
UNIVERSITY OF CALIFORNIA, SAN DIEGO

A Portable MATLAB Front-end for Tiled Microprocessors

A thesis submitted in partial satisfaction of the requirements for the degree
Master of Science

in

Computer Science

by

Hyojin Sung

Committee in charge:

Professor Michael B. Taylor, Chair
Professor Steven Swanson
Professor Sorin Lerner

2009

Copyright

Hyojin Sung, 2009

All rights reserved.

The thesis of Hyojin Sung is approved and it is acceptable in

quality and form for publication on microfilm and electroni-

cally:

Chair

University of California, San Diego

2009

iii

DEDICATION

To my parents

iv

TABLE OF CONTENTS

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Abstract . x

Chapter 1. Introduction . 1

Chapter 2. Design Goals . 8
2.A. Performance . 8
2.B. Extensibility . 10
2.C. Portability . 12

Chapter 3. Overall Compiler Structure . 15
3.A. Front-end . 15
3.B. Back-end . 16

Chapter 4. Compilation Phases . 19
4.A. Loading and Parsing Functions . 19
4.B. Constructing AST . 22
4.C. Function Inlining . 22
4.D. Building CFG with regions . 25
4.E. SSA and SO Transformation . 27
4.F. Type and Dimension Inference . 28
4.G. Constant Propagation . 31
4.H. IR Generation . 32

Chapter 5. Performance Evaluation . 35
5.A. Evalution Environment . 35

5.A.1. Compiler Infrastructure . 35
5.A.2. Benchmarks . 37
5.A.3. Target Architecture Simulator . 39

5.B. Evaluation Results . 40
5.B.1. Function Inlining . 40
5.B.2. Constant Propagation . 43
5.B.3. Function Inlining and Constant Propagation 45

v

5.B.4. Summary . 46

Chapter 6. Conclusion . 49

Appendix A. PCODE and TDF Specification . 52
A.A.PCODE Specification . 52

A.A.1. Tag Format . 52
A.A.2. Operation Format . 53

A.B.TDF Specification . 55

Bibliography . 56

vi

LIST OF FIGURES

Figure 1.1. The Raw Microprocessor . 3
Figure 1.2. Phase Ordering . 4
Figure 1.3. The Role of MATLAB Front-end in Compilers for Tiled Architectures 7

Figure 2.1. Example of Guard Condition Statements 9
Figure 2.2. An Example MPP Function . 12

Figure 3.1. Compilation phases in the front-end . 17
Figure 3.2. Compilation phases in the back-end . 18

Figure 4.1. Function Loading Algorithms . 20
Figure 4.2. cos.mpp . 21
Figure 4.3. An Example of Abstract Syntax Tree . 23
Figure 4.4. An Example of Abstract Syntax Tree . 24
Figure 4.5. Standard CFG and CFG with Regions . 26
Figure 4.6. Regular Expression for Regions . 27
Figure 4.7. SSA and SO Transformation . 28
Figure 4.8. MAGICA Input Streams for drv bayes and bayes Functions 29
Figure 4.9. MAGICA Output Streams for drv bayes Function 30
Figure 4.10. Pseudo Code for Recursive Mechanisms for Callee Function Inference 33
Figure 4.11. bayes.pcode . 34
Figure 4.12. bayes f2 i2f2f1.tdf . 34

Figure 5.1. Execution time of the baseline compiler and the inlining version . . . 41
Figure 5.2. Code Snippet of crnich . 42
Figure 5.3. Type inference success ratio . 44
Figure 5.4. Execution Time of the Baseline Compiler and the Constant Propaga-
tion Version . 45
Figure 5.5. Execution Time of the Inlining Front-end and the Inlining & Constant
Propagation Version . 46
Figure 5.6. Overall Speedup . 48

vii

LIST OF TABLES

Table 5.1. Benchmarks used for Performance Evaluation 38
Table 5.2. Benchmark Complexity (measured by # of instructions and # of library
function calls) . 39
Table 5.3. Elapsed Cycle Time of the Benchmarks Compiled by the Baseline Ver-
sion and the Inliner-added Version . 40
Table 5.4. Speedup of Three Optimized Versions to the Baseline Version 47

viii

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Professor Michael Taylor, whose insight-

ful suggestions and guidance continuously motivated me to improve on the project, and

enabled me to finish the thesis. I also want to thank my colleagues, Donghwan Jeon,

Ikkjin Ahn and Jinseok Lee, for all their invaluable help and support. Lastly, I’d like

to send my special thanks to my family and friends for their unconditional love and

encouragement.

ix

ABSTRACT OF THE THESIS

A Portable MATLAB Front-end for Tiled Microprocessors

by

Hyojin Sung

Master of Science in Computer Science

University of California, San Diego, 2009

Professor Michael B. Taylor, Chair

Recently, microprocessor architects have redirected their attention from improv-

ing clock frequency to exploiting large-scale parallelism on multi-core processors as a

means of continuing Moore’s Law. Tiled multi-core processors are one such class of

multi-core processors that facilitate compilers’ automatic parallelization by providing

low-latency communication over on-chip Scalar Operand Networks (SON).

Though parallelizing compilers for academic tiled architectures such as RAW

and Wavescalar have shown their potential, they are not portable solutions because they

are closely coupled with the source language (typically C) and their own target archi-

tecture. Furthermore, their source languages are not suitable for exploiting the full par-

allelizing power of tiled architectures.

In order to provide portable compiler infrastructure for the class of tiled archi-

tecture, we implemented a compiler infrastructure with separate front-end and back-end

components. Because MATLAB is the source language, the compiler will benefit from

an inherent abundance of parallelism in source codes and conduct an easier analysis

x

without pointers in both performance and complexity.

The thesis presents a complete compiler front-end specifically optimized for

MATLAB. On top of conventional front-end tasks, it performs static type and shape in-

ference by using an inference engine, MAGICA. To overcome the limitations of MAG-

ICA, the front-end provides an extended MATLAB format which enables programmers

to define type- and dimension-aware MATLAB libraries in a high-level MATLAB.

Performance evaluation measures the effect of function inlining performed in the

front-end; function inlining significantly improved performance by 2.38x on average by

allowing the inference engine to produce more exact type and shape information.

xi

Chapter 1

Introduction

Until recently, microprocessor technologies have concentrated on improving clock

rate as the means of exploiting improvements in silicon manufacturing (Moore, 2000).

This approach, however, has produced serious architectural limits. As pipelines grow

deeper from the addition of more complicated control logic, the complexity and power

density of microprocessors become very difficult to sustain. Furthermore, scaling mono-

lithic processors with central and shared logic are not feasible considering wire and logic

delay no more negligible compared to clock speed. Multi-core processors are one of

promising alternatives to overcome these complexity and scalability limits.

Multi-core processors combine two or more independent cores into a single

physical package. Primary performance gain of multi-core processors results from exe-

cuting instructions in parallel on different cores, which causes a reduction in execution

time. There are various types of multi-core processors in terms of its parallelizing mech-

anisms. Some processors depend on run-time hardware mechanisms for instruction and

data placement, while others use their compilers to perform essential parts of paral-

lelization automatically in compile-time. The main advantage of relying on compilers

for automatic parallelization is that they can perform thorough analysis to assign and

schedule execution and incur less run-time overheads.

Tiled multi-core processors are a subclass of the multi-core processors that be-

1

2

long to the latter above. RAW (Taylor et al., 2002, 2004), WaveScalar (Swanson, 2006),

and TRIPS (Sankaralingam et al., 2003) are among academia’s widely-known tiled ar-

chitectures. A typical tiled microprocessor is composed of relatively simple and identi-

cal functional units, which are arrayed in tiles and on on-chip interconnects, as shown

in Figure 1.1. The functional units have their own ALU, FPU, registers, and caches,

and even their own PC in some cases. They provide an on-chip interconnection net-

work which allows tiles to communicate with other tiles as well as I/O ports for off-chip

devices like RAM. Depending on which type of Scalar Operand Network (SON) (Tay-

lor and Lee, 2005) a tiled architecture is built on, instruction assignment/ordering and

operand routing are handled either statically or dynamically. According to the AsTRo

taxonomy defined in Taylor and Lee (2005), RAW has static assignment/ordering and

static/dynamic routing (mostly static) SON, while WaveScalar and TRIPS use compilers

only for static assignments and perform ordering/routing dynamically. In any case, tiled

architectures heavily depend on compilers when parallelizing instructions and coordi-

nating low-latency communications.

The major advantage of tiled architectures is scalability. Multi-core processors

that share hardware resources, like cache, are hard to scale to a large number of cores

(i.e., tens to hundreds) because of synchronization and coherence overheads by a cen-

tralized logic. In tiled architectures, each tile has its own cache in which to store mem-

ory objects, and if another tile needs data in its cache the first specifically sends data

to the requesting tile through a low-latency on-chip network. With a sufficiently large

per-tile cache, synchronization overheads with memory can be minimized. Due to the

distributed nature of the communication, as many tiles as possible can be added to an

existing implementation of tiled architecture to provide higher parallelism without in-

creasing its complexity. In addition, because tiled architecture is composed of physically

simple function units and they are all distributed, the processor is free from the problems

of power and heat density increasing too high on and around complex logic.

In order for tiled microprocessors to really excel in performance by exploiting

parallelism, compilers for them play a much more crucial role than conventional com-

3

Figure 1.1: The Raw Microprocessor, from (Taylor et al., 2004)

pilers. These compilers are responsible for most of parallelization works, including

instruction assignments and operand routing. They typically perform exhaustive code

analyses to discover parallelism, and conduct code transformation to make the code

even more parallel. Then, they run algorithms to assign instructions and data on tiles to

maximize performance while minimizing communications. Figure 1.2 provides an ex-

ample of these passes implemented in RawCC, a compiler for RAW (Lee et al., 1998).

Currently, each tiled architecture has its own parallelizing compiler, and each performs

similar parallelization tasks as customized for target architectures. The usefulness of

the compilers was once again demonstrated by performance evaluation showing that

they can improve performance of applications with high levels of ILP up to 9x. (Taylor

et al., 2004).

Though current compilers successfully provide efficient interfaces for tiled ar-

chitectures, their source languages pose several reasons to reconsider their applicability.

