., 15:391–411,
November 1997.

http://www.oberhumer.com/opensource/lzo/
http://www.hpcc.jp/Omni/

119

[SBV95] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar processors. In
ISCA ’95: Proceedings of the International Symposium on Computer
Architecture, pages 414–425. ACM, 1995.

[SLA+07] Ruchira Sasanka, Man L. Li, Sarita V. Adve, Yen K. Chen, and Eric
Debes. Alp: Efficient support for all levels of parallelism for complex
media applications. ACM Transactions on Architecture and Code
Optimization, 4(1), 2007.

[SN05] Julian Seward and Nicholas Nethercote. Using valgrind to detect
undefined value errors with bit-precision. In Proceedings of the an-
nual conference on USENIX Annual Technical Conference, ATEC
’05, pages 2–2, Berkeley, CA, USA, 2005. USENIX Association.

[SSvP07] Vijay A. Saraswat, Vivek Sarkar, and Christoph von Praun. X10:
concurrent programming for modern architectures. In PPoPP ’07:
Proceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, page 271, 2007.

[TFNG08] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Copy or discard
execution model for speculative parallelization on multicores. In MI-
CRO ’08: Proceedings of the IEEE/ACM International Symposium
on Microarchitecture, pages 330–341. IEEE Computer Society, 2008.

[TGH92] Kevin B. Theobald, Guang R. Gao, and Laurie J. Hendren. On
the limits of program parallelism and its smoothability. In MICRO
’92: Proceedings of the International Symposium on Microarchitec-
ture, pages 10–19. IEEE Computer Society Press, 1992.

[TMC09] Nathan R. Tallent and John M. Mellor Crummey. Effective perfor-
mance measurement and analysis of multithreaded applications. In
PPoPP ’09: Proceedings of the ACM SIGPLAN symposium on Prin-
ciples and practice of parallel programming, pages 229–240, 2009.

[TT11] Hung-Wei Tseng and D.M. Tullsen. Data-triggered threads: Elimi-
nating redundant computation. In High Performance Computer Ar-
chitecture (HPCA), 2011 IEEE 17th International Symposium on,
pages 181 –192, feb. 2011.

[TWFO09] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F. P.
O’Boyle. Towards a holistic approach to auto-parallelization: in-
tegrating profile-driven parallelism detection and machine-learning
based mapping. In PLDI ’09: Proceedings of the ACM SIGPLAN
Conference on Programming Language Design And Implementation,
pages 177–187, 2009.

120

[vPBC08] C. von Praun, R. Bordawekar, and C. Cascaval. Modeling optimistic
concurrency using quantitative dependence analysis. In PPoPP ’08:
Proceedings of the Symposium on Principles and Practice of Parallel
Programming, pages 185–196, 2008.

[VRSP07] Guru Venkataramani, Brandyn Roemer, Yan Solihin, and Milos
Prvulovic. Memtracker: Efficient and programmable support for
memory access monitoring and debugging. High-Performance Com-
puter Architecture, International Symposium on, 0:273–284, 2007.

[WKC08] Peng Wu, Arun Kejariwal, and Călin Caşcaval. Compiler-driven de-
pendence profiling to guide program parallelization. In LCPC ’08:
Languages and Compilers for Parallel Computing, pages 232–248,
2008.

[WST09] J. Wloka, M. Sridharan, and F. Tip. Refactoring for reentrancy. In
FSE ’09: Proceedings of the ACM Symposium on the Foundations of
Software Engineering, pages 173–182. ACM, 2009.

[XBS06] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced policy en-
forcement: a practical approach to defeat a wide range of attacks. In
Proceedings of the 15th conference on USENIX Security Symposium
- Volume 15, Berkeley, CA, USA, 2006. USENIX Association.

[XZ07] B. Xin and X. Zhang. Efficient online detection of dynamic control
dependence. In ISSTA ’07: Proceedings of the International Sympo-
sium on Software Testing and Analysis, pages 185–195, 2007.