The source languages of current compilers are either C or FORTRAN (Swanson et al.,

2003; Smith et al., 2006). These languages are good source languages because they are

widely used in many application areas and provide a huge set of benchmarks for the

purpose of performance comparison. However, they are not languages originally de-

4

Figure 1.2: Parallelization Passes in RawCC Compiler, from (Lee et al., 1998)

signed to efficiently handle parallel computation. Parallel or vector operations apply the

same operation onto many values in a vector or a matrix. For example, consider a vector

operation A = B + 3 where A and B are matrices of the same size. This operation adds

3 to every element of B and stores each of them in A at the corresponding index. It is

not only much easier to write parallel applications in a language supporting this type of

operation, but analyzing and capturing parallelism in the source codes can be performed

more efficiently in its compiler. As a result, many application areas, from signal and vi-

sion processing to computational biology, which need to execute massive computations

in parallel at high speed are written in such language. On the other hand, parallelizable

C or FORTRAN applications are very limited. Even though they can express vector

operations by repeating scalar operations within nested loops, they require much more

5

complicated data-flow analysis, often over multiple basic blocks, to determine depen-

dency and transform codes to parallel instructions. Therefore, a compiler that takes a

language with all the attributes, i.e., which is (1) easy to analyze, (2) has naturally abun-

dant parallelism, and (3) has a large pool of such parallel applications, could exploit the

full potential of parallelism available on tiled architectures while maintaining a simple

structure.

The thesis proposes to build a portable MATLAB compiler front-end for tiled

architecture that will solve the issues of current compilers. MATLAB is a high-level nu-

merical computing environment and programming language (Etter, 1999). It is one of

the most widely used and commercially successful languages for performing computa-

tionally intensive tasks in diverse areas, such as signal and image processing, computa-

tion biology, and financial modeling. There are large growing communities of MATLAB

programmers in those areas, and these kind of programs tend to contain a lot of paral-

lelism. Thus, by building a MATLAB compiler, we not only obtain the right material

to fully exercise the parallelizing power of tiled architecture, but also connect a large

sourcebase of parallelizable code to the architectures that can truly support them. In ad-

dition, it is definitely more convenient to analyze and apply optimizations because most

of the MATLAB applications are free from pointers. Pointer analysis is usually con-

servative in identifying independent variables while significantly increasing compiler

complexity (Cheng and Hwu, 2000; Burke et al., 1995). If the source language does not

involve aliasing, a compiler can perform more aggressive optimizations while keeping

itself simple.

Not content to merely provide a functioning MATLAB compiler front-end, we

tried to deliver a portable and extensible front-end interface. Using a more portable

compiler infrastructure with well-defined standardized abstractions will help reduce the

compiler writer’s effort as well as expand the accessibility of tiled architecture in gen-

eral. Extended MATLAB format with syntactic structures defined to force type and

dimension to input arguments provide a way to compile MATLAB libraries and gener-

ate front-end IRs with complete type information. It helps the front-end to overcome

6

the limitations of the static inference engine and become more extensible. A detailed

explanation of each goal is presented in Chapter 2.

Figure 1.3 captures the role of a MATLAB front-end in the portable compiler in-

frastructure for tiled architectures. It works as a broker, connecting a large sourcebase of

parallel applications with the architecture which can execute them faster. Due to its lack

of pointers, the front-end performs MATLAB-specific transformations and optimiza-

tions while remaining simple and straightforward. Separate front-ends and back-ends

which interface through standardized IRs are highly portable across different types of

current tiled architectures. In addition, they can expedite design and testing of new tiled

architectures.

The remaining part of the thesis is organized as follows: Chapter 2 reviews ma-

jor design goals of the MATLAB front-end. In Chapter 3, a detailed description of each

compilation phase in the front-end is given, along with a big picture of the front-end

structure. Chapter 4 presents a performance evaluation of the baseline MATLAB front-

end and an optimized version, indicating performance improvement obtained by func-

tion inlining. This chapter also includes brief description of the complete MATLAB-

RAW compiler framework used for performance evaluation. The conclusion, in Chapter

5, wraps up the discussion and proposes promising future work.

7

Parallelizing
Back-end

Matlab Front-end Matlab-specific
transformation/optimization

RAW Wavescalar TRIPS

Parallelizing
Back-end

Parallelizing
Back-end

Abstraction layer
Standardized IRs

tightly
coupled

Large Source-base
Abundant Parallelism
Easy to analyze

Matlab
Sources
Matlab
Sources

Matlab
Sources

Figure 1.3: The Role of MATLAB Front-end in Compilers for Tiled Architectures

Chapter 2

Design Goals

In this section, three main design goals of the entire compiler structure and,

specifically, MATLAB front-end, are reviewed in detail. Each design goal guided our

decision process regarding what kind of approach we take to solve imminent problems,

what features to include in the compiler, and how to organize them.

2.A Performance

MATLAB is a typeless language which does not require explicit type declara-

tion. Therefore, operators and functions must be overloaded in run-time depending on

the type of operands or arguments. For example, a statement A = C + 3 depends on

the value of C in run-time to execute a simple scalar addition or a multi-dimensional

element-wise addition. It also determines the type and dimension of A. As the original

MATLAB environment is interpretive, it is not difficult for the MATLAB interpreter

to identify the exact type, dimension and value of operands, and execute the matching

function in run-time. Compilers which do not perform such run-time analysis, must

provide some way to obtain type information. One easy solution is to insert guard in-

structions before every operation to check types and dimensions of operands and select

the right execution function. Figure 2.1 is an example of such implementation. The

8

9

if (C is scalar)
A = C + 3;

else if (C is array)
A = zeros(size(C));
A(:) = C(:) + 3;

end;

Figure 2.1: Example of Guard Condition Statements

clear drawback of this solution is that the run-time overheads which handle all guard

branches will significantly degrade performance, and the code size will explode with

the added guard structures.

Type and shape inference is one of the most widely-used strategies to improve

the performance of typeless languages by resolving type information before the last

moment. Static type inference performs the complete inference algorithms statically in

compile time (Banerjee et al., 2000; Rose and Padua, 1999; Budd, 1988), while dynamic

type inference mechanisms have more simple and straightforward structures, with more

information available in run time (Almási and Padua, 2002; Almási, 2001). Static type

inference algorithms typically work by running iterative data flow analysis; they begin

with certain initial values for variables/expressions and propagate them down the control

flow. Ideally, the intrinsic type and shape of all expressions are inferred statically, well

before their execution. But, this inference is not always possible, because the type and

shape of some variables are determined by which control-flow path is taken in run time.

Therefore, for complete type and shape inference, both static and dynamic inference

methods should be exploited in conjunction. Statically inferred type and dimension

can speed up the execution time by identifying which function to overload well before

execution and performing various optimizations, such as pre-allocating memory objects.

In our MATLAB front-end, we perform static type and shape inference using

an existing type inference engine called MAGICA (Joisha, 2003; Joisha and Banerjee,

2006, 2002). MAGICA internally operates by modeling the language’s shape semantics

10

using algebraic equations expressing the relationships between operands and outputs for

each operator. As inference results, MAGICA provides 4 kinds of information: intrinsic

type, dimension, size of each dimension, and value range. We assume that all MATLAB

source codes should determine explicit type and dimension information after passing

the engine. Without this information in compile-time, run-time overheads would be too

much to annul performance gain from parallelization. On the other hand, value range

and sizes of dimensions are not only less critical but more difficult to infer exactly in

compile-time, except certain simple cases. These will have to be resolved by performing

dynamic inference in back-ends. It is a design decision made to maximize performance

gain by incorporating static type inference engine in the front-end while imposing a

minimal restriction on MATLAB sources the front-end can process.

2.B Extensibility

Building an extensible compiler means making it easy to add or improve com-

piler functionality without disrupting the basic structure. In the MATLAB front-end,

we tried to achieve extensibility by supporting MATLAB built-in libraries. MATLAB

provides a very large set of built-in libraries, including information about basic mathe-

matical functions and 3D visualization, to help users build their applications more easily.

The library is another strong merit of the MATLAB language. However, it is a substan-

tial implementation burden for MATLAB compiler writers, because it has to provide

every possible version of one library function, i.e., int/float version and scalar/array ver-

sion, in order to allow the front-end to link the function in compile-time. Though a

scalar is treated as a 1 by 1 array in MATLAB, it is better performance-wise to distin-

guish between a simple scalar version and a more general array version. Furthermore,

as different sets of machine instructions are used to deal with integer and float values,

the compiler must generate separate versions to handle each type even if the number of

dimensions is the same.

The problem lies in determining which format these library function implemen-

11

tations should be provided in. Each implementation should be aware of the type and

dimension of its input arguments, and distinguish itself from other implementations of

the same function based on that information. We may write them in PCODE and TDF,

which are sufficient to combine the code with type and dimension information. But, this

is not a scalable solution, because library writers have to hand-code all TDFs without

help from the type inference engine. Also, IR, even if well-defined, is not intuitive to

write codes in, and correctness is difficult to prove. Therefore, we propose to provide a

convenient way to write MATLAB library implementations, clearly specifying the type

and dimension of input arguments and return variables.

The MATLAB++ (MPP) format is defined for this purpose. It has the same

MATLAB syntaxes and semantics, except it provides directives to declare type and di-

mension of input arguments and return variables. The MATLAB front-end takes the

directives as type and dimension declaration of those variables and uses this informa-

tion to initialize them before running the inference engine on the function. Only one

PCODE is generated per function since it’s typeless, while as many TDFs as the number

of type instances are generated per function. Generate PCODE and TDFs are stored in

the library directory of the compiler, and linked when a user function calls the library

with arguments that have matching type and dimension. If a compiler builder or user

wants to add a new library to the list of supported libraries, he/she has only to write

its implementations in MATLAB and specify the desired type and dimensions of input

arguments and return variables at the head of each file. An example of MPP function is

shown in Figure 2.2.

This MPP file generates two ctranspose function implementations, integer 2D

array version and float 2D array version. Therefore, there will be one PCODE and two

TDFs, one for each version. You can see that type instances are declared before the

function body, specifying possible instances of type declarations. declareVar function

is a compiler-internal function, valid only in MPP files, which lets back-ends know the

size of memory objects to allocate for the variable.

12{ int<2> a1;int<2> ret;};{ float<2> a1;float<2> ret;};function ret = ctranspose(a1)size_1d = size(a1, 1);size_2d = size(a1, 2);ret = declareVar(size_2d, size_1d); % internal function call to declare storage% transpose implementationfor i=1:1:size_1d,for j=1:1:size_2d,ret(j,i) = a1(i,j);end;end;

Type instance #1
a1 = int 2D array
ret = int 2D array

Type instance #2
a1 = float 2D array
ret = float 2D array

Figure 2.2: An Example MPP Function: ctranspose.mpp

2.C Portability

Our goal to build a portable compiler infrastructure is inspired by recognition of

the lack of portability in current compilers for tiled architectures. Each of the compilers

for existing tiled architectures is very tightly coupled with and optimized for its source

language and target tiled architecture. This arrangement may be natural in the sense

that these research architectures are developed in different labs, and each group had to

concentrate on developing high-performance compilers for their own architecture. But

considering the general class of tiled architecture, it is clear that building a more portable

compiler infrastructure which can be easily adopted by any type of tiled architecture will

13

expand the accessibility of tiled architectures in general. In addition, its contribution

to saving architects’ and compiler writers’ effort will be significant, considering that

building a complete compiler is a very time-consuming job.

High portability of the compiler infrastructure is achieved by completely sepa-

rating the job of building front-end and back-end through defining general but powerful

textual Intermediate Representation (IR) formats. The role of front-end and back-end

can be characterized as source-oriented and target-oriented, respectively (Cooper and

Torczon, 2003). A front-end typically performs a variety of code analyses and trans-

formations which can extract useful meta-data from the source code or transform it

into a more compiler-friendly format. For example, converting the source code into a

Control Flow Graph (CFG), to expose control flows, and applying Static Single As-

signment (SSA), to simplify def-use chains, are usually performed here. In addition to

these, language-specific passes can be added to provide useful, and sometimes neces-

sary, information for further optimization and parallelization in back-ends. Then, back-

ends go through various architecture-specific optimizations based on the source codes

transformed and annotated by the front-ends, and finally generate sequences of parallel

instructions for the compiler’s target architecture.

To make each end truly portable, it is vital that we define the proper file format

of IR between front-end and back-end. As this format is shared by many languages, it

should be general and flexible enough to effortlessly express any language. To avoid

limiting types of information allowed in IR, the format should be easy for each front-

end to define and add additional language-specific information to, which may then be

used by back-ends that are aware of the information. At the same time, the standardized

structure should force front-ends to include at least universally crucial information for

back-ends. For example, variable type and dimension of variables can be considered

necessary computations for all back-ends to perform optimizations. By defining such

IR file format, front-end and back-end become separate software components that com-

municate through off-line files. Therefore, once a front-end is built to produce correct

IR output files, it can be paired up with any back-end which can properly process them.

14

Two types of IR, Polymorphic Code (PCODE) and Type Definition (TDF), are

currently defined for our compiler with these requirements in mind. Both IRs are defined

in XML format, which is a very flexible and structured way to represent data. PCODE

is polymorphic it can be shared by multiple TDFs. We’ll look into how multiple TDFs

are generated for a function in detail later in this chapter.

PCODE basically represents a CFG generated by front-ends. But it also provides

high-level semantics such as loops and conditional statements which are common in

programming languages as region structures. These high-level structures can help back-

ends perform multi-block or global data-flow analyses. Otherwise, back-ends have to

reconstruct these high-level structures from basic blocks.

TDF is a map of variables and their type and dimension information. All front-

ends are responsible for providing TDFs. In TDF, type and dimension are mandatory

for every variable, while the size of each dimension is optional. Our MATLAB front-

end does not provide optional information, but other languages such as C and JAVA can

easily identify all three information types from variable declaration statements. In that

case, back-ends can perform additional optimizations, such as memory prefetching and

compaction, with the knowledge of exact sizes of variable dimensions. PCODE and

TDF specifications are presented in Appendix A.

Chapter 3

Overall Compiler Structure

The thesis focuses on the front-end of the compiler and how it provides an ef-

ficient and portable interface for MATLAB. To evaluate performance of the front-end,

however, we need a complete compiler infrastructure – including a back-end that gener-

ates machine instructions. Therefore, we paired the MATLAB front-end up with a RAW

back-end, which is a parallelizing back-end built for RAW (Taylor et al., 2002) tiled ar-

chitecture. Note that we are using a new RAW back-end under development at UC San

Diego under the guidance of prof. Michael Taylor, instead of the one presented in (Barua

et al., 2001). In this chapter, we will give a brief overview on the two components of the

compiler.

3.A Front-end

The MATLAB front-end is responsible for translating MATLAB source codes

into standardized IRs. The structure of the front-end passes is presented in Figure 3.1.

The front-end takes MATLAB source files with .m extension and MATLAB++

(MPP) source files with .mpp extension. Parsers and lexers, automatically generated

from rule definitions by Java ANTLR (Parr, 2007) package, generate parsed tree for

functions. Abstract Syntax Tree (AST) is constructed from the parsed tree. The baseline

15

16

version of the compiler does not include any optimization pass to verify that IRs are

correctly generated even when type inference is performed with the most conservative

initial information. This enables us to show how performance can be improved by func-

tion inlining and constant propagation, i.e., by removing function calls and exploiting

more precise type inference results as a result. Basic data flow analysis to construct

a CFG from the AST is performed, after which Static Single Assignment (SSA) and

Single-Operator (SO) code transformations are applied to the CFG. Then, the front-end

generates input for the type inference engine, MAGICA, and executes the engine to get

inference results. Front-end output includes two types of IR: PCODE and TDF. PCODE

is generated from the CFG, while TDF lists type and dimension information obtained

from the inference stage. More detailed description of each compilation phases will be

given in Chapter 4.

3.B Back-end

The RAW back-end of the compiler performs a variety of optimizations to gen-

erate parallelized instructions, closely optimized for the target architecture. One of its

most important roles is determining how to perform instruction assignment and schedul-

ing over tiles to minimize communication overhead and maximize parallel execution.

The compilation passes in the back-end is given in Figure 3.2.

The back-end takes PCODE and TDF as its input to apply various optimizations

and ultimately generate machine instructions. At the first desugaring stage, the com-

piler combines PCODE and TDF to generate Single-Threaded Code (SCODE) IR, and

allocate storage for memory objects. While SCODE IR is single-threaded and there-

fore targeted for a single tile, Multi-threaded Code (MCODE) IR (output of the next

parallelization stage) is multi-threaded code which runs on multiple tiles. A variety of

fine-grained parallelism techniques are exploited for more efficient and parallel assign-

ment and scheduling of instructions and data over the tiles. Routing instructions are also

generated at this stage. At the final targeting stage, RAW assembly is generated from

17

Parsing and construct AST

Function Inlining

Building CFG

SSA and SO transformation

Infer type and shape

IR generation

PCODE

Matlab
source

TDF

Figure 3.1: Compilation Phases in the Front-end

MCODE by applying peep-hole optimizations and performing register allocations.

Details of design and implementation of the back-end is out of the scope of this

thesis.

18

Parsing PCODE and TDF

Generate single-threaded IR
with type info

Assign memory objects

Assign and schedule instructions

Generate routing instructions

Generate RAW assembly

PCODE TDF

Allocate registers

SCODE

MCODE

RAW
assembly

Figure 3.2: Compilation Phases in the Back-end

Chapter 4

Compilation Phases

Front-ends in modern compilers usually include the following compilation phases:

parser and lexer to generate an AST; control- and data-flow analysis to generate an CFG

and apply code transformations; and an IR generator to transfer information necessary

for the back-end to perform further optimizations. On top of the common features, the

MATLAB front-end includes a language-specific compilation phase that performs type

inference for all the functions in the sources. In this chapter, we will examine each

compilation phase in the front-end from input to output.

4.A Loading and Parsing Functions

The front-end begins the compilation process by parsing the MATLAB file,

whose name is given to the front-end as a command-line argument. There are two

types of source files: M(MATLAB) files with .m extension, and MPP(MATLAB++)

files with .mpp extension. M files are normal MATLAB source files, while MPP files

are extended MATLAB source files which generate IRs for MATLAB libraries, as we’ve

seen in Chapter 2. M files can contain more than one function. The function with the

same name as the file is the root function, while the others are local functions visible

only within the file. The front-end starts parsing from the root function, identifies func-

19

20

// (1) check if it is a simulator-supported C library function (applies only to MPP)
if (function name starts with “__”)

check native.xml
if (function name is in the file)

// it is a native function
return;

else
throw exception;

// (2) check if it is a Magica-supported Matlab built-in library
if (function name is in the built-in list)

// it is a supported built-in function
return;

// (3) check if it is one of the sub-functions in the same file
If (function name is in the sub-function list)

// it is a sub-function
return;

// (4) check files in the same directory (.m)
if (filename.m exists)

load the file;
else
// (5) check the library directory

if (lib_dir/filename.mpp exists)
load the file;

else
// the file does not exist
throw exception;

Figure 4.1: Function Loading Algorithms

tion calls, and recursively loads source files for the functions to parse provided that they

are user-defined functions rather than MATLAB library functions. The libraries will be

linked automatically by the compiler in later stage. The algorithm used to search and

load files is presented in Figure 4.1.

The current RAW back-end is designed to evaluate the performance of the cycle-

accurate RAW simulator Barua et al. (2001). The simulator supports a set of C stan-

dard library functions by providing RAW assembly implementations of them. We can

accelerate execution by linking these implementations directly rather than compiling

21

{
int a1;
float ret;

};

{
float a1;
float ret;

};

function ret = cos(a1)

ret = __cos(a1); % calling C library cos function

Figure 4.2: cos.mpp

and linking their MATLAB implementations. Therefore, some of the MPP libraries

are implemented by invoking the functions. C library functions are distinguished from

MATLAB functions with a double underscore prefix, and the list of supported C library

functions are kept in the native.xml file in the library directory to make it easy to up-

date the list. On the other hand, there are MATLAB library functions supported by the

type inference engine, MAGICA. The return value of these functions can be inferred

automatically by MAGICA. In case the callee function is one of the other functions

in the same file, it must have been parsed together when the root function was parsed.

Therefore, these three types of functions do not require additional file loading. When

searching for a file containing functions, the front-end first searches the source directory

where the root file is located. If there’s no matching file, the front-end then looks at the

library directory. The front-end stops file searching and throws an exception when the

library directory search fails.

The MPP library function as seen in Figure 4.2 shows how the code invokes C

library functions provided by the RAW simulator. The cos function call is transformed

into native instruction in PCODE IR, which is then replaced with the C library function

later in the back-end.

22

4.B Constructing AST

In this phase, parsed trees generated from the parser are converted into Abstract

Syntax Trees (ASTs). An AST is a tree representation of the syntax of source codes. All

nodes in the AST are objects encapsulating various syntactic primitives in the source

codes from constants, and include variables to control structures like for, if, and while.

The nodes are hierarchically structured, starting from the unique root node containing

function declaration information at the top, intermediate body nodes containing a block

of statements to leaf nodes representing ID and constants. Figure 4.3 shows a sample

AST constructed by the front-end. We use a visitor-patterned (Martin, 2003) interface

to traverse the AST. The visitor design pattern is good for separating an algorithm from

the object structure on which it operates. By implementing the interface and adding the

desired action in each visitor function, an optimization and transformation filter can be

easily built.

4.C Function Inlining

Function inlining is one of the most common compiler optimization techniques.

It replaces a function call with the actual body of the function. Its benefit comes from

avoiding bookkeeping overheads involved in context switching at function call-sites,

especially when the callee functions are so short that the overheads dominate the over-

all function execution time. The optimization pass can be performed at various stage

of compilation, but the code after inlining can reveal hidden possibilities for optimiza-

tions. In the MATLAB front-end, whether to put function inlining before or after type

inference can significantly influence the accuracy of type information at the end of the

front-end.