[ZBA10a] Q. Zhao, D. Bruening, and S. Amarasinghe. Umbra: Efficient
and scalable memory shadowing. In CGO ’10: Proceedings of the
IEEE/ACM international symposium on Code Generation and Opti-
mization, pages 22–31, 2010.

[ZBA10b] Qin Zhao, Derek Bruening, and Saman Amarasinghe. Efficient mem-
ory shadowing for 64-bit architectures. In ISMM ’10: Proceedings
of the International Symposium on Memory Management, Toronto,
Canada, Jun 2010.

[ZCZ10] Jidong Zhai, Wenguang Chen, and Weimin Zheng. Phantom: pre-
dicting performance of parallel applications on large-scale parallel
machines using a single node. In PPoPP ’10: Proceedings of the
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 305–314, 2010.

[ZG01] Youtao Zhang and Rajiv Gupta. Timestamped whole program path
representation and its applications. In PLDI ’01: Proceedings of the

121

ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 180–190, 2001.

[ZIM+07] Li Zhao, R. Iyer, J. Moses, R. lllikkal, S. Makineni, and D. Newell.
Exploring Large-Scale CMP Architectures Using ManySim. IEEE
Micro, 27(4):21 –33, July 2007.

[ZMLM08] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering
hidden loop level parallelism in sequential applications. In HPCA ’08:
Proceedings of the International Symposium on High Performance
Computer Architecture, 2008.

[ZNJ09] X. Zhang, A. Navabi, and S. Jagannathan. Alchemist: A trans-
parent dependence distance profiling infrastructure. In CGO ’09:
Proceedings of the International Symposium on Code Generation and
Optimization, pages 47–58. IEEE Computer Society, 2009.

[ZTZ07] Pin Zhou, R. Teodorescu, and Yuanyuan Zhou. Hard: Hardware-
assisted lockset-based race detection. In HPCA ’07: International
Symposium on High Performance Computer Architecture, pages 121
–132, 2007.

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract of the Dissertation
	Introduction
	Taxonomy of Parallelization Tools
	Overview of Parallelization Stages
	Existing Parallelization Tools

	A Practical Oracle for Parallelization
	Thesis Organization

	The Cost of Inefficient Parallelization
	Example Parallelization Methodology
	User Study
	Setup
	Benchmark Analysis
	Impact on Program Speedup
	Time Spent On Critical Regions
	Threats to Validity
	Conclusions

	System Overview
	Usage Model
	System Architecture
	Limitations of Kremlin and other Dynamic Analyses

	Planning-Aware Parallelism Discovery
	Requirements of Planning-Aware Discovery
	Background: Critical Path Analysis
	Hierarchical Critical Path Analysis
	Defining a Region
	Calculating Critical Path with Shadow Memory
	Introducing Hierarchy into Shadow Memory
	Summarizing Dynamic Regions

	Identifying Local Parallelism
	Initial Approach: Parallelism Charts
	Self-Parallelism

	Evaluation

	From Parallelism to Parallelization Plan
	Defining Parallelism Planning
	Estimating Parallel Execution Time
	Identifying Parallelism Types
	Planner Personalities
	OpenMP Planning Personality
	OpenCL Planning Personality
	Cilk++ Planning Personality
	Developing Additional Planner Personalities

	Experimental Evaluation
	Methodology
	Comparing Plan Size
	Performance Comparison
	Effectiveness of Region Prioritization
	Influences on Plan Size
	Initial GPGPU Planning Results

	Improving Kremlin's Practicality
	Efficient Shadow Memory Organization
	Static Partial Evaluation of CPA
	Evaluation
	Shadow Memory Optimization
	Static Partial Evaluation of CPA

	Related Work
	Parallelism Discovery
	Parallelism Planning
	Performance Prediction
	Shadow Memory Design
	Parallel Performance Debugging Tools

	Summary
	Bibliography