As mentioned in Chapter 3, the baseline implementation of the front-end does

not include any optimization. The version that lacks function inlining can contain func-

tion calls, and the front-end must arrange separate type inferences for callee functions.

23

Function (root)

Body

=

If

A +

B 100

func1 A B

>

A J

Body

Func

disp A

For

J Colon Body

100 - 1

1 Body

break

function A = func1(B)
A = B + 100;
For J = 100:-1:1,

if A > J,
disp(A);

else
break;

end;
end;

Figure 4.3: An Example of Abstract Syntax Tree

Although MAGICA does not provide type inference results for variables in callee func-

tions, we need the information to generate IRs for the functions. Therefore, we add ini-

tialization code for the input arguments of the callee functions using actual arguments

at the call-site to start type inference on the functions. A pitfall to simply assigning

actual arguments to formal arguments is that the assignment may cause over-specialized

inference results.

Let’s see the example in Figure 4.4. For certain combinations of argument val-

ues, the return variable can be inferred an integer, as seen in the figure. We cannot reuse

this type inference result, and thus corresponding TDF safely for every call instance of

this function, because the inferred type is not true for other cases where a float value

is assigned to the return variable. This method requires the compiler to perform type

24

function ret = example(a1, a2)
ret = a1 ./ a2;

a1 = int scalar
a2 = int scalar

ret = float scalar

a1 = int scalar
a2 = int scalar
ret = int scalar

a1 = a2 * d (d = 1,2,3…)

otherwise

Type inference resultCallee Function Input Argument Init

type casting?

Figure 4.4: An Example of Abstract Syntax Tree

inference of the same function as frequently as it is called. To avoid redundant type

inference and improve reusability of IRs, we assign more conservative information to

input arguments. The type and dimension are retained from actual arguments, while the

value is abstracted to a range. For example, an integer scalar argument is initialized as

an integer scalar with value range from -25536 to 25536. This will enable us to avoid

over-specialization and get more general type inference result though it may suffer from

type casting from float to integer for some cases performance-wise. Therefore, this ver-

sion sets up the compiler’s baseline performance without conducting any optimization

related to type inference.

Function inlining is performed at the AST level. The front-end traverses ASTs

to find function calls, and it recursively merges the AST of every user defined function

called into the AST of the caller function. As a result, one large root function AST is

produced without user-defined function calls. This inlined version can give much more

accurate type and dimension inference results without losing any value information on

function call-sites, in exchange for increased code size. Many previous MATLAB com-

pilers, including FALCON (Rose and Padua, 1999), took this approach to maximize

25

performance gain from static type inference.

4.D Building CFG with regions

In this stage, the compiler front-end constructs a Control Flow Graph (CFG)s

from an AST. CFG essentially shows all control paths that can be taken in program

execution, and is crucial to many compiler optimizations and static analysis. In our

front-end, a basic CFG is extended with the concept of regions.

In converting AST to CFG, syntactic structures such as loop and conditional

statements are all abstracted to conditional/unconditional branches at the end of basic

blocks. This syntactic information can help back-ends to perform a variety of transfor-

mation and optimization operations. While CFG is inherently suitable for finding local

optimal solutions within the boundary of each basic block, there are many cases which

benefit from global analysis across basic block boundaries. For example, to perform

loop fusion to reduce the number of loops and increase efficiency of each individual

loop, global knowledge of loops are necessary. Because loops consist of one or more

basic blocks, local basic block analysis can not properly capture the relationships be-

tween sequential, independent loops. If only a basic CFG is provided to back-ends, they

might have to restore the source code’s original syntactic structures by running a full

data-flow analysis. There was similar approaches to provide both high-level and low-

level information of source codes in a single IR (O’Brien et al., 1995). The TOBEY

compiler has two types of IR, XIL and YIL, which functionally correspond to Instruc-

tion and Region in our PDF respectively. While YIL strictly sticks to retain source-level

syntactic structures such as loops and conditionals, our approach is different in that it

uses a unified concept of region to express all kinds of syntactic structures, and actu-

ally removes all control-flow branches by imposing valid inner-region structures with

implicit predecessor and successor region links.

Figure 4.5 compares fragments of two types of CFG (standard CFG and CFG

with regions) for bayes function. CFG with regions is built based on standard CFG,

26

Standard CFG CFG with regions

n = 1

phi
n < lm?

s4 = k+n;
nt = Seq(s4);

...
t3 = t1&t2;

t3?

PbGa = Matrix(nt, n);
s5 = Pa*PbGa;

s6 = 1-Pa;
...

phi

exit

true

falsetrue

false

n = 1

phi
n < lm?

s4 = k+n;
nt = Seq(s4);

...
t3 = t1&t2;

t3?

PbGa = Matrix(nt, n);
s5 = Pa*PbGa;

s6 = 1-Pa;
...

phi

exit

LOOP

LIST

IF

Figure 4.5: Standard CFG and CFG with Regions

wrapping basic blocks with regions. Therefore, it can be traversed either in AST style

(statement-by-statement) or CFG (block-by-block) style. There are four types of re-

gions: NODE, LOOP, LIST, and IF. Each region is defined using regular expressions

in Figure 4.6. A NODE region represents a basic block without branches, while a LIST

region contains a list of the other three types of regions. LOOP regions are supposed to

have a preheader NODE region, a condition NODE region, a loop LIST region and a

loop exit NODE region. If there is no instruction to put in a region, the region will just

be left empty. IF regions have a condition NODE region and a true LIST region, while

a false LIST region is optional.

27

REGION ::= LIST_REGION | NODE_REGION | LOOP_REGION | IF_REGION

LIST_REGION ::= (NODE_REGION)*

NODE_REGION ::= (INSTRUCTION)*

LOOP_REGION ::= NODE_REGION LIST_REGION NODE_REGION
preheader/condition body exit

IF_REGION ::= NODE_REGION LIST_REGION (LIST_REGION)?
condition true body false body

Figure 4.6: Regular Expressions for Regions

4.E SSA and SO Transformation

Static Single Assignment (SSA) (Cytron et al., 1991) and Single Operator (SO)

transformations are algorithms that transform codes into more normalized forms in or-

der to more easily perform analyses and optimizations, as well as generate instructions

(Cooper and Torczon, 2003; Kennedy and Allen, 2002). At the same time, both trans-

formations are required by MAGICA to be applied to its input program (Joisha and

Banerjee, 2002).

The SSA form of a function has exactly one assignment for every variable. Every

time a variable is redefined, a unique subscript is added to the original name. Therefore,

every definition has its own version. In SSA form, def-use chains are very simple and

have only one def element. The primary benefit of SSA comes from how it facilitates a

variety of data-flow analyses and optimizations based on them, including constant prop-

agation, dead code elimination, strength reduction and etc. SO transformation divides

operations with more than one operator into a sequence of single-operator instructions.

In this process, temporary variables are generated by the compiler to store intermediate

computation results. Since many machine instructions are in SO form with a maxi-

mum of two operands, this transformation helps the compiler directly generate machine

28

function ret = func1(n)
m = func2(n);
if m>0 & m<5,

j = func3(n, m);
ret = (j*m)/exp(n);

else
ret = 0;

end;
ret = ret / 100;

function ret = func1(n)
m = func2(n);
t1 = m>0;
t2 = m<5;
if (t1 & t2),

j = func3(n, m);
t4 = j * m;
t5 = exp(n);
ret = t4 / t5;

else
ret = 0;

end;
ret = ret / 100;

function ret = func1(n)
m = func2(n);
t1 = m>0;
t2 = m<5;
if (t1 & t2),

j = func3(n, m);
t4 = j * m;
t5 = exp(n);
ret1 = t4 / t5;

else
ret2 = 0;

end;
ret3 = phi(ret1, ret2);
ret4 = ret3 / 100;

Original SO form SSA+SO form

Figure 4.7: SSA and SO Transformation

instructions from IR instructions. Figure 4.7 shows how a sample MATLAB code is

transformed through SSA and SO transformation stages. Phi functions generated by

SSA transformations will be removed by back-ends at the code-generation stage. After

this stage, the CFGs for source functions are ready to be given to MAGICA as input and

printed as PCODE IR files.

4.F Type and Dimension Inference

As discussed in previous sections, an existing type inference engine called MAG-

ICA is incorporated in the front-end of the MATLAB compiler for static type inference.

It was developed as an add-on module for MATLAB (Joisha, 2003; Joisha and Baner-

jee, 2002) to infer type and shape information from source codes. It currently supports

70 MATLAB built-in libraries, and infers the type and shape of library return values

automatically.

29

inputArgs[drv$bayes] ^= {};
outputArgs[drv$bayes] ^= {};
statements[drv$bayes] ^:= Sequence[assignment[$$lhs
:> drv$bayes$r1$ssa0, $$rhs :> rand[1, 30]],
assignment[$$lhs :> drv$bayes$r2$ssa0, $$rhs :>
mtimes[drv$bayes$r1$ssa0, 3]], assignment[$$lhs :>
drv$bayes$r3$ssa0, $$rhs :> plus[drv$bayes$r2$ssa0,
1]], assignment[$$lhs :> drv$bayes$Seq$ssa0, $$rhs
:> fix[drv$bayes$r3$ssa0]], assignment[$$lhs :>
drv$bayes$Matrix$ssa0, $$rhs :> rand[4, 20]],
assignment[$$lhs :> drv$bayes$priorProbability$ssa0,
$$rhs :> FromDigits[RealDigits[1.0*^-4]]],
assignment[$$lhs :> drv$bayes$score$ssa0, $$rhs :>
bayes[drv$bayes$Seq$ssa0, drv$bayes$Matrix$ssa0,
drv$bayes$priorProbability$ssa0]], putret[]];

Figure 4.8: MAGICA Input Streams for drv bayes and bayes Functions

The basic process of getting type and shape information from MAGICA is as fol-

lows; First, a string representation of a program must be generated based on MAGICA

requirements. The front-end traverses a CFG, which passes SSA and SO transformation

phase and builds an input string. An example input string is given in Figure 4.8. Then,

the front-end initializes MAGICA, feeds the input to it, and executes the command to

infer types. The inference results from MAGICA, as seen in Figure 4.9, are parsed and

analyzed by the front-end to build a type map. A type map is indexed by each variable

name and returns a data object, which contains inference results for the variable. There

are four types of information provided by MAGICA for each variable: value range, in-

trinsic type, dimensionality and the size of each dimension. Although all four types of

information are included in this map, only type and dimension are mandatory in out-

put TDFs. The limited inference ability of the engine cannot provide explicit sizes of

dimension sizes with static information only.

Except in cases where the root function has no user-defined function calls or

30

{drv$bayes$r1$ssa0,{Interval[{1.1102230246251565*^-
16,0.9999999999999999}],$real,{st[1,30],2}}],

drv$bayes$r2$ssa0,{Interval[{3.3306690738754696*^-
16,2.9999999999999996}],$real,{st[1,30],2}}],

drv$bayes$r3$ssa0,{Interval[{1.0000000000000004,3.9
999999999999996}],$real,{st[1,30],2}}],

drv$bayes$Seq$ssa0,{Interval[{1,3}],$byte,{st[1,30],2}}],
drv$bayes$Matrix$ssa0,{Interval[{1.1102230246251565

*^-16,0.9999999999999999}],$real,{st[4,20],2}}],
drv$bayes$priorProbability$ssa0,{1.0*^-

4,$real,{st[1,1],2}}],
drv$bayes$score$ssa0,{Interval[{0,1.0*^-

4}],$real,{st[1,30],2}}],{Times[Complex[1, 1],
Interval[{DirectedInfinity[-

1],DirectedInfinity[1]}]],$complex,{st[putret[]],rk[putret[]]
}}}

Figure 4.9: MAGICA Output Stream for drv bayes Function

function inlining has removed function calls, the front-end must run the above process

separately for every callee function. MAGICA does not provide inference results for

variables in callee functions. When the front-end sends MAGICA the command to per-

form inference to MAGICA, a function name is given to MAGICA. MAGICA only gives

inferred information for variables in this function. MAGICA performs inter-procedural

type inference, assigns actual arguments to formal arguments, conducts inference algo-

rithms within callee functions, and returns the return variable back to the caller function.

But these callee functions are not exactly the target of inference, and their inference re-

sults are not included in output. For the front-end to generate TDFs for callee functions

as well, we have to re-run MAGICA to infer each callee function. Input argument initial-

ization is performed by inserting dummy assignments, which assign actual arguments

to corresponding formal arguments. The pseudo-code algorithms for this process are

given in Figure 4.10. The front-end recursively traverses each CFG, starting from the

root CFG, and whenever it encounters a user-defined function call, invokes MAGICA

31

to process the callee function with the dummy assignments added at the head of pro-

gram. In this way, every call instance of a function will go through MAGICA and have

generated its own type map.

4.G Constant Propagation

Constant propagation is one of the common high-level optimizations that elim-

inate unnecessary computation and register uses by replacing variables whose values

can be resolved in compile time with their actual computed values (Aho et al., 1986;

Kennedy and Allen, 2002). This can open possibilities for other optimizations such as

dead code elimination and common subexpression elimination. Constant propagation

is usually performed in the early stages of compilation, since it is a strictly machine-

independent optimization.

The main reason to perform constant propagation after conducting type infer-

ence is that we could leverage inference results from MAGICA to identify candidates

for constant propagation and get their off-line computation results as well. The infer-

ence engine internally performs a sort of constant propagation to provide value/value

range information for each variable. For example, the value range for variable x in

x=3*10 is given as 30 as a result of type inference. Therefore, we don’t have to run

separate fixed-point propagation algorithms typically required for constant propagation.

Variables whose inferred value information is a constant value rather than a value range,

are identified as candidates, and the optimization process is completed by replacing all

the occurrences of candidate variables with corresponding values. This optimization

is one of the example optimizations which can be simplified and accelerated by using

information obtained from type and dimension inference phase.

32

4.H IR Generation

The last phase of the MATLAB front-end is IR generation. It traverses the CFGs

for each function and generates a PCODE IR per CFG. TDFs are made from type maps

built by the inference engine. There may be multiple TDFs for the same function, be-

cause type maps are generated every time the function is called with input arguments for

different types and dimensions. If a function is called multiple times but with arguments

with the same type and dimension, TDF will be generated only once.

A PCODE for bayes function is presented in Figure 4.11. You can see that MAT-

LAB statements are expressed as low-level instructions such as add, mul, and beq, or as

pseudo-instructions, such as call, putret, and alloc, which require additional processing

in later stages to be transformed into machine instructions. High-level semantics like

loops and conditions would be used by back-ends for code analysis, but won’t appear in

final machine instructions. Figure 4.12 shows a fragment of a TDF for bayes function.

TDFs generated from different type maps are distinguished by the unique postfix in the

file name. This postfixes capture the type and dimension information of return variables

and input arguments. For example, a postfix of i2_f2f1 describes that this is a type

map that occurs when the function takes a float matrix for the first argument, a float

scalar for the second argument, and returns one integer scalar on function termination.

In the figure, you can see from the file name and the function name that this version of

TDF for bayes function takes three arguments: integer matrix, float matrix, and float

scalar respectively, and returns a float matrix.

33

for all functions f,
generate_magica_input(f, true, null);

Infer_type(root_function, root_function.name());

function generate_magica_input(function f, bool root, List actualArguments) {
if (root) {

generate Magica input w/o actual argument assignments
}
else {

for all formal argument fm in f.formal() and actual argument sa in actualArguments,
generate an assignment (fm = a) and insert it at the start of the code

generate Magica input
}

}

function infer_type(function f, string unique_name) {
infer type for function f
construct a type map t from MAGICA inference result
store it to the type map of f as <unique_name, t> pair
traverse(f.getCFG());

}

function traverse(node n) {
if (n is a function call) {

if (n is a Magica-supported built-in call or native function call) return;
else {

callee = n.getCalleeFunction();
generate_magica_input(callee, false, n.getActualArguments());
// example: “i2_f2f1” = one integer 2D array return var, float 2D and scalar args
unique_name = f.getUniqueName(n.getReturnVar(), n.getActualArguments());

}
infer_type(callee, unique_name);

}
}

Figure 4.10: Pseudo Code for Recursive Mechanisms for Callee Function Inference

34

<root>
<CFG Label="bayes">
…
<Region ID="bayes_1_list_1" Type="LOOP">

<Region ID="bayes_1_list_1_preheader" Type="NODE">
<Inst op="move"> <Def ID="n_ssa0"/> <Use Int="1"/> </Inst>

</Region>
<Region ID="bayes_1_list_1_cond" Type="NODE">

<Inst op="phi"> <Def ID="n_ssa0_phi"/> <Use ID="n_ssa0"/> <Use ID="n_ssa0_incr"/> </Inst>
<Inst op="bgt"> <Use ID="n_ssa0_phi"/> <Use ID="lm_ssa0"/> </Inst>

</Region>
<Region ID="bayes_1_list_1_list" Type="LIST">

<Region ID="bayes_1_list_1_list_0" Type="NODE">
<Inst op="add"> <Def ID="s4_ssa0"/> <Use ID="k_ssa0"/> <Use ID="n_ssa0_phi"/> </Inst>
<Inst op="subsref"> <Def ID="nt_ssa0"/> <Use ID="Seq"/> <Use ID="s4_ssa0"/> </Inst>
<Inst op="gt"><Def ID="t1_ssa0"/><Use ID="nt_ssa0"/><Use Int="0"/> </Inst>
<Inst op="lt"> <Def ID="t2_ssa0"/> <Use ID="nt_ssa0"/> <Use Int="5"/> </Inst>
<Inst op="and"> <Def ID="t3_ssa0"/> <Use ID="t1_ssa0"/> <Use ID="t2_ssa0"/> </Inst>

</Region>
<Region ID="bayes_1_list_1_list_1" Type="IF">

<Region ID="bayes_1_list_1_list_1_cond" Type="NODE">
<Inst op="bne"> <Use ID="t3_ssa0"/> <Use Int="0"/> </Inst>

</Region>

Figure 4.11: bayes.pcode

<root>
<function name="_bayes_f2_i2f2f1">
…
<var ID="Matrix">

<type> FLOAT </type>
<shape dimension="2">
</shape>

</var>
<var ID="Pa_ssa0">

<type> FLOAT </type>
<shape dimension="1"/>

</var>
<var ID="Pb1_ssa0">

<type> FLOAT </type>
<shape dimension="2">
</shape>

</var>
<var ID="Seq">

<type> INTEGER </type>
<shape dimension="2">
</shape>

</var>
<var ID="lm_ssa0">
<type> INTEGER </type>
<shape dimension="1"/>

</var>

Figure 4.12: bayes f2 i2f2f1.tdf

Chapter 5

Performance Evaluation

In this chapter, we evaluate the performance of the MATLAB front-end in terms

of the execution time of generated machine instructions. We will examine a total of four

versions of the front-end, one baseline version without any optimizations, and three

optimized versions with different optimization configurations. The primary goals of

performance evaluation are (1) to prove that the baseline implementation of the front-

end can successfully compile a range of benchmarks into correctly-working binaries,

and (2) to examine how effective front-end optimizations, i.e., function inlining and

constant propagation, are in improving the efficiency of compiler output.

5.A Evalution Environment

The experimental environment is composed of three major components: com-

piler infrastructure, benchmarks, and target architecture/simulator. In this section, we

will discuss in detail how each component is configured for the thesis.

5.A.1 Compiler Infrastructure

Though the thesis focuses only on a front-end which is portable and efficient,

the general efficiency of a compiler is typically measured by its ability to collect per-

35

36

formance numbers from instructions generated by the compiler. Therefore, a complete

compiler infrastructure, including a back-end, is necessary. Therefore, we combine the

MATLAB front-end with the RAW back-end, as presented in Chapter 2. To isolate per-

formance improvement of the front-end, we use a simplified version of the RAW back-

end for all experiments. If front-end IRs go though multi-threaded parallelization in the

back-end, the way front-end optimizations affect performance can vary depending on

the external factors. For example, some code can achieve much larger performance gain

by function inlining, since its code reveals more parallelism by inlining functions, while

others don’t. Therefore, in this thesis, the back-end generates single-threaded instruc-

tions for one tile without performing instruction-level parallelization and optimization.

Performance evaluation and analysis using a multi-threaded back-end is out of scope for

this thesis, and will be included in future researches.

For the front-end, we compare the performance of one baseline version and three

optimized versions. In order to confirm that the baseline front-end works well to gen-

erate correct instructions and evaluate how much optimization passes can speed up the

execution based on the baseline result, we first measure the performance of the base-

line front-end. This version of the front-end is focused on producing correct output by

executing all the compilation stages described in Chapter 4 except for function inlin-

ing and constant propagation. There are three other versions which extend the baseline

front-end by adding: (1) function inlining only; (2) constant propagation only; and (3)

both respectively. The function inlining phase comes right after the AST construction

phase, while constant propagation is performed after type inference. Function inlining

is expected to reduce program execution time by eliminating function call overheads.

More importantly, it enables the inference engine to provide more accurate and explicit

type and dimension inference result, i.e., integer instead of float (more exact type) and

scalar instead of array (more exact dimension), which lead to more concise and efficient

instruction generation. If function inlining is an optimization which promotes effective-

ness of an inference engine, constant propagation is an example of optimizations which

can be facilitated by the inference engine. Its performance benefit might be marginal,

37

but it shows that common optimizations which require variable information such as type,

dimension and value can be easily built based on the engine output. The third version

with both optimizations will test how constant propagation perform using more accurate

inference result from the inference engine after function inlining.

5.A.2 Benchmarks

For fair performance evaluation of the compiler, we used a subset of MAT2C

benchmarks and several other popular mathematical benchmarks. The MAT2C bench-

mark suite is a set of benchmarks used to test the MAGICA type inference engine itself

(Joisha, 2003). Because it is already extensively tested and proved to work for the in-

ference engine, we could leverage the fact to concentrate more on debugging the other

parts of the front-end. Furthermore, the MAGICA project provides a set of reference in-

put and output files for the MAT2C benchmarks, which we can refer to when validating

our MAGICA input generator. These benchmarks are composed of main computation

functions and a driver routine which invokes them. The ones evaluated in the thesis

are: finediff, closure, crnich, editdist. Detailed descriptions of each benchmark can be

found in Table 5.1.

In adddition to MAT2C benchmarks, we included more simple but widely-used

mathematical benchmarks in our benchmark pool. eigen2 and lufac are inspired by

MATLAB teaching codes from MIT (Department of Mathematics, 1996). They are

MATLAB implementations of very common and fundamental matrix computations with

moderate complexity. The codes are rewritten in part to adapt to our compilation re-

quirements. We have two more benchmarks: bayes which implements Bayes’ Rule for

computing probability is presented as an example in (Joisha, 2003) and (MathWorks,

2002), while rref is an adapted MATLAB library implementation of standard algorithms

to compute a reduced row-echelon form for a matrix.

The benchmarks contain a mix of various control statements, such as for, if,

while, and break, as well as a vector operator(”:”) to access and manipulate arrays.

38

Table 5.1: Benchmarks used for Performance Evaluation
Benchmarks Description Origin

finediff finite-difference solution to the wave
equation

MAT2C

closure transitive closure MAT2C
crnich Crank-Nicholson Heat Equation

Solver
MAT2C

edit edit distribution MAT2C
rref reduced row echelon form of a matrix Tcode

lufac LU-Factorization Tcode
eigen2 Characteristic polynomial, eigenval-

ues, eigenvectors of a 2 by 2 matrix
Modified MAT-
LAB rref

bayes bayesian signal probability MAGICA paper

The colon operator basically defines a range of values, having its starting value,

increment, and ending value as its operands (Muchnick, 1997). However, it can be trans-

lated into different operations depending on the context where it’s used in. When used

to define induction variables for for statement, the operator returns a scalar induction

variable with loop starting and ending condition information. On the other hand, the

operator can also specify a range of elements when used as array indices. For example,

A(1 : 10, :) = 4 is the same as assigning 4 to A’s elements from first to 10th column

in every row. In order to see the front-end handle all the possible cases with the colon

operator, the benchmarks include various usages of the operator.

Each benchmark contains at least one function call outside of its driver routine.

The maximum function call depth for all benchmarks is three. For the baseline front-

end, the call hierarchy allows us to test if recursive function loading and type inference

work well. More importantly, it enables us to examine the effect of function inlining,

thereby removing function call overheads.

In order to present quantitative proof for benchmark complexity, the number of

lines, the number of libraries invoked and, the total number of loop iterations in each

benchmark are presented in Table 5.2. Libraries shown here include MATLAB built-

in functions, as well as compiler-internal functions that implement basic binary and

39

unary operations between arrays or between scalar and array. Operations only involving

scalars are directly converted to corresponding machine instructions, so they do not re-

quire function calls. If a library function is invoked in multiple contexts with arguments

of different types and dimensions, each instance is counted as an independent function.

The total number of loop iterations is calculated by adding loop iteration counts of each

loop in benchmarks. If loops are nested, iteration counts of nested loops are multiplied

to the iteration count of the outermost loop. This helps us to grasp actual execution load

of each benchmark, which is not necessarily determined by the number of lines.

Table 5.2: Benchmark Complexity (measured by # of instructions and # of library func-

tion calls)
Benchmarks # of Instructions # of Libraries Invoked # of Total Loop Iterations

finediff 120 38 81
closure 62 25 18
crnich 134 47 90
edit 82 15 440
rref 79 26 5

lufac 101 47 27
eigen2 124 27 0
bayes 65 10 280

5.A.3 Target Architecture Simulator

The target tiled architecture of our compiler, RAW, provides a validated cycle-

accurate simulator (Taylor et al., 2004). We use the BTL RAW simulator version 2 beta

165 with toolchain version 21 to run the tests. As the back-end is currently designed to

run only single-threaded instructions, we configured the simulator to have a single tile.

The simulator supports a variety of C built-in library functions, which is a feature added

to help C to RAW compilation. Some of our current MATLAB libraries are implemented

by calling these native C libraries for faster execution.

40

5.B Evaluation Results

5.B.1 Function Inlining

Figure 5.1 presents the execution cycle time of the benchmarks compiled by:

(1) the baseline version; and (2) the version with function inlining. For a majority of

the benchmarks, benchmark performance is noticeably improved with the inlining pass.

On average, the execution time of the benchmarks decreased by 2.38x when inlining

optimization was applied; crnich is improved most by 5.6x, and closure least by 1.02x.

Table 5.3: Elapsed Cycle Time of the Benchmarks Compiled by the Baseline Version

and the Inliner-added Version

Benchmarks Baseline version Inliner version
finediff 323343 137223
closure 124259 120781
crnich 847294 150719
edit 1596023 1051654
lufac 82254 74864
bayes 369847 104031
eigen2 10651 4929

rref 92791 53950

We reduced function call overheads to be one of the direct and expected causes

of performance improvement. Because our benchmarks all include one or more user-

defined function calls in their driver routines, eliminating the overheads involved with

the calls will cause reduced execution time. This overhead includes time and resources

for bookkeeping function call stacks and return address stacks, and saving and restoring

caller and callee registers. Therefore, the function execution time improves as user de-

fined functions are invoked and overheads are removed. The case with crnich supports

this observation. It shows exceptionally high speedup than the others. crnich is the

only of our benchmarks which invokes another user-defined function within a loop. As

seen in Figure 5.2, the crnich function calls tridiagonal, which is another user-defined

function, inside the nested for loop. tridiagonal is not a trivial function. It takes four

41

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

fiff clos crni edit lufac bayes eigen2 rref

Baseline
Inliner

cycle

benchmarks

Figure 5.1: Execution time of the baseline compiler and the inlining version

arguments, performs a decent amount of computation in itself, and returns a computed

array. Removing function call overhead for textsftridiagonal once will help reduce ex-

ecution time. Here, function call instances are repeated as many times as the number

of iterations of the outer loop. Therefore, the actual number of function calls made in

run-time will be much larger than they appear in the source code. By removing all of

the calls, we could achieve a huge performance boost.

On the other hand, the function inlining pass influences the quality of static type

inference, which follows directly after the pass. This additional optimization effect is

unique to a compiler, which depends entirely on static type inference for type infor-

mation in compile-time. If the type inference engine fails to infer the explicit size of

each dimension of a scalar variable, which should be 1 by 1, it provides the variable’s

dimension in symbolic terms using other variables’ dimensions, and treats the variable

as a 2D array. This is a safe assumption, because in broad sense a scalar is equivalent

42

function U = crnich(a,b,c,n,m)
...
for j1=2:m,

for i1=2:(n-1),
Vb(i1)=U(i1-1,j1-1)-U(i1+1,j1-1)+s2*U(i1,j1-1);

end;
X = tridiagonal(Va, Vd, Vc, Vb);
U(1:n, j1) = ctranspose(X);

end;

function X = tridiagonal(A,D,C,B)
n = size(B,2);
for k=2:n,

mult = A(k-1)./D(k-1);
D(k)=D(k)-mult*C(k-1);
B(k)=B(k)-mult*B(k-1);

end;
X(n)=B(n)./D(n);
for k=(n-1):-1:1,

X(k)=(B(k)-C(k)*X(k+1))./D(k);
end;

Figure 5.2: Code Snippet of crinich

to a 1 by 1 array in MATLAB. The performance issue here is that the compiler must

invoke a special function implementation of basic arithmetic operations, which takes

arrays as arguments if a scalar is conservatively inferred as an array. That is, a+b cannot

be translated into a single add instruction if either of the terms is inferred as an array.

Due to limited inference power of compile-time type inference, the unnecessary cost to

invoke and execute these highly complicated and lengthy functions is unavoidable. This

increases the rate of symbolic inference particularly in current compiler implementation,

where conservative value ranges are passed as input arguments in order to sustain the

reusability of compiler output.

Function inlining solves this problem by embedding function body of callee

function into caller function. Because there’s no argument passing between user-defined

functions in this case, exact type and dimension information obtained in caller function

flows into the variables that were originally in callee function. We can expect a higher

type inference success rate, i.e., explicit inference rate, in the inlined function. Let’s

43

look at Figure 5.3, which compares the ratio of explicitly inferred scalar variables to to-

tal scalar variables in the baseline and the inliner version. The baseline compiler fails to

infer the exact dimensions of 20% to 75% of the variables in each benchmark, while the

inlining version hauls the ratio close to 100% for all the benchmarks except lufac. The

increase in the ratio closely reflects the speedup ratio for each benchmark in Figure 5.1.

For example, crnich shows the most significant improvement in both figures, while lu-

fac consistently shows no visible difference. The reason why closure does not perform

well with improved type inference results can be found in the fact that it does not contain

many scalar computations; it would benefit from more exact type information.

Though this solution might prevent callee functions from being reused by other

caller functions, as far as callee functions are short and lightweight enough as candidates

of function inlining are supposed to be, it is a fair tradeoff between reusability and

performance. In case that reusability of front-end IRs, the function inlining pass can be

turned off. Moreover, more accurate static type and dimension information can enable

other optimization passes which come later in the front-end or the back-end. Overall,

the front-end with the function inlining pass improves the quality of IR in terms of

performance and type inference accuracy for all the benchmarks.

5.B.2 Constant Propagation

We experiment with another popular optimization pass – constant propagation –

to see how it would speed up the benchmarks. Figure 5.5 presents the evaluation result.

Adding the constant propagation pass to the baseline compiler did not produce visible

speed-up for any benchmark. This disappointing result can be explained by two aspects

of the process: (1) array computation-intensive characteristics of the benchmarks inher-

ently limits the number of scalar candidates for constant propagation; and (2) type and

dimension information loss at the input arguments cause low inference rate in callee

functions. The first and major reason comes from the source language itself. MATLAB

is a language designed to efficiently perform array-based computations. Array variables

44

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fiff clos crni edit lufac bayes eigen2

Baseline
Inliner

benchmarks

explicit inferred / total

Figure 5.3: Ratio of explicitly inferred variable to the total variables (Type inference

success ratio)

are not the usual target of constant propagation, while most MATLAB applications and

benchmarks – including ours – are composed of array-and-array and array-and-scalar

computations.

However, there exist not a few scalar variables which can be replaced with con-

stants in each benchmark. Especially when an array is initialized by specifying its el-

ements one by one, as in a = [b, c; d, e], the compiler front-end generates many scalar

variables that will compute the size of the array and the offset of each element in run-

time. These computations can be significantly optimized through constant propagation,

but degraded accuracy of type and dimension information for input arguments is once

again an issue. In the example above, if b,c,d, or e are inferred as array with unknown

sizes when they are in fact scalars, compiler-generated size and offset variables cannot

be inferred correctly as scalars either. Constant propagation pass is implemented in the

45

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

fiff clos crni edit lufac bayes eigen2 rref

Baseline
ConstProp

cycle

benchmarks

Figure 5.4: Execution Time of the Baseline Compiler and Constant Propagation Version

front-end, as it is one of the most common and verified source-level optimization passes,

but it does not provide visible performance gain by its lonesome in our current compiler

implementation.

5.B.3 Function Inlining and Constant Propagation

The last experiment to examine performance of different front-end optimization

passes combined the two optimizations. The experimental result is shown in Figure 5.5.

The figure compares the execution time of the benchmarks compiled by three different

versions: the baseline compiler, the compiler with the inlining pass, and the compiler

with both inlining and constant propagation passes. The result shows that most of the

benchmarks perform best when they went through both the optimization passes. The

inliner and constant propagation version outperforms the baseline version at most by

46

0

200000

400000

600000

800000

1000000

1200000

fiff clos crni edit lufac bayes eigen2 rref

Inliner
Inliner+ConstProp

cycle

benchmarks

Figure 5.5: Execution Time of the Inlining Front-end and the Inlining & Constant Prop-

agation Version

5.68x for crnich and at least by 1.03x for closure. Compared to the inliner only ver-

sion, the inliner and constant propagation combined front-end produced IRs consistently

faster by an average of 1.03-1.08x. It is worthwhile to remark that constant propagation

altered the performance number when combined with function inlining. As function

inlining eliminates type and dimension information loss around function calls and infers

more scalar variables correctly, the constant propagation pass (follows function inlining

) was able to have more candidates for constant propagation.

5.B.4 Summary

Table 5.4 and Figure 5.6 summarize the speed-up achieved by adding two opti-

mization passes, function inlining and constant propagation, to the MATLAB front-end.

47

By eliminating user function call overheads and increasing the rate of successfully in-

ferring exact dimensions, the function inlining pass reduced the execution time of all

the benchmarks by 1.03x to 5.69x. On the other hand, constant propagation works only

when there are enough scalar variables inferred as scalar constants to noticeably reduce

the number of variable assignments and computations. It is observed that function in-

lining assits constant propagation by increasing the number of candidates for constant

propagation.

The evaluation result depends largely on the design choices made for current

compiler implementation. The dramatic effect of function inlining is partially due to

our design decision of passing conservative value ranges for input arguments on func-

tion calls. It is also significantly affected by the efficiency of the static type inference

engine. If the performance of the type inference engine itself is improved by changing

the algorithms or by adding additional functionalities, the simple application of func-

tion inlining might not cause a visible speed-up although overall absolute execution

time could still improve.

Table 5.4: Speedup of Three Optimized Versions to the Baseline Version
Benchmarks Inliner version ConstantProp

version
Inliner + Con-
stantProp version

finediff 2.356 1.004 2.415
closure 1.029 1.000 1.035
crnich 5.622 1.000 5.689
edit 1.518 1.000 1.605
lufac 1.099 1.000 1.099
bayes 3.555 1.000 3.824
eigen2 2.161 1.009 2.300

rref 1.720 1.001 1.728

48

0.000

1.000

2.000

3.000

4.000

5.000

6.000

fiff clos crni edit lufac bayes eigen2 rref

Inliner
ConstProp
Inliner+ConstProp

speedup

benchmarks

Figure 5.6: Speedup of Three Optimized Versions to the Baseline Versions

Chapter 6

Conclusion

As one of several promising multi-core microprocessors, tiled architecture’s key

feature is its scalable parallelizing power as the key feature. Though each tiled micropro-

cessor is equipped with a parallelizing compiler, these compilers can not harness the full

potential of underlying architecture due to insufficient parallelism in source codes. In the

thesis, we proposed a new compiler front-end which will connect a popular source-base

with ample parallelism to tiled architectures that can really support them.

The thesis presents a MATLAB front-end as the first implementation of a new

compiler infrastructure for the class of tiled architectures. It attempts to resolve type in-

formation from typeless MATLAB sources and minimize run-time overheads by adopt-

ing a static type inference engine. Because a different implementation of the same

library is linked to its callers in a MATLAB compiler depending on the type and di-

mension of input arguments, the libraries must be written type and dimension-aware.

To make the job of populating the libraries more extensible, the front-end provides an

extended MATLAB format, in which type and dimension of arguments and return vari-

ables can be explicitly forced. In terms of the entire compiler infrastructure, flexible and

standardized IR between front-ends and back-ends are defined to increase the portability

of each end. In the thesis, the back-end for RAW tiled architecture is paired with the

MATLAB front-end for performance evaluation.

49

50

The MATLAB front-end is composed of a series of compilation phases. At first,

the MATLAB parser takes MATLAB source files as input and recursively constructs

AST for the root function as well as callee functions. The optimization of function in-

lining is performed at the AST level to eliminate user-defined function calls and embed

the function bodies into the root function. The baseline compiler skips this phase. After

that, the front-end constructs a CFG from an AST. A CFG consists of basic blocks, but

it also includes MATLAB semantic information such as loop and conditional statements

as regions around basic blocks. To facilitate various data-flow analyses and code gen-

eration, SSA and SO transformations are applied to the CFGs. The next phase is static

type inference. The front-end converts the CFGs into MAGICA input streams, feeds

the input programs to MAGICA, and runs the engine. To obtain type and dimension

information for callee functions as well, the front-end recursively re-runs the engine

for user-defined callee functions with dummy assignments, which assign initial values

to input arguments. The inference result is parsed to build a type map for variables.

The CFGs and type maps are printed as PCODE and TDF IRs, respectively, at the IR

generation phase.

Performance evaluation was conducted on seven MATLAB benchmarks com-

piled by three versions of the MATLAB front-end, with a different optimization con-

figuration. The experimental result showed that a simple function inlining pass can im-

prove performance by 5x at most and by 2.38x on average. The increase in speed mostly

comes from eliminating expensive function call overheads and enabling the static type

inference engine to infer accurate dimension information for callee functions. Although

the constant propagation pass was not able to reduce the execution time when applied

by itself, it further speeds up most of the benchmarks by 3 to 8% on top of speedup

obtained from function inlining when combined with the function inlining pass. In

conclusion, evaluation results reconfirmed the importance of utilizing an efficient static

type inference engine, and showed that the proper combination of optimization passes

can complement the engine to a certain extent.

Important future work on the MATLAB front-end centers around improving the

51

efficiency of static type inference and implementing more optimizations. We used an

existing inference engine as a black box to sustain the complexity of the compiler, as

the engine itself is very complicated. The efficiency of the inference engine, however,

can be improved in many ways. The current engine often provides too broad and safe

inference results when results could be narrowed down still maintaining correctness.

Especially for loop variables whose values depend on the iteration count, MAGICA

fails to infer the exact value range, even if it is clearly visible and guaranteed. Improving

MAGICA by modifying its source codes or by adding extra processing stages for output

from MAGICA will enhance the power of static inference. The latter solution can also

analyze symbolic (non-constant) inference results, which are currently ignored by the

front-end.

On the other hand, the current front-end contains few traditional or paralleliz-

ing optimization passes. As the SSA form enables and facilitates various optimizations,

such as dead code elimination and strength reduction, optimizations can be included

in the front-end to remove unnecessary computations while the back-end concentrates

more on parallelizing optimizations. Front-ends that utilize other source languages

will definitely help refine the IRs, which are currently tested only on the MATLAB

front-end, and also expand the source-base for tiled architectures. For example, tiled

architectures can be especially powerful in processing multi-media and rendering ap-

plications that include massive deadline-driven calculations. Front-ends that support

streaming languages or graphics libraries will expand the accessibility of tiled architec-

tures. Issues with back-ends are primarily focused on developing more efficient assign-

ment/scheduling algorithms for various resources. Devising new parallelization algo-

rithms is possible, but combining existing algorithms to find balance between coarse-

grained and fine-grained parallelism can help build a more adaptable compiler to appli-

cations with different types of parallelism. As back-ends for other tiled architectures

are built, and their parallelization passes are tested, new requirements might appear for

front-ends, too.

Appendix A

PCODE and TDF Specification

A.A PCODE Specification

A.A.1 Tag Format

• root

<root> <CFG> </root>

• CFG

<CFG Label=”FunctionName”> <Region>+ </CFG>

• Region

<Region ID=”RegionID” Type=”NODE | LOOP | LIST | IF”> <Inst>*

</Region>

Note: the topmost region should be a LIST region.

• Inst

<Inst op=”Opcode”> <Def>* <Use>* </Inst>

Note: each operation has different composition of Def and Use elements.

• Def

<Def ID=”VarId”/>

52

53

• Use

<Use ID=”VarId” | Int=”IntValue” | Float=”FloatValue” |Label=”LabelValue”

| Str=”StringLiteral”/>

A.A.2 Operation Format

• add / sub / mul / ldiv / rdiv / pow

<Inst op=”add—sub | mul | ldiv | rdiv | pow”> <Def ID> <Use ID | Int |

Float> <Use ID | Int | Float> </Inst>

Note: two-operand scalar/array arithmetic operation

• mul.e / ldiv.e / rdiv.e / pow.e

<Inst op=”mul.e | ldiv.e | rdiv.e | pow.e”> <Def ID> <Use ID | Int | Float>

<Use ID | Int | Float> </Inst>

Note: two-operand element-wise array arithmetic operation

• and / nor / xor / or

<Inst op=”and | nor | xor | or”> <Def ID> <Use ID> <Use ID> </Inst>

Note: two-operand logical operation

• eq / ne / gt / ge / lt / le

<Inst op=”eq | ne | gt | ge | lt | le”> <Def ID> <Use ID | Int | Float> <Use

ID | Int | Float> </Inst>

Note: two-operands logical comparison operation

• uminus

<Inst op=”uminus”> <Def ID> <Use Int | Float> </Inst>

• not

<Inst op=”not”> <Def ID> <Use ID | Int | Float> </Inst>

• move

<Inst op=”move”> <Def ID> <Use ID | Int | Float | Str> </Inst>

54

• colon

<Inst op=”colon”> <Def ID> <Use ID | Int | Float=”StartValue”> <Use

ID | Int | Float=”IntervalValue”> <Use ID | Int | Float=”EndValue”> </Inst>

Note: MATLAB colon operator assignment

• call

<Inst op=”call”> <Use Label=”FunctionName”> <Def ID>+ <Use ID |

Int | Float | Str>* </Inst>

Note: function call(multiple return values allowed).

• putret

<Inst op=”putret”> <Use ID | Int | Float | Str>* </Inst>

• getarg

<Inst op=”getarg”> <Def ID>* </Inst>

Note: argument definition

• ble / bge

<Inst op=”ble | bge”> <Use ID | Int | Float> <Use ID | Int | Float>

</Inst>

Note: compare two operands (less then equal) and branch

• bne

<Inst op=”bne”> <Use ID | Int | Float> </Inst>

Note: compare one operand with 0 if they’re not equal and branch

• break

<Inst op=”break”> </Inst>

• subsasgn

<Inst op=”subsasgn”> <Def ID> <Use ID=”SourceArray”> <Use ID | Int

| Float=”NewValue”> <Use ID | Int | Float>* </Inst>

Note: array/matrix sub-assign (eg. A[3,4] = 5)

55

• subsref

<Inst op=”subsref”> <Def ID> <Use ID=”SourceArray”> <Use ID | Int

| Float>* </Inst>

Note: array/matrix sub-reference (eg. B = A[3,4])

• phi

<Inst op=”phi”> <Def ID> <Use ID>+ </Inst>

• alloc

<Inst op=”alloc”> <Use Int=”NumOfDimension”> <Use Int = ”SizeOf

EachDimension>+ <Def ID> <Use ID | Int | Float | Str>* </Inst>

Note: matrix allocation (eg. C = [1,2,3 ; 4,5,6])

A.B TDF Specification

• root

<root> <function> <variable>* </root>

• function

<function name=”functionName”/ >

• variable

<variable> <type=”INT | FLOAT”/> <dimension value=”NumOf Dimen-

sion” /> </variable>

Bibliography

Aho, A. V., Sethi, R., and Ullman, J. D., 1986: Compilers: principles, techniques, and
tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. ISBN
0-201-10088-6.

Almási, G., 2001: MaJIC: A MATLAB Just-In-Time Compiler. Ph.D. thesis.

Almási, G., and Padua, D., 2002: Majic: compiling matlab for speed and responsive-
ness. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on Program-
ming language design and implementation, 294–303. ACM, New York, NY, USA.
ISBN 1-58113-463-0. doi:http://doi.acm.org/10.1145/512529.512564.

Banerjee, P., Shenoy, N., Choudhary, A., Hauck, S., Bachmann, C., Haldar, M., Joisha,
P., Jones, A., Kanhare, A., Nayak, A., Periyacheri, S., Walkden, M., and Zaretsky,
D., 2000: A matlab compiler for distributed, heterogeneous, reconfigurable comput-
ing systems. In FCCM ’00: Proceedings of the 2000 IEEE Symposium on Field-
Programmable Custom Computing Machines, 39. IEEE Computer Society, Washing-
ton, DC, USA. ISBN 0-7695-0871-5.

Barua, R., Lee, W., Amarasinghe, S., and Agarawal, A., 2001: Compiler support for
scalable and efficient memory systems. IEEE Trans. Comput., 50(11), 1234–1247.
ISSN 0018-9340. doi:http://dx.doi.org/10.1109/12.966497.

Budd, T., 1988: An APL compiler. Springer-Verlag New York, Inc., New York, NY,
USA. ISBN 0-387-96643-9.

Burke, M. G., Carini, P. R., Choi, J.-D., and Hind, M., 1995: Flow-insensitive inter-
procedural alias analaysis in the presence of pointers. In LCPC ’94: Proceddings of
the 7th International Workshop on Languages and Compilers for Parallel Computing,
234–250. Springer-Verlag, London, UK.

Cheng, B.-C., and Hwu, W.-M. W., 2000: Modular interprocedural pointer analysis us-
ing access paths: design, implementation, and evaluation. In PLDI ’00: Proceedings
of the ACM SIGPLAN 2000 conference on Programming language design and imple-
mentation, 57–69. ACM, New York, NY, USA.

56

57

Cooper, K., and Torczon, L., 2003: Engineering A Compiler. Morgan Kauffman.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K., 1991: Ef-
ficiently computing static single assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst., 13(4), 451–490. ISSN 0164-0925.

Department of Mathematics, M. I. o. T., 1996: Matlab teaching code.
http://web.mit.edu/18.06/www/Course-Info/Tcodes.html.

Etter, D., 1999: Introduction to MATLAB. Prentice Hall PTR, Upper Saddle River, NJ,
USA. ISBN 0130131490.

Joisha, P. G., 2003: A type inference system for MATLAB with applications to code
optimization. Ph.D. thesis, Evanston, IL, USA. Adviser-Prithviraj Banerjee.

Joisha, P. G., and Banerjee, P., 2002: Magica: A software tool for inferring types in
matlab. Technical Report Technical Report CPDC-TR-2002-10-004, Department of
Electrical and Computer Engineering, Northwestern University.

Joisha, P. G., and Banerjee, P., 2006: An algebraic array shape inference system for
matlab R©. ACM Trans. Program. Lang. Syst., 28(5), 848–907. ISSN 0164-0925.
doi:http://doi.acm.org/10.1145/1152649.1152651.

Kennedy, K., and Allen, J. R., 2002: Optimizing compilers for modern architectures: a
dependence-based approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA. ISBN 1-55860-286-0.

Lee, W., Barua, R., Frank, M., Srikrishna, D., Babb, J., Sarkar, V., and Amarasinghe,
S., 1998: Space-time scheduling of instruction-level parallelism on a raw machine.
SIGOPS Oper. Syst. Rev., 32(5), 46–57. ISSN 0163-5980. doi:http://doi.acm.org/10.
1145/384265.291018.

Martin, R. C., 2003: Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall PTR, Upper Saddle River, NJ, USA. ISBN 0135974445.

MathWorks, T., 2002: Matlab digest. http://www.mathworks.com/company/newsletters/
digest/sept02/.

Moore, G. E., 2000: Cramming more components onto integrated circuits. 56–59.

Muchnick, S. S., 1997: Advanced compiler design and implementation. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA. ISBN 1-55860-320-4.

O’Brien, K., O’Brien, K. M., Hopkins, M., Shepherd, A., and Unrau, R., 1995: Xil and
yil: the intermediate languages of tobey. In Papers from the 1995 ACM SIGPLAN
workshop on Intermediate representations, 71–82. ACM, New York, NY, USA. ISBN
0-89791-754-5. doi:http://doi.acm.org/10.1145/202529.202537.

58

Parr, T., 2007: The Definitive ANTLR Reference: Building Domain-Specific Languages.
Pragmatic Programmers. Pragmatic Bookshelf, first edition. ISBN 0978739256.

Rose, L. D., and Padua, D., 1999: Techniques for the translation of matlab programs
into fortran 90. ACM Trans. Program. Lang. Syst., 21(2), 286–323. ISSN 0164-0925.
doi:http://doi.acm.org/10.1145/316686.316693.

Sankaralingam, K., Nagarajan, R., Liu, H., Kim, C., Huh, J., Burger, D., Keckler, S. W.,
and Moore, C. R., 2003: Exploiting ilp, tlp, and dlp with the polymorphous trips
architecture. SIGARCH Comput. Archit. News, 31(2), 422–433. ISSN 0163-5964.
doi:http://doi.acm.org/10.1145/871656.859667.

Smith, A., Gibson, J., Maher, B., Nethercote, N., Yoder, B., Burger, D., McKinle, K. S.,
and Burrill, J., 2006: Compiling for edge architectures. In CGO ’06: Proceedings of
the International Symposium on Code Generation and Optimization, 185–195. IEEE
Computer Society, Washington, DC, USA. ISBN 0-7695-2499-0. doi:http://dx.doi.
org/10.1109/CGO.2006.10.

Swanson, S., 2006: The wavescalar architecture. Ph.D. thesis, Seattle, WA, USA.
Adviser-Mark Oskin.

Swanson, S., Michelson, K., Schwerin, A., and Oskin, M., 2003: Wavescalar. In MI-
CRO 36: Proceedings of the 36th annual IEEE/ACM International Symposium on
Microarchitecture, 291. IEEE Computer Society, Washington, DC, USA. ISBN 0-
7695-2043-X.

Taylor, M. B., Kim, J., Miller, J., Wentzlaff, D., Ghodrat, F., Greenwald, B., Hoffman,
H., Johnson, P., Lee, J.-W., Lee, W., Ma, A., Saraf, A., Seneski, M., Shnidman,
N., Strumpen, V., Frank, M., Amarasinghe, S., and Agarwal, A., 2002: The raw
microprocessor: A computational fabric for software circuits and general-purpose
programs. IEEE Micro, 22(2), 25–35. ISSN 0272-1732. doi:http://dx.doi.org/10.
1109/MM.2002.997877.

Taylor, M. B., and Lee, W., 2005: Scalar operand networks. IEEE Trans. Parallel
Distrib. Syst., 16(2), 145–162. ISSN 1045-9219. doi:http://dx.doi.org/10.1109/TPDS.
2005.24. Member-Saman P. Amarasinghe and Member-Anant Agarwal.

Taylor, M. B., Lee, W., Miller, J., Wentzlaff, D., Bratt, I., Greenwald, B., Hoffmann,
H., Johnson, P., Kim, J., Psota, J., Saraf, A., Shnidman, N., Strumpen, V., Frank, M.,
Amarasinghe, S., and Agarwal, A., 2004: Evaluation of the raw microprocessor: An
exposed-wire-delay architecture for ilp and streams. In ISCA ’04: Proceedings of the
31st annual international symposium on Computer architecture, 2. IEEE Computer
Society, Washington, DC, USA. ISBN 0-7695-2143-6.

	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract
	Chapter 1. Introduction
	Chapter 2. Design Goals
	Performance
	Extensibility
	Portability

	Chapter 3. Overall Compiler Structure
	Front-end
	Back-end

	Chapter 4. Compilation Phases
	Loading and Parsing Functions
	Constructing AST
	Function Inlining
	Building CFG with regions
	SSA and SO Transformation
	Type and Dimension Inference
	Constant Propagation
	IR Generation

	Chapter 5. Performance Evaluation
	Evalution Environment
	Compiler Infrastructure
	Benchmarks
	Target Architecture Simulator

	Evaluation Results
	Function Inlining
	Constant Propagation
	Function Inlining and Constant Propagation
	Summary

	Chapter 6. Conclusion
	Appendix A. PCODE and TDF Specification
	PCODE Specification
	Tag Format
	Operation Format

	TDF Specification

	Bibliography

